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Abstract

We address a generalization of change point de-
tection with the purpose of detecting the change
locations and the levels of clusters of a piece-
wise constant signal. Our approach is to model it
as a nonparametric penalized least square model
selection on a family of models indexed over the
collection of partitions of the design points and
propose a computationally efficient algorithm to
approximately solve it. Statistically, minimiz-
ing such a penalized criterion yields an approx-
imation to the maximum a-posteriori probabil-
ity (MAP) estimator. The criterion is then ana-
lyzed and an oracle inequality is derived using
a Gaussian concentration inequality. The oracle
inequality is used to derive on one hand condi-
tions for consistency and on the other hand an
adaptive upper bound on the expected square risk
of the estimator, which statistically motivates our
approximation. Finally, we apply our algorithm
to simulated data to experimentally validate the
statistical guarantees and illustrate its behavior.

1. Introduction

A classical estimation problem in many scientific inquiries
is the well-studied change point detection problem where
one tries to estimate when some properties of a sequence of
random variables changes. This local property is of prime
importance in many learning tasks such as signal segmen-
tation (Abou-Elailah et al., 2016; Kim et al., 2009), change
point detection in comparative genomics for early cancer
diagnosis (Lai et al., 2005), and modeling and forecasting
of changes in financial data (Lavielle & TeyssiAfre, 2006;
Spokoiny, 2009).

For other applications, one needs more than this local an-
swer and is interested in a more general overview of the
time series where for instance earlier data samples behave
like new ones creating a clustering effect. Examples of
this are found in: electricity market data, where prices
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might have different behavior corresponding to different
price regimes that might reappear depending on some trig-
gering events; signal partitioning with some parts of the
signal sharing similar properties; and speech segmentation
with different alternating sources. Generally speaking, it
is of interest in these situations to determine not only the
changes but also the clusters for a more precise description
of the inhomogeneous time series.

Parametric models for solving the change point detec-
tion problem have been proposed in Cleynen & Lebarbier
(2014) and Rigaill et al. (2012). However, in dealing with
the change point and clustering problem we would natu-
rally require that our solution does not assume any knowl-
edge of the number of changes nor the actual number of
clusters, as these numbers would evolve over time, so we
expect new changes in the process to happen and new clus-
ters to form as N, the number of samples, grows. Thus,
any practical procedure should be able to estimate these
numbers and also have adaptive guarantees with respect to
how fast these numbers grow. Similar setups for change
point detection have been the subject of study by Har-
chaoui & Cappé (2007), Arlot et al. (2016) and Garreau
& Arlot (2017) who use characteristic kernels for detect-
ing changes in the distribution, while from a computational
standpoint a more effective implementation has been pro-
posed by Celisse et al. (2017). In this study, we will re-
strict ourselves to an iid (independent and identically dis-
tributed) Gaussian sequence model of the data with known
variance, noting that the same study can be done using ker-
nels and that the algorithm we develop can be effectively
implemented using the same procedure as in (Celisse et al.,
2017), as explained later in the paper.

Two other related lines of research, but which we do not
explore here, are on-line algorithms for segmentation and
L, -regularized segmentation. We refer the reader to (Tar-
takovsky et al., 2014) for an extensive review of on-line al-
gorithms. Data segmentation using the L;-penalty was in-
troduced by Rudin et al. (1992). The one-dimensional case,
corresponding to the Fussed LASSO, has been studied in
(Tibshirani et al., 2005) and (Rennie & Dobson, 1969)
and an efficient algorithm has been proposed by Arnold
& Tibshirani (2016). More recent results can be found in
(Dalalyan et al., 2017) for the one-dimensional case and
(Hiitter & Rigollet, 2016) for two-dimensional case.

Main contribution: The generalized setting of change
point detection while clustering the segments for sequences
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of data points does not seem to have been previously stud-
ied. In this work, we propose a two-pass dynamic pro-
gramming algorithm for selecting an adequate model from
a collection of candidate models. We motivate the choice
of the algorithm computationally by showing that it runs
in O(N2D + D*) time (where D is an upper bound on
the number of change points), statistically by showing that
it can be seen as an approximation of a computationally
hard MAP optimization problem for which we can derive
an oracle inequality that guarantees low sample complex-
ity, consistency and adaptivity, and practically by testing
the model on simulation data.

