Noisy Streaming PCA

Supplementary Material

A. Auxillary Lemmas

Lemma A.1 (Lemma 14.1 (Shalev-Shwartz & Ben-David,
2014)). Any update of the form

PO =TI (P — pg,), (13)

for an arbitrary sequence of matrices g,, g,, . . . , g7, projec-
tion IIc onto an arbitrary convex set C , and initialization
P = 0 satisfies

tzi; <p(t) —P, gt>

forany P € C.

Lemma A.2 (Lemma 4 (Warmuth & Kuzmin, 2006)). For
any PSD A and any symmetric B, C for which B < C, it
holds that Tr (AB) < Tr (AC).
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B. Proofs of Section 3

Proof of Theorem 2.1. Using Lemma A.1, noting ||P||% <

kforallP € C,and g, = —x,x/ so that ||gt||§, = ||xt||‘21 <
17
T
T
P TPy, n-
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Choosing n = 4/ = completes the proof. O

Proof of Theorem 3.1. Letg, = g, + E; be the noisy gradi-
ent. The analysis begins with bounding the distance between
the ¢-th iterate and any candidate P € C, D, = ||P; — P|| r.
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—2(PY —P, g, +E,)

< D} +7°G* — 2p(P") — P, g,)
2n(P® — P E,)

< D} +7°G* — 2p(P") — P, g,)

+ 2 [P — P JEdl,

< D7 +0*G? — 2p(P") — P, g,) + 4kn |[E¢|,

Where the first inequality is due to projection onto a convex
set being non-expanding and the third one is by Holder’s
inequality. The last inequality follows from triangle inequal-

ity and constraints: HP(t) — PH < HP(t)H + |IP|l, < 2k.

Noting g, = —x;x/ , rearranging and dividing both sides by

2n we get
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P—PW xx/) <
< ’tht > — 277

+ G2+ 2k [[E
(15)
We then sum over T iterates and use the telescopic prop-
erty of the first term of the right hand side of 15, so that
+1 D} =D}, = D}—Dj_, < D3. The initial distance
Dy is bounded as follows:
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<k+k+2 HP(1>H IP|l, < 4k

Plugging back the above bound in 15 and noting
> =1 l[Etl[2 < E, we get

T
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th Px; — ZXTP Ux < — +2kE
By choosing optimal learning rate n = é% we get the
desired results. O

Proof of Theorem 3.2. Let g, = (xx +y,)(xx +y;) ' de-
note the corrupted gradient and let g, = xkxg denote the
unbiased estimate of C based on the k-th sample. Let
v denote the top eigenvector of C := Ep[xx '] with as-
sociated eigenvalue A and let u ~ AN(0,1) be the ini-
tialization for Oja’s algorithm. We are going to assume
that Zle Iyl + lly.ll? < VT. We note that our as-
sumption implies that Zf g, — gl < O(T) and
Zk g™ < O(T™/2). Let ®M and Wy, be defined
as in the proof of Theorem 5.3. We are first going to upper

bound Tr (@}“T ):

w’” w’ Tau’
Tr (@T ) =Tr ((bT—l) + 217Tr (XTXT(PT—l)
~ uuT 2 ~2 uuT
+ 2nTr ((g - gT)(I’T—1) +n7Tr (gT‘bTﬂ)
T T ~ 2 1~ 112
<Tr (@5, (1 + 2nwhgrwr + 20118r — g7l + 07 12011 )

< Tr (B4, Jexp (2owrerwr + 20187 — grll + 0 1111
< ...

IA

T
[[ull exp (Z 20w g W + 20 |8, — gl + 1”1,

k=1
(16)
where we have used lemma 4 in (Warmuth & Kuzmin, 2006).
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Next we are going to lower bound E[Tr (¥)]:

E[Tr (V)] > E[Tr (VVT I+ 2ng;) @IT_l)]
=E[Tr (vw' (I+ 27C) ®%_,)]
+E[Tr (vw' (I+ 2ny,y7) ®h_y)]

a7
> (1+ 2p\)E[Tr (v @ ,)]
> exp (27X — 20°A?) E[Tr (v ' @ _,)] > -
> exp (T(2n\ — 2772)\2)) ,
where we used the fact that E[x;] = 0 and that 1 +

2z > exp (Zz — 2:172) for x € [0,1]. Finally using Lieb-
Thirring’s inequality we have the following upper bound on
E[Tr (93)]:

