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1 Approximating HR as h(L)R.

We compute the product with each column r; of R independently. To achieve this using Chebyshev polynon-
ials (Shuman et al.,2011), one employs the equation

Hr; ~ h(L E A T (L),

where each 7, (L)r; is computed based on the recursion

T (L)r; = (

having as initial conditions

max

L 21) T (L)r; — T (L,

To(L)r;y =r; and 7’1(L)ri:< 2 L—I)r

)\max

The constant a,, should be selected as a,, = = c‘i;n ) >0 s(2 (1 + cos(m 22(5:)))) cos(cm 22&1%)) where

s(x) = 1yz<»,} is a step-function. The total computational complexity amounts to dc matrix-vector multipli-
cations with a sparse matrix containing m non-zero elements.

2 Proof of Lemma 3.1

Proof. Let X and Xy be respectively the SC and CSC clustering assignments. Moreover, we denote for
compactness the additive error term by E = ¥ — &I, ,Q. We have that

Cy = ||® — XyXy®|r
= [|(T — X4 Xy)(¥ - E)||r
<II - XoXg) ¥ r + [|(T- XeXy)E|| £
< [I(T - XoXg) ¥ + |Ellp
<[|(T - XoXg)¥| r + ||Ellr
= |[(I-XoXg)(®LixaQ + E)||r + [|E[
<1 - XoX4)@LixaQl r + 2| El|r
=Co + 2|V — ®L;xaQl F (1)

The lower bound comes from that X4 in eq. (1) defines the argmin of our cost functions, and thus Cp <
Cy. O



3 Proof of Theorem 3.2

Proof. Let us start by noting that, by the unitary invariance of the Frobenius norm, for any £ x k& matrix M
[@M]|p = [[ULixcM|[p = [Ty M| p = [[M]| . 2)
We can thus rewrite the feature error as
1 — @LixaQllr = |22 'R — @L1aQ| r
= [|®"R — LixaQl|F

= |IexnUTR — LixaQll
=R — LixaQl F- 3)

We claim that there is a unitary matrix Q that satisfies eq. (9). We describe this matrix as follows. Let
R’ = Q.XQ}, be the singular value decomposition of R’ and set

Substituting this to the feature error, we have that

IR — LixaQllF = |QLEQL — LixaQllF
=T - Q. LxaQQr| F

== - Q[ Iixa (QOL Idok) QLQrllF

= ||E - Qz (QL O) ||F
= ||Z — Tixal F, (5)

which is the claimed result. O

4 Proof of Corollary 3.2

Proof. To obtain the following extremal inequality for the singular values of R/, we note that R’ is composed
of i.i.d. Gaussian random variables with zero mean and variance 1/d, and thus use Cor. 3.1 setting R’ = N/d
providing for every 1,

k
os(R) = 0y(N)/Vd < 1+ ‘[\/25. (6)
By simple algebraic manipulation, we then find that
u 2
1B = Thall7 =D (03(R)) = 1)
i=1
2
k+e k
<k (C& ) :E(\/EH)Q, (7)
which, after taking a square root, matches the claim. ]



5 Relation Between Edge Similarity and Spectral Similarity

Corollary 5.1 (adapted from Cor. 4 (Hunter and Strohmer, 2010)). Let H;_1 and H; be the orthogonal
projection on to the span of [Uglt—1(= ®¢_1) and [Ug](= ®y). If there exists an o > 0 such that o <
)\,(:_:11) — )\Z and o < )\2, then,

V2

2
IH; —H;_1||r < ?HLt_Lt—lnF- ¥

Note that the bounds on « are those described in their Thm. 3.
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