Structure of the paper: In Section 2 we formulate the
problem as one of nonparametric model selection from a
family of models over all partitions of the data set. After
some preliminaries and notations are given in Section 3, we
propose in Section 4 a two-pass dynamic programming al-
gorithm as a computationally effective relaxation of the op-
timization criterion and analyze its computational cost. We
then put the model selection problem in a Bayesian frame-
work in Section 5, and use a Laplace-type approximation to
derive as optimization criterion the maximum a-posteriori
probability. In Section 6 we derive an oracle inequality
for the criterion that our algorithm is approximating, and
study its properties. Experimental results showing that the
clusters and segments can be effectively estimated are pre-
sented in Section 7 using simulation data.

2. Problem formulation

Let ) be a measurable space and Y7, Y5, ..., Yy € ) de-
note random variables with distributions Py,. Our goal is
on one hand to detect changes in the sequence of distri-
bution measures (Py; )Y ; and on the other hand to clus-
ter the data points coming from the same process. Hence
we put random variables between two consecutive changes
in the same segment, and we think of random variables of
the same segment or different segments as belonging to the
same cluster if they are the realization of the same process.

One important case both in theory and in practice is the
uniform constant design model were the Y;s depend on de-
terministic variables uniformly spaced on a grid X; = ¢ for
i € [1,N] := {1,..., N} through a regression function
f* with an additive iid random noise (¢;)Y ;. Taking the
distribution of the ¢;’s as N(0, %) with known variance,
we end up with the following Gaussian sequence model:

Y, =fl+e€, foriell,N]. (1)
Here we are placed in a regression setting of the form Y =
f*+e,whereY =[Yy - Yn|T, f*=[ff -+ f5]¥ and
e=[er -+ en]T ~ N(0,0%Iy), and we are interested in
estimating f* as a piecewise constant function that takes
limited number of values.

We emphasize that it is unlikely that the data correspond
exactly to a piecewise constant function plus independent

random Gaussian noise and that we are in this low dimen-
sional hidden structure exactly, yet there might exist a good
sparse linear approximation. Hence our search is not for an
exact model, rather we are trying to select the best model in
a collection of candidates, as we explain in the next section.

3. Preliminaries and notation

We would like to perform dimensionality reduction by
exploiting the hidden structure on the data sequence
Y1,Ys, ..., Yy. To do this we split it into different seg-
ments while also putting the segments sharing the same
mean into the same cluster. Hence if we knew the clus-
ters our problem reduces to fitting a constant to a set of
observations over each cluster. Observe that if f* is con-
stant over parts of [1, N], then it determines a clustering of
Y1, Ys, ..., Yy over the values where it is constant. Hence,
we can think about the problem as, first determining the
clustering of the Y7,Y5,..., Yy which would result in a
partition 7 of [1, N, and then choosing the best value of
f over each part as our estimate. So f* belong to the sub-
space JF: subspace of functions that are constant over the
parts of the partition 7.

To formalize this, let M be an index set over the collec-
tion of partitions Iy of [1, N]; given m € M, denote
by F,, the subspace of functions that are constant over
the parts of m,,. Our goal is two-fold: find m as the in-
dex estimate of .F.;,, the subspace where the estimate of f*
lives, and from F;, compute fm as our estimate. We repre-
sent a partition 7 as an unordered collection of its subsets
7 = {[1],[2],. .., [|x|]} with [k] being the k'"-equivalent
class, -part or -cluster, and || the cardinality of the parti-
tion. Every part [k] can be seen as the union of segments
(k] = {[k1], [k2], ..., [k ]} where (kZ)L[i]l‘ is the collec-
tion of maximal intervals in [k] that we call segments of the
k" -cluster. The last element in each segment [k;] is called
a change point. We define d},, := |m,| —1 = dim(F,,) —1
as the clustering dimension. Even though this choice might
create some confusion it will be consistent the notations

used in the proofs of sections 5 and 6. Also we define

d +1

d), = |mmlo := |U,, " [k]| as the change point dimension.