E[Tr (3)] < E[Tr (14 7g,)" ¥3)]
= E[(1+ dpxix] +4ny,y] +60°8; + 40’8}
4
+774g1) Tr (‘I’g)}
< exp <4T77/\ + 404177\/T + 600n*T + 4a3n3T(3/2)
+044774T2) )

(18)
where for the last inequality we have pushed the expectation
inside the trace and used the fact that E[||g}||] is bounded
above by some linear combinations of ||y, ||, where m &
[2n]. Next we have used the fact that 1 + = < exp (x)
and induction together with Zfil lyell < O(T) and
iy Iyl < O(T™?). Let a = 4ay + 6aanVT +

4osn®T + ayn®T3/% + 4AnA2\/T. Using Chebyshev’s in-
equality with equations 17 and 18 we have:

P[Tr (¥1) < exp (T(2nA — 21*X%)) (1

- 51/2\/exp (\/fna) —-1)] <é.

Letn = iT for some constant 8 independent of 7. We
claim that for small enough 3 it holds that with probability
atleast 1 — 6, Tr (W) > Zexp (T'(2nA — 2172)\2)) For the
choice of 7, this is equlvalent toexp (Ba) <1 + 2, where
o now becomes o = 4 + 63 + 425 +4a3ﬂ2 +ay33.
Taking 8 — 0 we can see that exp (af8) — 1 < 1+ 6/9
and since exp («f) is a continuous function of S the de-
sired value of # > 0 exists. From the derivation in (Allen-
Zhu & Li, 2017) Appendix I, it follows that ||u|\§

O(d + log(1/8)) and Tr (@uT“T) > Q(572)Tr (¥,) with

probability 1 — §. Thus with probability 1 — 24 it holds that

T

O(d +1og(1/6))exp (Z 20wy g, Wi + 20 [1g), — g
k=1

o ||gk||) e (T(2nA — 272%)) =
T

k=1 n
log (525
+O(T) 4+ n0(T) — M
Substituting n = % finishes the proof. O

C. Proofs of Section 4

Lemma C.1. The naive estimator XX ' is not unbiased, i.e.

Er (%X [x] = ¢*xx" + (¢ — ¢°) diagxx ",

where the expectation is taken with respect to Bernoulli
random model.

Proof of Lemma C.1. For off-diagonal elements (i # j),
Er[XX" |x];; = xix;P(i,j € {i1,..,ir}) = za;P(Z; =
P(Z; = 1) = ¢*z;x;. Now consider the diagonal el-
ements. Er[XX' |x];; = x?P(Z; = 1) = qa?. Putting
together, Ex[XX ' |x] = ¢®xx " + (¢ — ¢*) diagxx". [

Proof of Lemma 4.1. First note that

~ 9 g xx

ES[ZZT|)~(] = Es[I €., |x}

The proof simply follows from the following equalities.

ES)R[ﬁT — 22" |x]

~ Er[Bs[ 5" [{lx] ~ B [Eslez X

[diag XX " [x]

1
= SEr[RX ' |x] — (19)

q

2
4 2q diag xx

1 —
S diag xx "
q

= XX .
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Proof of Theorem 4.2. We first bound ||g, H?, as follows:

2

||§t||2p = iﬁ: —ZtZtT
itﬁtT —|— Hztzt HF <xt§tT, thg—)
AT 2
< XX || + 2e2 ||

- 14 4
SR + el

I r2(1—q)?
< (TzH><I|4 + x5

1 r?(1—9q)?

where the first inequality follows from the fact that inner
product of PSD matrices is non-negative, the third inequality
is by definition of X and z, and the last inequality holds since
[x]lo < ||x|]] < 1. Taking the expectation of both sides,
noting the for Binomial distribution Ex [r?] = var (r;) +
Er[ri]® = dg(1 — q) + d*¢*, we get Er[[[g]}] < & +
dq(l—q)s-i-tfqz(l—Q)2

. Now, using Lemma A.1 with {g,}7 ,,
noting ||P||% <kforallP e C

XT:< —gt>]

t=1
koom XT: ¢* +dg(1 — q)® + d*¢*(1 — ¢)?
~2n q*
ko n,.¢°+dq(1 —q)° 4+ d°¢*(1 — q)*
<+ 2T .
2n 2 q*
2
. _ E :
Setting np = \/q2+dq(1fq(§3+d2q2(lfq)2 \/; and taking ex-

pectation with respect to the internal randomization S and
the distribution of the missing data R finishes the proof. [J

