Fast Approximate Spectral Clustering for Dynamic Networks

Lionel Martin' Andreas Loukas' Pierre Vandergheynst '

Abstract

Spectral clustering is a widely studied problem,
yet its complexity is prohibitive for dynamic
graphs of even modest size. We claim that it
is possible to reuse information of past cluster
assignments to expedite computation. Our ap-
proach builds on a recent idea of sidestepping the
main bottleneck of spectral clustering, i.e., com-
puting the graph eigenvectors, by a polynomial-
based randomized sketching technique. We show
that the proposed algorithm achieves clustering
assignments with quality approximating that of
spectral clustering and that it can yield significant
complexity benefits when the graph dynamics are
appropriately bounded. In our experiments, our
method clusters 30k node graphs 3.9 faster in
average and deviates from the correct assignment
by less than 0.1%.

1. Introduction

Spectral clustering (SC) is one of the most utilized meth-
ods for clustering multivariate data (Von Luxburg, 2007;
Fortunato, 2010). However, because of its inherent depen-
dence on the spectrum of some large graph, SC is compu-
tationally expensive. Let n and k& be the number of nodes
and clusters, respectively. Clustering a graph takes O(n?)
operations if a full eigendecomposition is performed and
O(kn?) if the Lanczos method is used. This has motivated
a surge of research focusing in reducing its complexity,
for example using matrix sketching (Fowlkes et al., 2004;
Li et al., 2011; Gittens et al., 2013), coarsening (Loukas
and Vandergheynst, 2018), and compressive sampling (Ra-
masamy and Madhow, 2015; Tremblay et al., 2016), attain-
ing a complexity reduction by roughly a factor of n.

Yet, computation is still an issue for dynamic networks,
where the edge set is a function of time. Temporal dynam-
ics constitute an important aspect of many network datasets

"Ecole Polytechnique Fédérale de Lausanne, Switzerland.
Correspondence to: Lionel Martin <lionel.martin@epfl.ch>, An-
dreas Loukas <andreas.loukas@epfl.ch>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

and should be taken into account in the algorithmic de-
sign and analysis. Unfortunately, SC is poorly suited to
this setting as eigendecomposition —its main computational
bottleneck— has to be recomputed from scratch whenever
the graph is updated, or at least periodically (Ning et al.,
2007). This is a missed opportunity since the clustering as-
signments of many real networks change slowly with time,
suggesting that successive algorithmic runs wastefully re-
peat similar computations.

This paper proposes an algorithm that reuses information of
past cluster assignments to expedite computation. Different
from previous work on dynamic clustering, our objective is
not to improve the clustering quality, e.g., by enforcing a
temporal-smoothness hypothesis (Chakrabarti et al., 2006;
Chi et al., 2007) or by using tensor decompositions (Gauvin
et al., 2014; Tu et al., 2016). Similar to recent work by
(Dhanjal et al., 2014), we focus entirely on reducing the
complexity while producing assignments that are provably
close to those of SC.

Our work starts from the recent idea of sidestepping eigen-
decomposition by utilizing as features random vectors
filtered by Chebyshev polynomials of the graph Lapla-
cian (Tremblay et al., 2016). We notice that, in the dynamic
setting, there are ample opportunities to reuse information
from previous cluster assignments, both in terms of approx-
imating the k-th eigenvalue (a necessary step of Chebyshev
filter design), as well as in terms of computing the features
themselves. When the consecutive graphs are appropriately
similar, these ideas lead to complexity reductions.

Concretely, we provide the following contributions:

1. In Section 3 we refine the analysis of compressive spec-
tral clustering (CSC) presented in (Tremblay et al., 2016).
Our goal is to move from assertions about feature approx-
imation to guarantees about the quality of the solution of
CSC itself. We prove that w.h.p. the quality of the cluster-
ing assignments of CSC and SC differ by O(2k/+/d), and
thus d o< k? filtered vectors are sufficient to obtain a good
approximation. Importantly, our analysis does not make
restricting assumptions about the graph structure, such as
assuming a stochastic block model (Pydi and Dukkipati,
2017).

2. In Section 4, we focus on dynamic graphs and propose
dynamic CSC (dCSC), an algorithm that reuses informa-

Fast Approximate Spectral Clustering for Dynamic Networks

tion of past cluster assignments to expedite computation.
We discover that the algorithm’s ability to reuse features is
determined by a measure of spectral similarity p between
consecutive graphs: we prove that, when pd features are
reused (i.e., each new instance of the dynamic graph is clus-
tered using pd features of the previous graph and (1 — p)d
new features, where 0 < p < 0.5), w.h.p. the clustering
quality of dCSC approximates that of CSC up to an addi-
tive term in the order of pp.

The paper concludes with a proof of concept comparison
against SotA approximation algorithms for Spectral Clus-
tering (Section 5). Our experiments confirm that dCSC
yields computational benefits when the graph dynamics are
bounded. A case in point: we can cluster 30’000 node
graphs 3.9x faster than SC and 1.5x faster than CSC in
average. Due to space constraints, certain proofs and im-
plementation details are presented as an appendix in a sup-
plementary document.

2. Background

We start by summarizing the standard method for spectral
clustering as well as the idea behind the more recent accel-
erated methods. Due to space constraints, our exposition is
brief; the reader is encouraged to refer to the original works
for a more comprehensive discussion.

2.1. Spectral clustering (SC)

To determine the best node-to-cluster assignment, spectral
clustering solves a k-means problem with the eigenvectors
of the graph Laplacian as features (Shi and Malik, 2000;
Ng et al., 2002).