To link partitions to subspaces let ¢; := (0,...,1,...,0)
be the [*"-component of the standard orthonormal basis of
RY, and define for a subset A of [1, N the vector 14 :=
314 € For [k], the k' cluster of 7r,,,, with a slight abuse

@ er,;, and observe that

of notation we define 1) := ZL
Fm = span{lp,: k € mp,}, which is consistent with the
definition of the clustering dimension d/,, := |7, — 1 =

dim(F,,) — 1.

We define (f*) := span{f*}, S; & S as the direct sum
of the two vector space S1 and Sp, and §; © Sz as their
direct difference. Ps denotes the (orthogonal) projection
operator onto the subspace S. We also define the partitions
inclusion as my; C mg if Fp,, C Fpn,, or equivalently if
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2 Example of a signal and an observation
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Figure 1. Example of a piecewise constant signal f* (black line)
and observed signal Y (pink line) with clustering values (blue
circles) and change points (green circles).

T, 18 finer than 7, .

Example 1. Consider the signal f* of Figure 1, whose partition
is

m = {[1]; [2]; [3]; [4; [5]},

1] = [615,678] U [821,926] U [1019, 1211] U [1753,2000]
[2] = [1,100] U [679,820] U [1212, 1280]

3]
[4]
[5]

= [101,214] U [505, 614] U [926, 1018] U [1281, 1600]
4] = [215,504]
5] = [1601, 1752].

Hence, d. = 4 and d.} = 12 for this signal.

We also denote by C}Y the binomial coefficient that gives
the number of ways, disregarding order, that k£ objects can
be chosen from among N objects. This is given by

N!

N ._
G = k(N — k)

2
The Stirling numbers of the second kind, S(N, k), corre-
spond to the number of ways to partition a set of IV objects
into k£ non-empty subsets, or, similarly, to the number of
different equivalence relations with precisely k equivalence
classes that can be defined on an set of /N elements.

We are precisely interested in the case where the element
set is [1, N] and the distance between every two elements
in each equivalence class is at least 2; we denote the num-
ber of such equivalent classes by S?(N, k). S(N, k) and
S2(N, k) satisfy the following recurrence relations:

S(N,k)=S(N -1,k —1)+kS(N — 1,k),
S*(N,k)=S(N —1,k—1), N, k>2.

N >k,
3)

For the proofs of these results, we refer the reader to (Gra-
ham et al., 1988) and (Mohr & Porter, 2009).

4. Two-pass dynamic programming for
change point detection and clustering

To solve the change point and clustering problem, a natural
approach is to consider the minimization of a criterion of
the form,

Crit(m) = |ly = fml3 + o” K pen(m). S

Uniqueness, continuity and stability properties of similar
criterion have been studied in (O. et al.), we restrict to a
penalty term pen(d,,,, d!") := pen(m) depending only on
d" and d” and a multiplicative tuning parameter K. In-
deed, as we shall see the penalty can be chosen such that
the minimizer fm of (4) behaves like an approximation to
a maximum a-posteriori estimator (MAP), and also, the av-
erage expected risk %]E[Hfm — £*|13] = 0 for a large class
of signals f*, namely, those corresponding to models with
d <d’"=0o(N/InN),i.e., f*isaconsistent estimator for
those signals. The specific form of pen(m) will be derived
in the next section, based on an oracle inequality that will
guarantee consistency and adaptivity of our estimator.

Although the estimator fm enjoys good statistical proper-
ties, from a computational stand it would involve the explo-
ration of M. The set M is identified with the collection of
all the partitions of [1, N, whose number asymptotically
behaves like O(Ne” /In N), rendering the minimization
of the criterion (4) computationally challenging. A way to
bypass this issue for the change point only detection prob-
lem is via dynamic programming (Harchaoui & Cappé,
2007); this approach works in this simplified setup since
there is a natural ordering for exploring the subproblems,
which does not hold here. To overcome this, we will relax
the criterion in such a way to create a subproblem ordering
and thus derive a computationally feasible approximation.
The proposed new method is outlined in Algorithm 1.