Proof of Theorem Oja with missing entries 4.3. We begin
. ~ 12 ~ 13 ~ |4

by bounding Es =[[[g, (], Es = [llg,["] and Es z[l[g, "]

||zkz,I|| Using Jensen’s in-

< 202 + 202, |, |° < 4a® +

< 8a* + 8b*. Since ||x, < 1 it holds that
TR

Let a := kaxk H and b :

equality we have |[g, ||°

4
46°, |12 |
a” < q% and b" <

p2 = dg(1 — q + dq)

ps = dg(1 — 3q 4 3dq + 2¢° — 3dq* + d*¢?)

pa = dg(1 — 7q + 7dq + 12¢* — 18dq* + 6d°¢*
—6¢° 4+ 11d¢® — 6d%¢° + d®¢®).

These are the second, third and fourth moment of the bi-
nomial random variable r, respectively. Also let 6/5 =

2r2(1—q)?
q% + %.Thus we have

n—1 on— ,un (1 _ q)
qn q2n

Esrllgel"] < an =

Define @%, Wy, Wi, A,v and u as in the proof of theorem 5.3.
We have:

.
Tr (@#‘ )

" ~ zuu! 2 =2 zuu "
=Tr (‘I)T—l) + 2nTr (gT‘I)T—1> + 0 Tr (gT(I)T—1>

<Tr ( ) + 2nTr (gTq)‘%‘jl) +n*a) Tr < ‘%‘jl)
T ~ o~
<Tr ( “T“_l) exp (n2a§ + ZUW;gTWT)
T T
2 ~t ~
- < Jlul3exp (Z e+ 20w gw
t=1 t=1

(20)
Next we need a lower bound on E[U4]. This is done in the
same way as in Theorem 5.3:

E[Tr (W1)] > exp (T(20A — 27°X%)), (21
Finally, we need to bound E[¥2]. It holds that:
Tr (U3)] = E[Tr (I + ng,)* Vo (I + ng, ) Ts)]
< E[Tr ( +ng1) )]
= BT (1 40°) + 00°8] + 4, +0'E)3)]

< Tr((I
< (
< exp (an® + 4n)\) E[T

+ntay +4n3as + 6n%as + 477/\)\113)
I+ n°a + 4n\)E[¥3))
T (\1/3)],
where o = a4 + 4a3 + 6as. Using Chebyshev’s inequality
it holds that
P[Tr (¥1) < exp (T'(2nA — 21*X%)) (1
5712\ /exp (an? + 472X2))] < 6.

log(1446/9)

VT (a+4X2)°
ability 1 — &, Tr(¥1) > Zexp (T'(2nA — 21?A?)). From
the derivation in (Allen-Zhu & Li, 2017) Appendix I, it

follows that |Jul|> < O(d + log(1/4)) and Tr (qﬂ;f) >
Q(67%)Tr (V) with probability 1 — 4. Thus with probabil-
ity 1 — 24 it holds that

As long as n < this implies that with prob-

T T
O(d + log(1/5))exp (Z n°a + 21 ijgtwt>

t=1 t=1

2
352°XP (T(2n\ — 2172/\2)) .
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Taking logarithms on both sides implies that

T
AT — 21 Tr (Es r[wew, |Es[g,]) <

2 2 a4 ~t
log(0(a +108(1/0)) ~ o 525 9P 3 Bl

where we have used the independence between g, and w;.
This implies

T
> (g, PY) —Es g [P1))

log(O(d + log(1/5))) — log (522)
2n

+ Tnas

log(1+4/9)

finishes the proof.

D. Proofs of Section 5

Lemma D.1. The naive estimator iixiT is not unbiased, i.e.
r(r—1) + r(d-—r)
M7 S
d(d—1) d(d—1)

where expectation is taken with respect to the uniform sam-
pling model.