Let G = (V,&, W) be a weighted undirected graph with n
nodes V = {vy,vs,...,0,},and m edges £ C V x V. The
graph Laplacian is defined as L = T — D~'/2WD~1/2,
where D is a diagonal matrix whose entries are the degree
of the nodes in the graph (i.e. the sum of the weighed edges
adjacent to each node). We denote the eigendecomposition
of the Laplacian by L = UAU, with the eigenvalues
contained in A sorted in non-decreasing order, such that
0=XA < X< .. <A

Spectral clustering consists of computing the first k eigen-
vectors of L arranged in matrix Uy, and subsequently com-
puting a k-means assignment of the n vectors of size k
found in the rows of Uj. Formally, if ® € R"*? is the
feature matrix (here ® = Uy and d = k), and & is a pos-
itive integer denoting the number of clusters, the k-means
clustering problem finds the indicator matrix X € R"*F
which satisfies

Xg = argmin ||® — XX ®| -, (1)
Xex

with associated cost Cg = ||® — X XL ®| . Symbol X
denotes the set of all n x k indicator matrices X. These ma-
trices indicates the cluster membership of each data point
by setting

1

if data point ¢ belongs to cluster

X ;=14 V% P ¢ I 2)
; 0 otherwise,

where s; is the size of cluster j, also equals to the number
of non-zero elements in column j. Note that the cost de-
scribed in eq. (1) is the square root of the more traditional
definition expressed with the distances to the cluster cen-
ters (Cohen et al., 2015, Sec 2.3). We refer the reader to
the work by (Boutsidis et al., 2015) and references therein
for more details.

2.2. Compressive spectral clustering (CSC)

To reduce the computational cost of spectral clustering,
(Tremblay et al., 2016) proposed to approximate U}, using
a filtering of random vectors (a similar idea was also ex-
amined by (Boutsidis et al., 2015)). The former work also
introduced the benefits of compressed sampling techniques
reducing the total cost down to O (k2 log? (k) +cn(log(n)+
k)), where c is the order of the polynomial approximation.
Their algorithm consists of two steps:

Step 1. Approximate features. Feature matrix Uy, is ap-
proximated by the projection of a random matrix over the
same subspace. In particular, let R € RV >4 be a random
(gaussian) matrix with centered i.i.d. entries, each having
variance 5. We can project R onto span{U},} by multi-

plying each one of its columns by a projector H defined as

(L 0\
HU(O O)U. 3)

It is then a simple consequence of the Johnshon-
Lindenstrauss lemma that the rows ;" of matrix ¥ = HR,
can act as a replacement of the features used in spectral
clustering, i.e., the rows ¢Z of ® = Uj,.

Theorem 2.1 (adapted from (Tremblay et al., 2016)). For
every two nodes v; and v; the restricted isometry relation

(1=e)llpi=jll2 < lYi—thjlla < (1+e)l|pi—jll2 (4)

holds with probability larger than 1 — n=5, as long as the
dimension is d > % log(n).

We note that, even though HR is also expensive to com-
pute exactly, it can be easily approximated by applying the
graph filter A(L) on each column of R, which entails O(dc)
sparse matrix-vector multiplications (each costing O(m))
using graph Chebychev polynomials (Shuman et al., 201 1a;
Hammond et al., 2011) or rational graph filters (Isufi et al.,
2017; Loukas et al., 2015) (c relates to the quality of the

Fast Approximate Spectral Clustering for Dynamic Networks

approximation and is usually below 100). A more elabo-
rate discussion on the approximation of HR can be found
in the appendix.

Step 2. Compressive k-means. The complexity is reduced
further by computing the k-means step for only a subset
of the nodes. The remaining cluster assignments are then
inferred by solving a graph Tikhonov regularized interpo-
lation problem involving k additional graph filtering oper-
ations, each with a cost linear in cm. To guarantee a good
approximation, it is sufficient to sample O(k log(k)) nodes
using variable density sampling (Puy et al., 2016). For
simplicity, in the following, we present our theoretical re-
sults w.r.t. the non-compressed version of their algorithm.
The proofs can be generalized using similar arguments as
in (Tremblay et al., 2016).

3. The Approximation Quality of Static CSC

Before delving to the dynamic setting, we refine the anal-
ysis of compressive spectral clustering. Our objective is to
move from assertions about distance preservation currently
known (see Thm. 2.1) to guarantees about the quality of the
solution of CSC itself. Formally, let

Xy = argmin |[¥ — XX ||z (5)
XeXx

be the clustering assignment obtained from using k-means
with W as features (CSC assignment), and define the CSC
cost C'y as

Cy = |® — XoXy®|F. (6)

The question we ask is: how close is Cy to the cost Cy
of the same problem, where the assignment has been com-
puted using ® as features, i.e., the SC cost corresponding
to (1)? Note that, as in previous work (Boutsidis et al.,
2015), we express the approximation quality in terms of
the difference of clustering assignment costs and not of the
distance between the assignments themselves. We are not
aware of any analysis that would allow us to characterize
(the perhaps more intuitive goal of) how well Xy approx-
imates X, which is a combinatorial objective. Yet, our
approach exhibits the benefit of not penalizing approxima-
tion algorithms that choose alternative assignments of the
same or similar quality'.

Our central theorem asserts that with high probability the
assignments of SC and CSC have similar costs.