Let gy = (Cicp Ya)/I[K]], the average of the ele-
ments of Y in the [k]-th part. Notice that, given m, :=
{[1};12];..-;[d, — 1]}, we have

d,—1 d;, —1
(Y, 1)

Pr,Y =Y Wﬂ[k] = > Tl
k=1 (k] k=1

The minimization of criterion (4) can then be equivalently
written as

min Crit(m)

me
= min {|y = Px, Y3 + o* K pen(d,,,, d;,)}
= min min ||y — Px,, Y||35+ oK pen(d’,d”)
o<d’ |m|=d’
<d”<D ‘ml(]:d”

)
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Algorithm 1 Two-Pass Dynamic Programming Algorithm

input data points (yz)f\il maximum number of changes D and
penalty strength K.

L D D ¢
L
1
R[k,l] = Z(yl _ g[k,l])Qy 1 < k < l < N

i=k

2: ford=1to D do
3:  use the dynamic programming recurrence in (9) and a
backtracking step to compute

Ca(N) = min [V =Pz, Y|P, &)
Mg € arg ‘Ip‘ind |Y —Pr, Y.

end for
: ford =1to D do
. md22{0<i1<i2<-"<id<N}

(i0 = 0,44+1 = N).

AN

(ar)imo = (ixg1 — ir)G,

7o sort (Y1, Ylin+1,ials - - Ulig+1,N])-

(g(k,))zzo := ordered sequence of (i, 41,15, ))i=0

(a(k))f—o := corresponding permuted (cvi){_o according

to permutation ¢gq.

Zi:[k oY)
—1

= i ) l ~
9 P = Sgerg e and Ry = Moy oo Wo —

Jren)® 1<k<I<d
10:  ford =1toddo
11: use the dynamic programming recurrence in (10) and a
backtracking step to compute

Gug = min |Pr,Y =Pz, Pr, Y[ ©)

T

Pz, Y = Pr,, Pr, Y|

m(d,5) € arg me%n )

Urn

12:  end for
13: end for
14: B(d,(;) = Cy +G(d,5) +02ern((d, 5)), 1<46

15: (d,0) := arg (min B(4,s)-

16: reconstruct mg 5 from 7 ; and 77:1(& 8-
output value of criterion Crit(mg3) = B, ;) and selected
model for change points and clusters Mg 5y

/N

d < D.

where D is a reasonable upper bound on the number of
change points. As we shall see later, from a statistical point
of view there is no need to explore all possible values of
d' and d”, since the statistical guarantees only hold in a
regime where d’ < d’ = o(N/In N).

We define 7,7, to be the partition having as elements all the
segments of 7, and instead of computing the minimum
exactly we will take a greedy step by defining

= arg min ||V —Pg, Y|?
|| =d"

and defining M5, o == {m € M: m C m,|m| = d'},
which can be identified with the collection of all partitions
of [1,d"] into d’ sets. We restrict further this collection to
partitions 7 satisfying what we call the clustering prop-
erty, which states that if [, I, and I are segments in some
(possibly different) parts of m, then

{]Ih]b € [K] = Ielk. (7)

UL S YIS UL,

This sub-collection will be denoted as My, +. Simply put,
this property says that the partitions considered are those
that respect the ordering of (g[ik+17ik+1])z;0’ since if two
segments Iy,I5 belong to [k], and the segment I satisfies
71, < 41 < 71, then it should also be in cluster [k].

This leads to the following upper bound, whose detailed
derivation is given in appendix B:

. . . . 2
min Crit(m) < 055132[){ |nILr|li%” Y —Pg Y|

+ min ||Pr, Y —Pr, Pz Y|?