T

Er[xx'|x] = diagxx ',

Proof of Lemma D. 1. For off-diagonal elements (i # j),
Er[%x"|x];; = x;x;P(i,5 € {i1,..,i,}) so we need to
compute the probability of the event that two fixed el-
ement i,j € [1---d] are both in the subset {iy,..,%,}
sampled uniformly at random from all subsets of size r.
The number of sets of r elements which contain ¢ and
7 is exactly (f:g) and the total number of r sets is (f)

» oy (22) e
thus P(i,j € {i1,..,ir}) = @ = @@y and so

Er[XX'|x]i; = XiX; :122:3' Now consider the diagonal

elements. Ex[XX " |X];; = x?P(i € {i1, .., i,}) so we need
to compute the probability of the event ¢ € {i1, .., }. The

number of sets with size r containing 7 is (fj) and thus
Er[XX ' |x];; = x27. Putting together,
- r(r—1) roor(r—=1), ..
E T _ T S A T
RIXX ' [X] d(d—l)xx +(d d(d—l)) iag xx
r(r—=1) + r({d-7r) | T
= d .
d(d—l)xx +d(d—1) 1ag XX
O

Proof of Lemma 5.1. First note that

o dr—r? q_d=r
Es[zz" |X] = i I Es[i e;.e; [X] = ﬁ diag X% .

i

The proof simply follows from the following equalities.

Esr[fX' —zz" |x]
= Er[Es[XX" [K]Ix] — Er[Es[zz"[%]|x]

d(d—1 . d— C s
= ( )ER [XXT|X] — ﬁER [dlag XXT] (23)

or(r—1)
d— d—

=xx' + a-r diagxx " — a-r diag xx "
r—1 r—1

=xx'.

where diag A, A € R%¥4 is the d x d matrix consisting of
the diagonal of A. O
Proof of Theorem 5.2. We first bound || g, H?, as follows:

2
~ ~T
XXy — ZtZ;r

~ 2
”gt”F =

~ ~T
XXy

2
- + Hztszi — ARK, zez) )

2

~ AT T2

< ||XX —l—Hth H
t F t ||

- 14 4
SRl + el

dd-1)2  r*’d-r)? .,
= 7”227“ — 1;2 (:‘ - 1)) Illoo
d*(d—1)2 +r*(d—r)?
= r2(r —1)2 '

where the first inequality follows from (%X, ,z¢z] ) > 0,
since this is an inner product of PSD matrices, the third
inequality follows the definition of X and z, and the forth in-
equality holds since ||X|| < ||x|| < 1.Now, using Lemma A.1
with {g,}7_,, noting ||P||% < k for all P € C, we have that

T
* _plt) _5
;@ PO, —g,)

<
2 — r2(r—1)2
_k ﬂTd2(d_1)2+7"4(d_7")2
2 2 r2(r —1)2
Since  Eg, [=]g, = xiX,,  setting 7 =
r(r—1) k

== and taking expectation with
Vd2(d—-1)2+ri(d—r)2 V 2T g exp

respect to the internal randomization S and the distribution
of the missing data R finishes the proof. O

Proof of Theorem 5.3. First we bound ||g,,||,. Since g, =

ik, — zxz], is the difference of two PSD matrices it holds
that
E

I8l = max (Rl || 2zl ) <00 @4
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Let v be the top eigenvector of C with associated eigenvalue
A Alsolet g, = xkka and wy, be the k-th iterate of Oja’s
algorithm, such that pk) — Wkwg. Define

I+ ng;)
T+ ngy)-

T+ ng ) M(I+ng,)---
(T+ngp)w' (T+ngp) -

Y = (141,
W= (4 08,)

Following the calculations in (Allen-Zhu & Li, 2017) Ap-
pendix I, we have:

Tr () = Tr ((1+ ngr) @5, (14 gy

T ~ uuT ~
=Tr (®7_ 1) +2nTr (gT‘I)T 1) + T (gT(I)T—lgT>
+2Tr (2,04, ) + e (B 04,

e (237
< Tr (@4 ) + 20T (2,04, ) + nPa’Tr (04
= Tr (24

uT

o7

*a® + 2wy grwr)

< e (1) e (0% + 20

T
< Jull; exp (Tn2a2 +20 ) Wl g W
k=1
(25)
where for the first inequality we have used the fact that
<I>“T“j1 is PSD and ||g,, ||, < o and for the second inequality
we have used 1 + = < exp (z). We have also used the fact

T T
that @3 | = Tr (<I>“T“_1> wrw,.. Next we have

E[W,] = E[Tr (w' (1+7287) ®p_; (1+ n27))]
E[Tr (W' (I+7g7) ®p_y) + 07V 8r @l 27V]
E[Tr (VVT (I+nC) @%71)]

(1+ 2n\)E[v " ®f_ V]

exp (27X — 272 A?) E[vT @k, v] > -+

exp ((2nA — 2°X*)T),

AV

AV,

(26)
where the expectation is both with respect to R and D and
we have used 1 + 2z > exp (2z — 22?), for 0 < z < 1.
Finally we have:

(\P )] = E[Tr (I +17,)*P2(I +1g,)* T2)]
E[Tr (( 77&) 2)]
= [T (14 4078 + 6078 + 0@ +0'E)WR)]
< E[Tr (I+ 11n°a’T + 4ng, ) ¥3)]
<exp (11n°a* + 4n\) E[Tr (¥3)] < - -
<exp (T(11n%a" + an\)).