Theorem 3.1. The SC cost Co and the CSC cost Cy are
related by

!'The k-means objective is a non convex objective and has mul-
tiple minima. For instance, any of the k! re-labelings of the opti-
mal assignment are valid solutions with the same cost.

C¢§Cw§0q>+2\/§(\/é+s),)

with probability at least 1 — exp(—e?/2).

This result emphasizes the importance of the number of
random vectors d and directly links it to the distance with
the optimal assignment for the spectral features. Indeed,
one can see that the difference between the two costs van-
ishes when d is sufficiently large. Importantly, d o< k2 is
sufficient to guarantee a small error.

3.1. The approximation quality of CSC

The first step in proving Thm. 3.1 is to establish the relation
between C'y and C'y. The following lemma relates the two
costs by an additive error term that depends on the feature’s
differences | ¥ — ®I; Q|| » when d > k.Since ® and ¥
have different sizes we introduced the multiplication by a
unitary matrix Q. We will first show that any unitary Q can
be picked in Lem. 3.1 and then derive the optimal Q, the
one minimizing the additive term, in Thm. 3.2.

Lemma 3.1. For any unitary matrix Q € R, the SC
cost Cg and the CSC cost Cy are related by

Cp < Cy < Co +2||¥ — @1,,4Q|| 7, ®)

where, the matrix Ly, of size £ X m above contains only
ones on its diagonal and serves to resize matrices.

Being able to show that the additive term is small encom-
passes the result of Thm. 2.1, ensuring distance preserva-
tion. However, this statement is stronger than the previ-
ous one as our lemma is not necessarily true under distance
preservation only.

The remaining of this section is devoted to bounding the
Frobenius error | ¥ — ®1;, Q|| r between the features of
SC and CSC. In order to prove this result, we will first ex-
press our Frobenius norm exclusively in terms of the sin-
gular values of the random matrix R and then in a second
step we will study the distribution of these singular values.

Our next result, which remarkably is an equality, reveals
that the achieved error is exactly determined by how close
a Gaussian matrix is to a unitary matrix.

Theorem 3.2. There exists a d x d unitary matrix Q, such
that

¥ — @1 QllFr = || — LixallFs)

where X is the diagonal matrix holding the singular values
of R/ =1, UTR.

Before presenting the proof, let us observe that R’ is an
1.1.d. Gaussian random matrix of size k x d and its entries
have zero mean and the same variance as that of R. We use

Fast Approximate Spectral Clustering for Dynamic Networks

this fact in the following to control the error by appropri-
ately selecting the number of random vectors d.

To bound the feature error further, we will use the following
result by Vershynin, whose proof is not reproduced.

Corollary 3.1 (adapted from Cor. 5.35 (Vershynin, 2010)).
Let N be an d x k matrix whose entries are independent
standard normal random variables. Then for every €,1 >
0, with probability at least 1 — exp(—¢e2/2) one has

0i(N) = Vd < Vk +e, (10)

where o;(IN) is the ith singular value of N.

Exploiting this result, the following corollary of Thm. 3.2
reveals the relation of the feature error and the number of
random vectors d.

Corollary 3.2. There exists a d x d unitary matrix Q, such
that, for every € > 0, one has

¥ — ®L;aQl|r < \/E(x/ﬁ+s), (11

with probability at least 1 — exp(—¢&2/2).

Finally, Cor. 3.2 combined with Lem. 3.1 provide the direct
proof of Thm. 3.1 that we introduced earlier.

Before proceeding, we would like to make some remarks
about the tightness of the bound. First, guaranteeing that
the feature error is small is a stronger condition than dis-
tance preservation (though necessary for a complete anal-
ysis of CSC). For this reason, the bound derived can be
larger than that of Thm. 2.1. Nevertheless, we should stress
it is tight: the main inequality in our analysis stems from
bounding the k largest singular values of the random matrix
by Vershynin’s tight bound of the maximal singular value.

3.2. Practical aspects

The study presented above assumes that H is defined as
in eq. (3), namely that it is a projector on the subspace
spanned by the first k eigenvectors of L. However, as dis-
cussed in the appendix, to be computationally efficient we
choose to compute H by an application of a polynomial
function h on L (Shuman et al., 2011a). More specifi-
cally, we select a polynomial that approximates the ideal
low-pass response (Allen-Zhu and Li, 2016). As long as
A is known, the approximated projector i (L) can be de-
signed to be very close to H: using the arguments of (Shu-
man et al., 2011b, Proposition 3) and (Laurent and Massart,
2000, Lemma 1) it is easy to prove that w.h.p. using h(L)
instead of H does not add more than O(c™¢y/n) error to
Cg, where c is the polynomial order (the proof is omitted
due to space limitations).

Moreover, we need to estimate Ay accurately (the design
of h involves finding a polynomial which takes the value
1 when the input is smaller than)\; and 0 otherwise). To-
wards this goal, we refer the readers to (Di Napoli et al.,
2016; Paratte and Martin, 2016) and their respective eigen-
count techniques that allow to approximate the filter in
O(cmlog((Ag+1 — Ax) 1)) operations.

4. Compressive Clustering of Dynamic
Graphs

In this section, we consider the problem of spectral clus-
tering a sequence of graphs. We focus on graphs G; where
t e {1,...,7}, composed of a static node set ¥ and evolv-
ing edge sets &;. Identifying each assignment from scratch
(using SC or CSC) is a computationally demanding task,
as the complexity increases linearly with the number of
time-steps. However, when consecutive graphs are “appro-
priately similar”, we should be able to cut on this cost by
reusing information. We will utilize two alternative simi-
larity measures:

Definition 4.1 (Measures of graph similarity). Two graphs
Gi—1 and G; are:

o (p, k)-spectrally similar if the spaces spanned by
their first k eigenvectors are almost aligned: |H; —
Hi 1llr <p.

e p-edge similar if the edge-wise difference of their
Laplacians is bounded: ||L; — L;—1||r < p.