Ogd, gd”
meMy _ g

+ 02K pen(d’, d")}.
Therefore, we can define the following relaxation for the

minimization of the criterion in (4):

Crit,(d”) ;== min [|Y — Pz, Y|

|m|=d"

+ min {H Pr,Y — Pz, Pr, V|?
Ogd’éd”
WEMyﬁ,,d”
+ o?K pen(d,,,d") } ®)

and our algorithm computes O<r51/i/r<1 b Crit,(d"") and returns

Mg §)- From this last definition we observe that

. . < . A — . . /! .
min Crit(m) < Crit(m ;) o uin Crit,.(d")
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Thus, obtaining m 4 5 ensures making progress toward the

minimization of Crit(m). The Two-Pass Dynamic Pro-
gramming Algorithm 1 is aimed at doing this by computing
the value of the minimum in (8) and returning a solution
m= ™4 ) in the following way:

Details of Main Steps in Algorithm 1

e Step 3: It computes Cy(n) defined in (9) for all d and n to
obtain Cy(N) for all d € [1, N]. It does so by using a dy-
namic programming algorithm that computes recursively for
all2 < d < Dandd < n < N the following recurrence,
similar to the one in Hawkins (1976):

Ci(n) :== Ry n) )
Cd(n) = _H[[lgn]]{cd71(i — 1) + R[i,n,]}, d> 2.
€ d,n

e Step 7: For all values of d, it sorts the obtained segments
according to their levels to yield (g(k))g, and it keeps track
of the segments’ sizes as (o )b_o = (ik+1 — ik)g.

e Step 11: It runs a modified dynamic programming recur-
rence on (gj(k))g that uses weights according to the sizes

(oz(k))g It does so using the following recurrence for all
1<i<t<d:

Gy = R, (10)
= mi 15— Ri; o= 2.
G1,6) ig[hlsg]]{G“ 1,5-1) + Ry}, 6 2

e Step 15: It computes the minimum in (8) and finds for
which model it is attained by solving the minimization prob-
lem:

d, ) := i B .
(d,0) arg1g?£§lgp (d,5)

e Step 16: It finally reconstructs mg s from m ; and ﬁL(J 8

using the permutation ¢(d).

This algorithm can be thought of as an efficient way to
compute the relaxation in (8), based on solving the change
point detection problem in (5) using the dynamic program-
ming recurrence of (9), followed by a solving a clustering
problem in (6) using the dynamic programming recurrence
of (10).

The next theorem shows that Algorithm 1 correctly solves
the minimization problem in (8) and explicits its time and
space complexity.

Theorem 4.1. Let (y;).;, CR, D € Nand K > 0. Then,

o foralll < d< D,

Mg € arg min ||Y — Pz Y|,
|m|=d

o foralll <6< d< D,

s €arg min ||Pr, Y = Pr, Pr, Y.

m

Furthermore, Algorithm 1 correctly solves the minimiza-
tion problem in (8), with time and space complexity
O(N3 + D*) and O(N? + D3), respectively.

Proof. See Appendix B. O

The time and space complexity can be improved to
O(N?D + D*) and O(DN + D?), respectively. We refer
the reader to the discussion after the proof in Appendix B
for the derivation of this result. In this way we obtain a
computationally feasible algorithm that finds the minimum
in (8) and returns an approximation to the criterion in (4).
In the next section, we will motivate the use of Algorithm 1
from a statistical point of view by showing that the mini-
mization of criterion (4) can be viewed as an approximate
maximum a-posteriori estimator.

5. Model selection criterion for change point
detection and clustering

In this part, we provide a derivation of the optimization cri-
terion in (4). We start by proposing a Bayesian model
selection scheme, which is later inverted to arrive at an in-
tegral form of the maximum a-posteriori probability (MAP)
estimator. Then we use a Laplace approximation to derive
turn the MAP into an optimization problem of the desired
form.

Here we show that the proposed selection criterion in (4)
follows naturally from a Bayesian reasoning. For this, we
model the data as being the outcome of the following sam-
pling model. The observation Y is generated from a mul-
tivariate Gaussian of mean F' and variance o2Iy as de-
scribed by (1). For the random variable F', given that it
belongs to a subspace F,,, we choose an absolutely con-
tinuous measure £% with respect to A%, the Lebesgue
measure on R%=+1 such that dL%m = lf/md)\d;nJrl =
d,, +1

H (lfk/mdA) with lfl/m =

will see that the choice [/, will not matter in comparison
to the order of approximation, nevertheless we would like
it to be a bounded continuous prior satisfying some addi-
tional conditions given in Lemma 2, even though we might
be chosen as an improper prior. On the family of models
M we impose a categorical distribution measure P as
prior, with a weight p,,, for model m. Thus, we obtain the
following sampling model for the data':