Combining equations 26 and 27 with Chebyshev’s inequality

we get:

P[Tr (¥1) < exp (T(2nA — 20°7?)) —

exp (T(2n>\2a2n2))\/(exp (T(11n2a2+4772)\2)) ) ]

<.
Thus with probability 1 — 4 it holds
Tr (V1) > exp (T(2n\ — 20°7%)) (1—

512\ Jexp (T(11n2a% + 42A2)) — 1)

2
> 3EXP (T(2n\ — 2a2772))
as long as n < %. Following the deriva-

tions (Allen-Zhu & Li, 2017), we have that with probability
1 — & it holds that Tr (@1;”) > Q(3~2)Tr (¥;) and that

Hu||§ < O(d + log(1/4?)). Union bound, together with
inequality 25 implies that with probability 1 — 2§ we have:

T
O(d + log(1/6%))exp <T772042 + 27 Z ngkwk>

k=1
2
> 352°%P (T (20X — 20°n%)) =
T
log(O(d 4 log(1/6%))) + 2172 WkTnglc
k=1
> log(2/36%) + 2Ty — 2Ta*n* =
T
Z)\ — Wi g W, <
k=1
2 _ 2
log(O(d 4 log(1/2))) — log(2/362)/2 © 9Ta?y —
n
T
> (g, P* — Esr[Py]) <
k=1
VT (1102 4+4)?)
e A log(1/6%))) —log(2/36%)/2
Tog(1 1 3/9) (log(O(d+log(1/8%))) —log(2/35%)/2)

g VT
log(1+46/9)°

where in the last implication we have substituted n =

% and used the fact that o? < 11a2+4X2. O
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E. Proofs of Section 6

Proof of Theorem 6.1. Denoting (P%) — I)x, by ¥, We can
T T

rewrite g, as g, = —% Thus we have

||gt||2F = 4H || ((Xtyt +tht) (Xty;r +thtT))
2
4)|x 2
IS e <
[1y:113
By convexity of norms, |[x — P®x|ly — [[x — P*xl2 <

(P® —P* g,). Using Lemma A.1, noting ||P||?J < k for all
PeC,and g% <1,

T

d k0T
_p® _ _p* AN
Z l[xe — Px¢l2 Z [x¢ = P*x¢ll2 < o +5
t=1 t=1
Choosing n = \/? completes the proof. O

F. Proofs of Section 8

Proof of Theorem 8.1. Our proof follows (Zinkevich, 2003).

We start the analysis by bounding the distance of our iterates
at time ¢ from any dynamic competitor Pitfl) attime t — 1

[ (- m) -]

< HP ® —ng, — Pff)
F

HP(tJrl) p(t

2
N
B HP Pl H2 +Hpg_1>_pgt>Hz
Ia F
2P0 — PUD pE-D _py 4 2 g, |2
—21(g, PY — PLY)

<[
= * F *

F

4
P n

P}(ktfl) _ Pit) 2

sl v

+ 27 (X;FP(t)xt — XTP(f’)xt)
SHP(”— P~ 1” +2\fHPt L _p®
+avk HPS}‘U —p®) HF 4
Xt — X;Pf)xt)

Rearranging and dividing both sides by 2n we get
3Vk HP (t=1) _ p(®)

F
+2n (xtTP(t)

L

xtTP(t)xt — X, P(t)xt < — =13

*

Hp(t> _ p-1) H2 _ HP(H-U _p0)”
F

2n

Summing over ¢, observe the telescopic sum on the right
hand side is bounded by

T 2
e
=1 F

-]
*lr

= ey e
F

2
_ HP(T+1> ,P(T>H
*lr
2
<[, <
F

Plugging the definition of the total shift S into the sum

T T
k T k
S X POx, — 3K PO, < 3VES T K
n 2 2
t=1 t=1
_6VES+Ek LT
N 2n 2
Choosing = 4/ % completes the proof. O

F.1. Experimental Results

We provide additional experiments in Figures 3, 4, 5 and 6
for PCA with partial observations and for PCA with missing
entries. As stated in the main text, all our observations from
Figure 1 and Figure 2 hold for the results presented here.