Both measures are relevant in the context of dynamic clus-
tering. Two spectrally similar graphs might have different
connectivity, but possess similar clustering assignments.
On the other hand, assuming that two graphs are edge sim-
ilar is a stronger condition that postulates fine-grained sim-
ilarities between them. It is however more intuitive and
computationally economical to ascertain (see Section 4.3).

4.1. Algorithm

We now present an accelerated method for spectral cluster-
ing an evolving network. Without loss of generality, sup-
pose that we need to compute the assignment for G; while
knowing already that of G,_; and possessing the features
W, _; used to compute it.

Component 1. We reuse a portion of features ¥;_; to
cluster G;. Let p be a number between 0 and 0.5, and set
q = 1 — p.2 Instead of recomputing ¥, from scratch run-
ning a new CSC routine, we construct a feature matrix @,
which consists of dg new features (corresponding to G;)

2 Although in practice p can go up to 1, the analysis only con-
siders the case when reused features are only from G;_; (and not
from earlier graphs).

Fast Approximate Spectral Clustering for Dynamic Networks

Algorithm 1 Dynamic CSC
Imput: (G1,Gs,...,G,;),p,d
Olltpllt: (Xl, XQ, . ,X.,-)
1: Determine A, and filter h; for Gy.
2: Find X for G; using CSC with ¥; = hy(Lq)R.
3: for ¢t from 2 to 7 do
4: Select dp features from ¥;_; and call them \Ifgl).

5 Generate d(1 —p) features \II,EZ) by filtering as many
random vectors by h;—1(Ly).

6: Test whether A\, € [Ag(L¢), Ak+1(Ly)] with eigen-
count and using ‘1,52)_
if the test fails then

Determine A\, for G; using eigencount.

Update h; and recompute \Il§2) based on h;(Ly).
end if
Find assignment X; by applying the compressive k-
means to features @; = [lIlﬁl), xpff)].
12: Setw, = ¢
13: end for

=Y e

—

and dp randomly selected features of G;_1:
©; = [H;_1Rap, HiRay) = ¥, 18§, + ¥,S7 (12)

Above, we use the sub-identity matrix Sjp = Lawaplapxa
and its complement Szp =Iyxa— Sgp.

Component 2. An important part of the complexity of
CSC stems from using the eigencount algorithm to esti-
mate A\, and construct the Chebyshev polynomials (step 1
of their algorithm). To avoid recomputing A\, we start by
assuming that the estimated value for A, at ¢ — 1 is a also
good candidate for ¢ and proceed to use the same polyno-
mial in order to filter the ¢d new random vectors R4 in G;.
Notice that the eigencount method requires exactly these
new features to determine if \; was correctly estimated
and thus to validate our assumption. If our assumption is
invalid, i.e., the A\ has changed from ¢ — 1 to ¢, then we
rerun the eigencount method from scratch as in (Di Napoli
et al., 2016) but providing A\, as an initial estimate. The
final set of features generated in the eigencount now serves
as ¥,. When the assumption is valid, we proceed as is.

Complexity analysis. There are two steps where the
complexity is reduced with respect to CSC. First, the opti-
mization proposed for the determination of \; avoids com-
puting steps of dichotomy for every graph. Spectrally sim-
ilar graphs generally possess close spectrum and close val-
ues for \;. One could then expect to recompute \j only in-
termittently, in which cases he/she would also benefit from
a reduced number of iterations due to a good initializa-
tion. If S are the total number of eigencount steps gained,

3Though this trend has been confirmed by our numerical ex-
periments, a formal proof remains elusive.

the total gain is O(Sem). Second, since we reuse random
features from one graph to the next, the total number of
computed random vectors will necessarily be reduced com-
pared to the use of 7 independent CSC calls. The gain here
is O(cmdp) per time-step.

All reductions applied through compression can also bene-
fit to our dynamic method. Indeed, we theoretically showed
that reusing features from the past can replace the creation
of new random vectors. Thus, sampling the combination
of old and new vectors can be applied exactly as defined in
CSC. Then, the result of the sub-assignment can be inter-
polated also as defined in (Tremblay et al., 2016).

4.2. Analysis of dynamic CSC

Similarly to the static case, our objective is to provide prob-
abilistic guarantees about the approximation quality of the
proposed method. Let

Xo, = argmin ||@;, — XX ©,||r. (13)

Xex

t

be the clustering assignment obtained from k-means with
©, as features, and define the dynamic CSC cost Cg, as

Co, = |® — Xo,X{, @/ . (14)

As the following theorem claims, the graph evolution in-
troduces an additional error term that is a function of the
graph similarity (spectral- or edge- wise).

Theorem 4.1. At time t, the dynamic CSC cost Cg, and
the SC cost Cy, are related by

k
Co, < Co, <Cq, + 2\/;(\/%4- e)+ (1+9)p, (15)

with probability at least

2 2 3
1—exp (—2) — exp <2log(n) —dp (i - 56)) ,

where 0 < § < 1. Above, 7y depends only on the similarity
of the graphs in question. If graphs G;_1 and G; are
e (p, k)-spectrally similar, then v = p,

e p-edge similar, then v = (v/2p)/a, where a =
min{\f,)\,(:_:11) — AL} is the Laplacian eigen-gap.

