
Bounds on the Approximation Power of Feedforward Neural Networks

Mohammad Mehrabi 1 Aslan Tchamkerten 2 Mansoor I. Yousefi 2

Abstract

The approximation power of general feedforward
neural networks with piecewise linear activation
functions is investigated. First, lower bounds on
the size of a network are established in terms
of the approximation error and network depth
and width. These bounds improve upon state-
of-the-art bounds for certain classes of functions,
such as strongly convex functions. Second, an
upper bound is established on the difference of
two neural networks with identical weights but
different activation functions.

1. Introduction
It is well-known that sufficiently large multi-layer feedfor-
ward networks can approximate any function with desired
accuracy (Hornik et al., 1989). An important problem then
is to determine the smallest neural network for a given task
and accuracy. The standard guideline is the approximation
power (variously known as expressiveness) of the network
which quantifies the size of the neural network, typically in
terms of depth and width, in order to approximate a class of
functions within a given error. In particular, several works
provided evidence that deeper networks perform better than
shallow ones, given a fixed number of hidden units (Bian-
chini & Scarselli, 2014; Delalleau & Bengio, 2011; Liang
& Srikant, 2017; Mhaskar et al., 2016; Pascanu et al., 2014;
Telgarsky, 2015; 2016; Yarotsky, 2017).1

A popular activation function is the rectified linear unit
(ReLU), partly because of its low complexity when coupled
with backpropagation training (Krizhevsky et al., 2012). It
has, therefore, become of interest to determine the power
of neural networks with ReLU’s and, more generally, with
piecewise linear activation functions.

1Department of Electrical Engineering, Sharif University of
Technology, Iran 2Department of Communications and Electron-
ics, Telecom ParisTech, France. Correspondence to: Mohammad
Mehrabi <mohamadmehrabi4@gmail.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

1For a nice counterexample see (Lu et al., 2017).

Determining the capacity of a neural networks with a piece-
wise linear activation function typically involves two steps.
First, evaluate the number of linear pieces (or break points)
that the network can produce and, second, tie this number
to the approximation error. The works (Montufar et al.,
2014; Pascanu et al., 2014) recently showed that a linear
increase in depth results in an exponential growth in the
number of linear pieces as opposed to width which results
only in a polynomial growth. Accordingly, the approxima-
tion capacity exhibits a similar tradeoff between depth and
width. For related works with respect to classification error
see (Telgarsky, 2015; 2016) and with respect to function
approximation error see (Liang & Srikant, 2017; Mhaskar
et al., 2016; Yarotsky, 2017).

In this paper we consider general feedforward neural net-
works with piecewise linear activation functions and es-
tablish bounds on the size of the network in terms of the
approximation error, the depth d, the width, and the dimen-
sion of the input space to approximate a given function.
We first establish an improved upper bound on the number
of break points that such a network can produce which is
a multiplicative factor dd smaller than the currently best
known from (Yarotsky, 2017). This upper bound is obtained
by investigating neuron state transitions as introduced in
(Raghu et al., 2017). Combining this upper bound with
lower bounds in terms of error and dimension, we obtain
necessary conditions on the depth, width, error, and dimen-
sion for a neural network to approximate a given function.
These bounds significantly improve on the corresponding
state-of-the-art bounds for certain classes of functions (The-
orems 1,2 and Corollaries 1,2,3).

The second contribution of the paper (Theorem 3) is an
upper bound on the difference of two neural networks with
identical weights but different activation functions. This
problem is related to “activation function simulation” inves-
tigated in (DasGupta & Schnitger, 1993) which leverages
network topology to compensate a change in activation func-
tion.

The paper is organized as follows. In Section 2 we briefly
introduce the setup. In Section 3 we present the main results
which are then compared with the corresponding ones in the
recent literature in Section 4. Finally, Section 5 contains the
proofs.

Bounds on the Approximation Power of Feedforward Neural Networks

2. Preliminaries
Throughout the paper R denotes a compact convex set in
Rn, n ≥ 1, and Fσ denotes the set of feedforward neural
networks with input R, output R, and activation function
σ : R → R. Feedforward here refers to the fact that the
neural network contains no cycles; connections are allowed
between non-neighbouring layers. It is assumed that σ is a
piecewise linear (not necessarily continuous) function with
t ≥ 1 linear pieces. The set of all such activation functions
is denoted by Σt.

A neural network f ∈ Fσ consists of a set of input units
If , a set of hidden units Hf that operate according to σ,
non-zero weights representing connections, and a single
output unit which just weight-sums its inputs. To simplify
the notation we use f to represent both a neural network
and the function that it represents.