Further, in Figure 7, we present experimental results for
the proposed Absolute Subspace Deviation Model algorithm
of Section 6(referred to as Robust GD in the plots). The
algorithms against which we compare are Robust Online
PCA proposed in (Goes et al., 2014) (referred to as Robust
MEG in the plots) which is an instance of online mirror
descent with choice of potential function being entropy and
simple batch PCA on the whole dataset. As ground truth
we take the k-dimensional subspace returned by the pro-
posed method in (Lerman et al., 2012). In the following
discussion the ground truth is represented by the projec-
tion matrix P* € R?¥9 and the estimated projection matrix
returned by an algorithm is denoted by P®)_ Since our ex-
periments are ran on a synthetic dataset of fixed size, we
denote this dataset by X € R?*"™, The criteria against which
we evaluate are average angle between subspaces given

by Tr <(P(t))TP*> /k, reconstruction error on the whole
dataset given by H(U(t))TXf (U(*))TXH /m where a
F

rank-k projection matrix P is decomposed as P = UU"
for orthogonal U € R?**. We also evaluate on the to-
tal regret incurred. The data set is generated as in (Goes
et al., 2014). First inliers are sampled from a k-dimensional
Multivariate Normal distribution with 0 mean and covari-
ance matrix %Ik. Next the inliers are embedded in a d-
dimensional space via the linear transformation U € R4*¥
with entries U;; = 1 and U;»; = 0. Finally outliers are
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Figure 3: Comparisons of Oja, MGD, MGD-PO, MGD-MD, Oja-PO, Oja-MD, GROUSE for PCA with missing data on XRMB dataset,
in terms of the variance captured on a test set as a function of number of observed entries for k=2 (top), number of iterations (middle) and

runtime (bottom).

sampled from a d-dimensional Multivariate Normal dis-
tribution with diagonal covariance WEO‘" where

out)

(Xout)ii = 1, here X is a user-specified parameter which
governs the SNR. In our experiments A = 20 the number
of outliers is 40%, 60%, 80% of the total number of points,
k = 2 and d = 100. In our comparison we also include a
“capped” version of our proposed method where the rank of
each intermediate iterate is hard-capped to 15 by keeping
the 15 directions associated with the top 15 singular values
of our current iterate.

We now briefly discuss the more interesting points which
should be observed from the provided Figure 7. First our
algorithm clearly out-performs the Robust Online PCA and
batch PCA in all the chosen criteria. Secondly, since Robust
Online PCA is required to always keep full-rank iterates
as it operates in the complementary space to the one we
wish to recover it has to pay computational cost O(d®) per
iteration while our method only pays O(dl~c2) where F is the
rank of the current iterate. As can be seen from the plots

for the cases when number of outliers are 40% or 60% the
intermediate rank of iterates does not grow too much so in
practice our proposed method is efficient. Finally we note
that the capped version of the proposed method performs as
well or even better in some cases.
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Figure 4: Comparisons of Oja, MGD, MGD-PO, MGD-MD, Oja-PO, Oja-MD, GROUSE for PCA with missing data on XRMB dataset,
in terms of the variance captured on a test set as a function of number of observed entries for k=4 (top), number of iterations (middle) and

runtime (bottom).
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Figure 5: Comparisons of Oja, MGD, MSG-PO, MSG-MD, Oja-PO, Oja-MD and GROUSE for PCA with missing data on MNIST
dataset, in terms of the variance captured on a test set as a function of number of observed entries for k=2 (top), number of iterations

(middle) and runtime (bottom).
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Figure 6: Comparisons of Oja, MGD, MSG-PO, MSG-MD, Oja-PO, Oja-MD and GROUSE for PCA with missing data on MNIST
dataset, in terms of the variance captured on a test set as a function of number of observed entries for k=4 (top), number of iterations

(middle) and runtime (bottom).
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Figure 7: (k = 2) Comparison of batch PCA, Robust Online PCA (Robust MEG), and Absolute Subspace Deviation Model (Robust GD)
with 40% outliers (top row), 60% outliers (middle row) and 80% outliers (bottom row) on synthetic dataset. Experiments are in terms of
the average subspace angle (left most), variance captured on a test set (left), reconstruction error (right) and the rank of iterates (right
most) as a function of number of samples.