Proof. Let Xg, and Xg, be respectively the optimal SC
and dCSC clustering assignments at time ¢, and denote E =
0; — &,1;.4Q. We have that,

Co, < Cs, +2[|0; — :1;xaQl|F, (16)

following the exact same steps as in the proof of
Lemma 3.1. By completing the matrices containing the fil-
tering of both graphs, we can see that the error term can be

Fast Approximate Spectral Clustering for Dynamic Networks

rewritten as
|IEllF = ||®:—1SG, + ‘I’tST,, - ®:1kxaQl F
= [(¥i—1 — ¥,)SG, + ¥y — B LaQl r
<@y — ¥ 1)SG,llr + [y — @iLikaQl .

a7

The rightmost term of eq. (17) corresponds to the effects of
random filtering and has been studied in depth in Thm. 3.2
and Cor. 3.2. The rest of the proof is devoted to studying
the leftmost term.

We apply the Johnson-Lindenstrauss lemma (Johnson and

Lindenstrauss, 1984) on the term of interest. Setting
R = %Rldxdp, we have that

(% — @ 1)SE |17 = [|(He — Heo1)RLaxay ||

=p Y IR (H, —H, 1) 53

=1

Matrix R = p~'/?R1I 4, has n x dp Gaussian i.i.d. en-
tries with zero-mean and variance 1/dp. It follows from
the Johnson-Lindenstrauss lemma that

(=)85 < p(146) D (L, —Hey) 613
=1
<p(1+8)[H, ~ 3

with probability at least 1 — n~? and for dp >

524(12—%) log(n). Coupling the two together we obtain a
2
° dpé® /1§

probability at least equal to 1—exp(2log(n)—“5—(5—35)).
where § can be set between 0 and 1. A loose bound gives
2p||H® —H® |2 with probability 1—exp(2log(n)— 2).

This concludes the part of the proof concerning spectrally
similar graphs. The result for edge-wise similarity follows
from Cor. 5.1 found in the appendix. O

4.3. Controlling the approximation error

Theorem 4.1 can be used to adaptively determine p at each
time-step with the objective of attaining a bounded error for
the term (1+d)pp. For instance, if the graph did not evolve
much between the last two time-steps, more signals should
be reused than otherwise. For that, one needs to be able
to approximate the graph similarity, without computing the
spectral basis.

This can be quite easily achieved for the edge similarity
measure, by simply computing the Frobenius norm of the
edge weight difference between the two graph Laplacian
matrices. As we show next, the spectral similarity measure
p can also be estimated as follows:

p:=|H:R-H; 1R| (18)

Algorithm 2 Dynamic CSC with adaptive p

Imput: (G1,Gs,...,G,),d, k,d,¢
Olltpllt: (Xl, XQ, . ,X.,-)
1: Determine A, and filter h; for Gy.
2: Find X for G; using CSC with ¥; = hy(Lq)R.
3: for t from 2 to 7 do
4: Split features ;1 = [‘Ilgl_)l, \Il§2_)1] s.t. \1151_)1 con-
tains % vectors. Let R(M) be random vectors used to
generate \Ilgl_)l
5 Set hy = hy_; and compute \Ilgl) = hy(Ly) R,
6: Test whether A\, € [Ax(Ly), Apt1(L¢)] with eigen-
: (1)
count and using ¥,"’.
7. if the test fails then
8: Determine Ay for G; using eigencount.
: Update /; and recompute &'V = b, (L) R™).
10: endif
11: Setp = min (%, %H\Pp) —lPﬁl)lH;l)
12: Select dp features from \I’f_)l and call them \IIEQ).
13: Generate d(3 — p) features ¥ = h(L)RG),
where R(®) are new random vectors.
14: Find assignment X; by applying the compressive k-
means to features @; = [\Il,(fl)7 \Il§2), \Il§3)].
15 Setw, = [w!) ¥
16: end for

To motivate this, observe that 52 is an unbiased estimator:

E[p?] =E [tr (RT (H, ~H,.)" (H, - H,_,) R)}
- tr((Ht ~H, ,)E[RR"] (H, - HH)T)

=t ((H, —H,) (H,—H,)") =%, (19)

which implies that p approaches p as d grows.

With this in place, we proceed to modify Alg. 4.1 so as to

include the estimation of p and the adaptive estimation of

p. The detailed procedure is summarized in Alg. 2, focus-

ing on the case of spectral similarity (i.e., v = p). Since

Thm. 4.1 proved an additive error of at most (1 + d)pp,

we fix an upper bound on the error that we tolerate € and §
€2

that controls the probability of success, and set p = a7

Though the adaptive algorithm features the same complex-
ity, it is slightly more involved than Alg. 4.1. The main
difference is that p is estimated based on features \Ilil)
and \Ilgi)l that correspond to the same random vectors
R(™ e R™*4 filtered on two consecutive graphs (i.e., Gy
and G;_1). Features \Ilgl) are combined with the pd reused
features \IIEQ) and the d(1/2—p) new features \I’,Eg) to iden-
tify assignment X.