Y/F ~ N(F,0Iy)

F/m ~ L% an
m~ Py = Categorical((pm)me/\/l)-

=y, Ly /m- Later we

Since Y, F' and m are now random variables, it makes
sense to compute fi,,,y, the posterior distribution of m

"Here and in the sequel, the dependence of p,, and P4 on the
number of samples N is omitted, for simplicity of notation.
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given Y, and maximize it, to arrive at a MAP estimate of
m given bellow.

Y —

Y - ! ! /.

12)

Pm/y =

For the complete derivation of the formula in 12 we refer
you to appendix B.

Starting from the a-posteriori distribution (12) we can de-
rive an approximation for the MAP as follows:

Y _
Pm)y X Pm/ éN <f> L ym (f)df
fEFm g
d,, +1 1
=pm || — (13)

i1 (2mo?) 72

— Flaall?
,/Rexp (”y[’f]w) Ly (i)l

202

In the last step of (13) we define y;) as the vector obtained
from the entries of y corresponding to cluster [k]. To ob-
tain an approximation of the MAP estimate as a solution of
a criterion of the form (4) we need the result of lemma 2
stated and proved in Appendix C using a Laplace approx-
imation type of argument. We then obtain the following
upper bound for the MAP forall K > 1:

- 2
< ly — P, yll3
202

11, N )

m

CI‘itMAp(m)

The complete derivation of (14) can be found in Ap-
pendix C. Now we define our approximate MAP criterion
as:

Crit(m) = |ly = P, yll3 + oK pen(m),

pen(m) = (2 In pi +(d,+1)ln éy) . (15
In the next section, we finish the specification of the penalty
term by providing the probabilities p,, over the space of
models. To do so we will exhibit an oracle inequality sat-
isfied by the estimator that minimizes (4), and choose a
probability mass function (p,,) that gives a reasonable up-
per bound on the expected quadratic risk defined below.

6. Oracle inequality and upper bound for the
risk
The standard way of assessing the performance of a statisti-

cal algorithm is by comparing its performance to a reason-
able oracle. For this we use as a measure of performance

of an estimator f the expected quadratic risk:

Ra(f) =ElIf — £II3].

In the case of the change point detection and clustering
problem, the comparison should be non-asymptotic, re-
flecting our lack of knowledge about both the clustering
dimension and the change point dimension. For this we
state below a non-asymptotic oracle inequality for Crit(m)
using an oracle with remainder of the form:

This type of oracle has access to f* and chooses the m that
minimizes the risk criterion up to a remainder term.

To derive this we finish the specification of Crit(m) by pro-
viding an appropriate prior p,,. The intuition behind our
choice is the following. Defining #,, = |ly — fm||3 and
pen(m) = 20° In -1 + 0”(dy, +1)In L we see that the
criterion (15) is of the form: "

Crit(m) = 7, + pen(m).

The number of models in the family M having the same
values of d/, and d]/, grows exponentially with those di-
mensions. Thus for fix d],, and d}/, we might find a model
with low 7, just because of randomness since some of
them will deviate largely from their means, which would
correspond to an over-fitting case, this was the problem of
case with the traditional AIC type of estimators. There-
fore, we need to penalize models of high dimensions more
by taking into account the number of models with same di-
mensions. On the other hand we want this penalty to be
as small as possible this way we give more importance to
the fitting term 7,,,. In particular we would prefer the term
202 1n pi to stay close to o(d’+1) In £ at least for values

of d;, close to d;;,. Our choice for p,,, useful inequalities
and a complete discussion of the role of p,,, as a prior and
tuning parameter for the risk can be found in Appendix D.
From Lemmas 3 and 4, the following oracle inequality can

be derived for fm

Theorem 6.1 (Oracle inequality for fm). With M re-
stricted to models such that ed,, < N and for the choice

of K = 3a, py, as in 3, pen(m) as in 15 and m € M
corresponding to

i € arg min [ly = full3 + 0* K pen(m),  (16)