Fast Approximate Spectral Clustering for Dynamic Networks

150 1 ® CSC(p=0)
. | dCSC (p=0.25)
'g [U. 3 &
» 100 ’; s
o g e
= [st g, o 500, .
= 3 : %;ﬁi‘.ﬁao "’t"#‘e“.‘ﬂ '.f{ -.’:“. : .. e
50 + *s ° with eigencount
without eigencount

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

relative error (ncut)

Figure 1. Error-complexity trade-off achieved by compressive
clustering methods. The points correspond to different number
of features d and reperitions. Three behaviors are highlighted:
the majority of the runs tend to the same quality than SC with
provided enough features; the rest is relatively close (1% devia-
tion) and can be of better or worse quality; dCSC benefits from a
significant complexity reduction when A is not recomputed (up
to a factor 3).

S. Experiments

This section complements the theoretical results described
in Section 4. All our experiments are designed using the
GSPBox (Perraudin et al., 2014).

5.1. Experimental setup

As is common practice, we use the Stochastic Block Model
(SBM) to evaluate the efficiency of our spectral clustering
method (e.g., Gorke et al., 2013; Tremblay et al., 2016). In
SBM, data are clustered in k£ classes and the n nodes are
connected at random with edge-wise probability that de-
pends if the two extremities belong to the same cluster (q7)
or not (qo with g3 < ¢q1). In the following, we qualify
the SBM parameters in terms of the nodes’ average degree
§ and the ratio ¢o/q; that captures the graph clusterabil-
ity (Decelle et al., 2011). Following the recommendations

a2 6-V5
of the former work, we set @ VA1)

non-trivially clusterable graphs.

to construct

We compare the quality and complexity of our dynamic
method (dCSC) against the algorithm of Tremblay et al.
(CSC) and an optimized spectral clustering (Ng et al.,
2002) that uses the Lanczos algorithm to compute the
first k-eigenvectors (this is significantly faster than doing
the entire eigendecomposition while introducing negligi-
ble error). We use relative error measures to compare the
achieved clustering accuracy of CSC and dCSC with that
of SC (i.e., |C4 — Cs¢|/Csc, where Cy is the cost of al-
gorithm A and Cg¢ the cost of SC). We considered two
cost measures: the k-means cost (eq. (6)) and the normal-
ized cut (ncut) cost. Since the obtained results were almost
identical, we only report the results for ncut in the rest of
this section (except for Table 1). After all, the k-means cost
of the spectral features is a relaxation of the ncut cost.

5001 —e-csC (0=0)
dCSC (p = 0.25)
4001 —A-dOSC (p=0.5)
B sc
g/ 300 [
OEJ 200
: P o
100 - ,,.——f————.—————————::,"/‘_7 g
riﬂ:;i“ri/i‘iiiiii L L L
10K 15K 20K - -

number of nodes (n)

Figure 2. Scaling capabilities of SC and its approximations.
dCSC consistently outperforms CSC in terms of complexity.
Their almost linear complexity make them good candidates for
big data analysis compared to SC.

Our analysis highlights the importance of the spectral sim-
ilarity between consecutive graphs. It is thus important to
define how the graph changes between consecutive steps.
Starting from a SBM, we perform two types of perturba-
tions: edge redrawing and node reassignment. Edge re-
drawing consists of removing some edges at random from
the original graph and then adding the same number fol-
lowing the probabilities defined by the graph model (using
q1 and ¢3). In node reassignment, one selects nodes, re-
moves all edges that share at least one end with the nodes
previously picked, reassigns those nodes to any other class
at random and reconnects these nodes with new edges using
again the same probabilities ¢; and g. Both perturbations
are combined in the synthetic graph that we are studying.
We replicate the construction of 100 different SBM with
the same parameters, then we alter each with 1% of node
reassignment and 1% of edges modifications. The modified
graph is used for the evaluation of all methods.

5.2. When does reusing features pay off?

We first study the error-complexity trade-off achieved by
the compressive clustering methods as a function of d. We
set n = 15000,k = 25,6 = 60. Each point in Figure 1
corresponds to a single graph being clustered. For each
of the two methods, there are 1600 points resulting from
100 repetitions when the number of features is d € [6, 200]
with logarithmic increments. To comprehend the results,
it is helpful to consider each of the six sextants in the fig-
ure separately. The top-middle sextant shows that when d
is large enough (left side), the relative error of CSC and
dCSC is close to zero. Increasing d reduces the error but
increases the time required for the computation, following
the elbow from right to left. The top-right and top-left sex-
tants occur because Lloyd’s algorithm (despite being rerun
100 times) sometimes fails to retrieve the optimal solution
to the k-means problem: the top-left (resp. right) sextant
corresponds to cases when Lloyd’s algorithm produces a
suboptimal assignment for SC (resp. CSC/dCSC). The bot-

Fast Approximate Spectral Clustering for Dynamic Networks

Table 1. Timing and accuracy comparison with state-of-the-art for various sizes, k = 25,d = 50,8 = 60,& =

Ec
2 .

SC: Spectral Clustering using the Lanczos method. IASC: Incremental Approximate Spectral Clustering (Dhanjal et al., 2014). CSC:
Compressive Spectral Clustering (Tremblay et al., 2016). dCSC: our method (Alg. 4.1).