We obtain for all a > 1,

Ep[|Pr, Y — [ <
a
in { —En[|Pr, Y — £*?
arg;}é%{a_l lIPx, Y — f*7]
a?0? N 1
d +1)ln—+6ln— ) ». (17
+a_1(7+3(m+ )nd$n+6npm>} (17)
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Proof. See Appendix D. O

By investigating the oracle inequality, one notices that for
an optimal choice of a one has to make a trade-off between
the performance of the oracle part and the bias part of the
inequality. In general this trade-off is not possible to op-
timize since the value of the oracle part is not available to
us and depends on the variance of the noise. In practice,
one can use the SLOPE heuristic introduced in Lebarbier
(2002) and described in Baudry et al. (2012) and in (Arlot
& Massart, 2009). In our case, the value of the tuning pa-
rameter can be chosen independently of the variance of the
noise and we can use the value of a for which we know that
our estimator fy will perform well.

Corollary 6.1. For the set of models described in 6.1 with
f* € Foux the following properties hold:

e Adaptation and Risk Upper bound: The following

adaptive upper bound in terms of d,,,. and d.,. holds
fora = 2:

. , N
Ei ]| Px, Y — 1] < 40° (7 +3(d)p+ +1)1In

.

+ 6(d’m* In[dy-e 6] + e Infdpee?] + e In £) )

d{I;L*
e Consistency: If d. = o(N/InN), then
1imNHOO N_lEf*[ fm — f*Hz] =0.
Proof. See Appendix D. [

We notice that the consistency condition dl/. =
o(N/In N) is within the restriction on the models in theo-
rem 6.1, hence there is no loss of generality of having only
models with ed;, < N in M since for other models we
cannot guarantee convergent mean square risk anyway. In
the special case d,,,. = d/..., i.e when the change point and
clustering problem reduces to a change point only problem,
Kernel methods have comparable accuracy (Celisse et al.,
2017). The interesting case is when the numbers are differ-
ent, we gain a logarithmic factor in accuracy with almost
the same computational cost. In the next section, we vali-
date these theoretical guarantees by a series of tests on sim-
ulated data to get a sense of how tight the oracle inequality
is, which signals are difficult to estimate and how the algo-
rithm behaves in practice.

7. Experimental results

Consider first an experiment based data generated ran-
domly according to the setup of (1) with the same change
points of Example 1. This is considered to be an easy case
since d,,» = 4 < dI'. = 12 <« N = 2000, which is
within the range of signals for which the consistency result
of Corollary 6.1 holds.

signal to noise ratio 2
20 T T T

15
NW
-
o[

ok il
I I I I I I I I I
200 400 600 800 1000 1200 1400 1600 1800 2000
i
signal to noise ratio 1
T T T

20
15
10 —J_’——‘_I_f-“l__l_\_rl—l—_—l___;
-
5

200 400 600 800 1000 1200 1400 1600 1800 2000

1
signal to noise ratio .5
20 T T T

15

200 400 600 800 1000 1200 1400 1600 1800 2000
i

Figure 2. Estimates f (blue line) of f* (dotted black line) ob-
tained by Algorithm 1 using the observed signal Y (pink line),
with 3 different levels of signal-to-noise ratio.

The experiments in Figure 2 show that the algorithm is
quite robust to the level of noise as measured by the signal-
to-noise ratio S/N — magnitude of srzazllestjump in f* ~ We ob-
serve that the difference between the ground truth f* and
fm is quite small even for small S/N levels such as S/N =
0.5 and the change point locations do not vary appreciably;
in fact, for this experiment, S/N = 0.3 seems to be the lim-
iting case for which the algorithm performs well, and for
lower values the risk upper-bound in Corollary 6.1 becomes
loose when o increases. Also, we note that an S/N of 0.5
is quite low for this kind of problems. In particular, algo-
rithms relying on the L;-penalty such as Fussed LASSO do
not achieve this kind of performance on the simpler task of
change point only detection, while on the other hand, they
are more computational efficient (Xin et al., 2014).