SC (Lanczos) IASC CSC (p=0) dCSC (p=0.25) dCSC (p=0.5)

time (sec) 1.27 (£0.09) 1.37 (£0.20) 2.81 (£0.56) 2.53 (£0.54) 2.86 (£0.56)

n=1000 k-means 5.42(40.06) 6.19 (£0.28) 6.16 (£6.40) 5.49 (£1.35) 5.48 (£5.02)
ncut 18.96 (£0.01) 19.20 (£0.08) 19.18 (£2.00) 1898 (£0.44) 18.99 (£1.39)
time (sec) 48.29 (£5.41) 806.29 (£72.91) 41.21 (£3.11) 23.33(£9.29) 21.98 (+£11.33)

n=10000 k-means 6.24 (£0.01) 6.61 (£0.31) 6.31 (£0.61) 6.28 (£0.40) 6.26 (£0.40)

ncut 18.80 (£0.00)

18.91 (£0.10)

18.82 (£0.21) 18.81 (£0.13) 18.81 (£0.13)

tom three sextants correspond to cases when dCSC did not
have to recompute A\ (step 7 of Alg. 4.1). In these cases,
dCSC is up to 2x faster than CSC. Though the frequency
of this phenomenon depends on many factors, such as the
size of the eigengap and the spectral similarity of consec-
utive graphs, we report that in our experiment dCSC could
avoid recomputing A, roughly 50% of the times.

In summary, reusing features produces a clear computa-
tional benefit with a reasonable loss of accuracy. Most ben-
efit comes from \; estimation (component 2) that can be
often avoided when consecutive graphs are spectrally sim-
ilar, especially for well-clusterable graphs (where the gap
Ak+1 — Ak is large). To quantify the benefit of reusing a
portion of features (component 1), we compare here the ex-
ecution time of CSC and dCSC, excluding the time for Ag
estimation. Increasing p by 0.25 saved 0.97 and 9.98 sec-
onds respectively when n = 10’000 and 50’000—the later
corresponds to a speedup of 1.29x w.r.t. feature estimation.

5.3. Comparison with state-of-the-art

To evaluate the efficiency of dCSC, we varied the num-
ber of nodes n (while fixing & = 25,d = 50,0 = 60).
Figure 2 shows the results. As expected, the difference
of complexity between spectral clustering using the partial
eigen-decomposition and dCSC is clearly visible. Increas-
ing p from 0.25 to 0.5 incurs a non-negligible computa-
tional benefit for larger n (14.5 seconds when n =307000,
corresponding to a 12% improvement). We also report that
the achieved relative error for both methods remained con-
sistently below 0.1% and did not grow as n increased. We
do not present values of n above 30’000 as, for such cases,
SC took too long to complete. For example, with 64Gb of
RAM, SC took one hour to process the graph and return an
assignment when n = 50’000. For the same graph, dCSC
run in 6.5 minutes and resulted in a similar k-means cost.

Table 1 further compares our proposed method to SC, CSC
and TASC, the state-of-the-art method for spectral cluster-
ing suitable for dynamic graphs (Dhanjal et al., 2014). Note
that there is a long list of heuristic-based clustering algo-

rithms optimized for speed (Dhillon et al., 2007; Karypis
and Kumar, 1998), but we only consider here algorithms
that provably approximate spectral clustering. We can see
that dCSC achieves a significant improvement in timing
when n is large enough. Note that IASC results were ob-
tained by running the optimized and parallel implementa-
tion kindly provided by the original authors*. Our hypoth-
esis is that the poor complexity of IASC is attributed to
the fact that, in our tests (and as is frequently the case) the
eigengap was not particularly large.

6. Conclusion and Future Work

The major contribution of this paper has been the presen-
tation of a clustering algorithm for dynamic graphs that
achieves solution quality provably approximating that of
Spectral Clustering. Numerical experiments suggest that
our method is faster than previous approximation methods.

Recent advances in spectral clustering, including this work,
can provide a huge complexity gain. Nevertheless, practi-
tioners must pay attention because these works require a
proper setup. In particular, n must be large for the approx-
imated method to make sense. Moreover, when working
with dynamic networks, the spectral similarity should re-
main bounded for our algorithm to perform best.

We highlight in this paper two open directions of research.
It appears clearly in the experiments that the majority of the
remaining complexity lies in the estimation of H and more
precisely the capability to reuse the previous determination
of \j. Finally, expressing the approximation error in func-
tion of the assignment instead of ncut could produce a more
insightful explaination of the impact of the various factors.

Acknowledgements

We would like to acknowledge the reviewers for their valu-
able comments. Their suggestions helped us clarify and
improve our work.

4 Available at https://github.com/charanpald/sandbox

Fast Approximate Spectral Clustering for Dynamic Networks

References

Allen-Zhu, Z. and Li, Y. (2016). Faster principal compo-
nent regression via optimal polynomial approximation
to sgn (X). arXiv preprint arXiv:1608.04773.

Boutsidis, C., Gittens, A., and Kambadur, P. (2015). Spec-
tral clustering via the power method-provably. In Pro-
ceedings of the 24th International Conference on Ma-
chine Learning (ICML).

Chakrabarti, D., Kumar, R., and Tomkins, A. (2006). Evo-
lutionary clustering. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 554-560. ACM.

Chi, Y., Song, X., Zhou, D., Hino, K., and Tseng, B. L.
(2007). Evolutionary spectral clustering by incor-
porating temporal smoothness. In Proceedings of
the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 153—
162. ACM.

Cohen, M. B., Elder, S., Musco, C., Musco, C., and Persu,
M. (2015). Dimensionality reduction for k-means
clustering and low rank approximation. In Proceed-
ings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, pages 163—172. ACM.

Decelle, A., Krzakala, F., Moore, C., and Zdeborova, L.
(2011). Asymptotic analysis of the stochastic block
model for modular networks and its algorithmic ap-
plications. Physical Review E, 84(6):066106.

Dhanjal, C., Gaudel, R., and Clémengon, S. (2014). Ef-
ficient eigen-updating for spectral graph clustering.
Neurocomputing, 131:440-452.