Figure 3 illustrates a difficult case, where we reduced the
number of observation by segment by scaling down the sig-
nal f* to a support of size N = 500. Now we are outside
of the useful regime of Corollary 6.1 and we notice that
the second segment [15,53] is wider than what it should
since the first change point at 25 was detected at 14; also
the segment [206, 237] belongs to cluster [4] while it is ac-
tually in cluster [3] in the original signal f*. Neverthe-
less we can observe an interesting property for segment
[324, 346], namely, that the end point 346 does not cor-
respond to any real change point, yet this segment belongs
to the optimal solution of the 1%* dynamic programming
pass. On the other hand the 2" dynamic programming
pass puts it in the same cluster [3] as [347,399], turn-
ing them into one single segment of cluster [3]. This be-
havior actually is the norm for the algorithm, where false
changes are often detected in difficult signals in the 1%¢
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Figure 3. Estimate f (blue line) of f* (black line) obtained by Al-
gorithm 1 from a difficult observation sample Y (pink line) with
high signal-to-noise ratio (1.5) and few observations per segment
(N =500 and d;;,« = 13).

dynamic programming pass but are removed after the 2"¢
pass. These kinds of false discoveries are actually one of
the weaknesses of many change point only detection al-
gorithms like Fussed LASSO, and they have been stud-
ied in (Levy-leduc & Harchaoui, 2008), (Rinaldo, 2009)
and (Rojas & Wahlberg, 2014). In the last experiment,
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Figure 4. Top histogram: location of estimated (black) and true
(black) change points in 300 simulations. Middle histogram: lo-
cation of estimated (red) and true (blue) clusters in 300 simu-
lations. Bottom histogram: 300 estimates of the average mean
square error (red) and its theoretical upper bound (blue).

we run Algorithm 1 300 times with the parameter values

e =4 < dlll. =12 < N = 2000 and signal-to-noise
ratio S/N = 1; Figure 4 summarizes the results. In the top
histogram we notice that the algorithm successfully detects
the change points most of the time; in fact, the achieved ac-

number of change points correctly detected
curaCy was number of change points detected ~ 0.8528. The

middle histogram shows the placement of estimated clus-
ters and the true values of the clusters; we observe that the
true values lie in a small neighborhood of the estimated
values for every cluster. In the bottom histogram we ob-
serve that the theoretical upper bound on the average mean
square error —in this case 12.1575— found in Corollary 6.1
is very conservative and most of the 300 estimates —given

by Wn—"I? _ are significant] 11
~ g y smaller.

8. Conclusions

In this work, we considered a novel problem related to
change point detection where we have to address the si-
multaneous task of segmenting and clustering the observed
signal. Our approach has been to view this problem as a
non-parametric model selection problem on the set of all
possible partitions. We derived for this the computation-
ally tractable Algorithm 1, that computes a relaxation of
the penalized minimization of criterion (4), and we jus-
tified it from a statistical standpoint by showing that this
minimization can be viewed as an approximate MAP. This
approximate MAP estimate enjoys the properties of being
adaptive and consistent in the sense of Corollary 6.1. We
finally justified the use of Algorithm 1 by simulation data
that shows some useful properties of the resulting estimate
and validates the theoretical guarantees.

One extension of this work concerns developing a more
complete analysis of Algorithm 1, to obtain consistency
results on the number and locations of the change points
and clusters. Another possible extension relates to the use
of Algorithm 1 in the non-scalar case; this was already
explored for change point only detection in (Arlot et al.,
2016) through the use of characteristic kernels (Sriperum-
budur et al., 2011). We believe that the same approach can
be adopted here except that we cannot perform the sorting
step; this can be overcome using a Kernel clustering algo-
rithm (Filipponea et al., 2008) or a spectral version of it
(Scholkopf et al., 1998) for the second stage. Finally, the
remark after Figure 3 hints to the possibility of using a com-
bined algorithm starting with the sparse solution of Fussed
LASSO and running the 2" dynamic programming pass of
our algorithm as a way to boost the performance of Fussed
LASSO to get rid of false discoveries. This would be still
computationally attractive according to the comment after
Theorem 4.1, since the solution of Fussed LASSO has a
small number of changes.
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