Dhillon, I. S., Guan, Y., and Kulis, B. (2007). Weighted
graph cuts without eigenvectors a multilevel approach.
IEEE transactions on pattern analysis and machine
intelligence, 29(11).

Di Napoli, E., Polizzi, E., and Saad, Y. (2016). Efficient
estimation of eigenvalue counts in an interval. Nu-
merical Linear Algebra with Applications.

Fortunato, S. (2010). Community detection in graphs.
Physics reports, 486(3):75-174.

Fowlkes, C., Belongie, S., Chung, F., and Malik, J. (2004).
Spectral grouping using the nystrom method. IEEE
transactions on pattern analysis and machine intelli-
gence, 26(2):214-225.

Gauvin, L., Panisson, A., and Cattuto, C. (2014). Detect-
ing the community structure and activity patterns of
temporal networks: a non-negative tensor factoriza-
tion approach. PloS one, 9(1):e86028.

Gittens, A., Kambadur, P., and Boutsidis, C. (2013). Ap-
proximate spectral clustering via randomized sketch-
ing. Ebay/IBM Research Technical Report.

Gorke, R., Maillard, P., Schumm, A., Staudt, C., and Wag-
ner, D. (2013). Dynamic graph clustering combining
modularity and smoothness. Journal of Experimental
Algorithmics (JEA), 18:1-5.

Hammond, D. K., Vandergheynst, P, and Gribonval, R.
(2011). Wavelets on graphs via spectral graph the-
ory. Applied and Computational Harmonic Analysis,
30(2):129-150.

Isufi, E., Loukas, A., Simonetto, A., and Leus, G. (2017).
Autoregressive moving average graph filtering. /EEE
Transactions on Signal Processing, 65(2):274-288.

Johnson, W. B. and Lindenstrauss, J. (1984). Extensions of
lipschitz mappings into a hilbert space. Contemporary
mathematics, 26(189-206):1.

Karypis, G. and Kumar, V. (1998). A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.
SIAM Journal on scientific Computing, 20(1):359—
392.

Laurent, B. and Massart, P. (2000). Adaptive estimation of
a quadratic functional by model selection. Annals of
Statistics, pages 1302—-1338.

Li, M., Lian, X.-C., Kwok, J. T., and Lu, B.-L. (2011).
Time and space efficient spectral clustering via col-
umn sampling. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on,
pages 2297-2304. IEEE.

Loukas, A., Simonetto, A., and Leus, G. (2015). Dis-
tributed autoregressive moving average graph filters.
Signal Processing Letters, 22(11):1931-1935.

Loukas, A. and Vandergheynst, P. (2018). Spectrally
approximating large graphs with smaller graphs.
In Interenational Conference on Machine Learning
(ICML).

Ng, A. Y., Jordan, M. L., Weiss, Y., et al. (2002). On spectral
clustering: Analysis and an algorithm. Advances in
neural information processing systems, 2:849-856.

Ning, H., Xu, W., Chi, Y., Gong, Y., and Huang, T.
(2007). Incremental spectral clustering with applica-
tion to monitoring of evolving blog communities. In
Proceedings of the 2007 SIAM International Confer-
ence on Data Mining, pages 261-272. SIAM.

Paratte, J. and Martin, L. (2016). Fast eigenspace ap-
proximation using random signals. arXiv preprint
arXiv:1611.00938.

Fast Approximate Spectral Clustering for Dynamic Networks

Perraudin, N., Paratte, J., Shuman, D., Martin, L., Kalo-
folias, V., Vandergheynst, P., and Hammond, D. K.
(2014). GSPBOX: A toolbox for signal processing on
graphs. ArXiv e-prints.

Puy, G., Tremblay, N., Gribonval, R., and Vandergheynst,
P. (2016). Random sampling of bandlimited signals on
graphs. Applied and Computational Harmonic Analy-
Sis.

Pydi, M. S. and Dukkipati, A. (2017). Spectral clus-
tering via graph filtering: Consistency on the high-
dimensional stochastic block model. arXiv preprint
arXiv:1702.03522.

Ramasamy, D. and Madhow, U. (2015). Compressive spec-
tral embedding: sidestepping the svd. In Advances in
Neural Information Processing Systems, pages 550—
558.

Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. IEEE Transactions on pattern analysis
and machine intelligence, 22(8):888-905.

Shuman, D. I., Vandergheynst, P., and Frossard, P. (2011a).
Chebyshev polynomial approximation for distributed
signal processing. In 2011 International Confer-

ence on Distributed Computing in Sensor Systems and
Workshops (DCOSS), pages 1-8. IEEE.

Shuman, D. I., Vandergheynst, P., and Frossard, P. (2011b).
Distributed signal processing via chebyshev polyno-
mial approximation. arXiv preprint arXiv:1111.5239.

Tremblay, N. T., Puy, G., Gribonval, R., and Van-
dergheynst, P. (2016). Compressive Spectral Clus-
tering. In 33rd International Conference on Machine
Learning, New York, United States.

Tu, K., Ribeiro, B., Swami, A., and Towsley, D. (2016).
Detecting cluster with temporal information in sparse
dynamic graph. arXiv preprint arXiv:1605.08074.

Vershynin, R. (2010). Introduction to the non-asymptotic
analysis of random matrices. arXiv preprint
arXiv:1011.3027.

Von Luxburg, U. (2007). A tutorial on spectral clustering.
Statistics and computing, 17(4):395-416.