For instance, in the neural network shown in Fig. 1, we have
If = {x1, x2, x3} andHf = {uij , ∀i, j}.
Definition 1 (Depth and width). Given a neural network
f ∈ Fσ, the depth of a hidden unit h ∈ Hf , denoted as
df (h), is the length of the longest path from any i ∈ If to
h. The depth of f is

df
def
= max

{
df (h)

∣∣h ∈ Hf}.
The set of hidden units with depth i is

Hif
def
=
{
h ∈ Hf

∣∣df (h) = i
}
.

The width of the network is

ωf
def
=
|Hf |
df

def
=

∑df
i=1 ωi
df

(1)

where
ωi

def
= |Hif |.

For instance, in Fig. 1, the hidden unit u23 can be reached by
inputs x1 and x3, by following the paths x1 → u23, x3 →
u11 → u23, or x3 → u12 → u23. Therefore, df (u23) = 2.
The hidden units of maximum depth are u31, u32, and u33
and hence df = 3,H3

f = {u31, u32, u33} and ωf = 8/3.

The following simple inequality is frequently used in the
paper.
Lemma 1. For any t ≥ 1, df ≥ 1, and |Hf | ≥ 1

((t− 1)ωf + 1)df ≤ t|Hf |.

Proof. Set ωf =
|Hf |
df

and observe that(
(t− 1)

|Hf |
df

+ 1

)df
is a non-decreasing function of df and that df ≤ |Hf |.

x1

x2

x3

u21

u22

u23

u11

u12

u31

u32

u33

Input layer Hidden units Output

Figure 1. A feedforward network f with |If | = 3 inputs, |Hf | =
8 hidden units, depth df = 3, and width ωf = 8/3.

Definition 2 (Affine ε-approximation). Function f ∈ Fσ is
an affine ε-approximation of a function g : R → R if

sup
x∈R
|f(x)− g(x)| ≤ ε.

Definition 3 (Break point). Given (x,y) ∈ R2, function
f : R → R admits a break point at α0 ∈ (0, 1) relative
to the segment [x,y] if the first order derivative of f((1−
α)x + αy) does not exist at α = α0. The total number of
break points of f on the (open) segment]x,y[is denoted by

Bx→y(f). Finally, we let B̄x→y(f)
def
= Bx→y(f) + 1.

Since f is piecewise linear B̄x→y(f) simply counts the
number of linear pieces that f produces as the input ranges
from x to y.

3. Main Results
Theorems 1,2 and Corollaries 2,3 provide bounds on the size
of a neural network to approximate a given function. These
bounds are expressed in terms of the approximation error
and width and depth of the network, but hold irrespectively
of the weights. Recall that connections are allowed between
non-neighboring layers.

As a notational convention we use C2(R) to denote the set
of functionsR → R whose second order partial derivatives
are continuous over R̊ (the interior ofR).

Theorem 1. Let f ∈ Fσ, σ ∈ Σt, be an ε-approximation
of a function g ∈ C2(R) and let x,y ∈ R. Then,

(
(t− 1)ωf + 1

)df
≥ B̄x→y(f) (2)

≥ ||x− y||2
4
√
ε
·Ψ(g,x,y), (3)

Bounds on the Approximation Power of Feedforward Neural Networks

where

Ψ(g,x,y)
def
=

√
inf

0≤α≤1

(
max

{
0, γ(α)δ(α)

})
, (4)

γ(α)
def
= min

{
|α1(α)|, |α2(α)|

}
,

δ(α)
def
= sign

(
α1(α)α2(α)

)
,

and where α1(α) and α2(α) are the largest and smallest
eigenvalues of the hessian matrix ∇2g

(
(1 − α)x + αy

)
,

respectively.

Maximizing the right-hand side of (3) over x,y and using
Lemma 1 we obtain:

Corollary 1. Under the assumptions of Theorem 1 we have

|Hf | ≥ logt

(
sup

(x,y)∈R2

{ ||x− y||2
4
√
ε
·Ψ(g,x,y)

})
.

A function g : R → R that is twice differentiable is said to
be strongly convex with parameter µ if ∇2g(x) � µI for
all x ∈ R̊.

Corollary 2. Let f ∈ Fσ, σ ∈ Σt, be an ε-approximation
of a function g ∈ C2(R) that is strongly convex with pa-
rameter µ > 0. Then,

|Hf | ≥
1

2
logt

(µ · (diam(R))2

16ε

)
,

where
diam(R)

def
= sup

(x,y)∈R
||x− y||2.

Proof. By strong convexity Ψ(g,x,y) ≥ √µ. The result
then follows from Theorem 1 and Lemma 1.

As an example, consider g(x) = x · x over [0, 1]n. The
Hessian matrix is 2In×n and from Corollary 2 we get

|Hf | ≥ log2

(√ n

8ε

)
.

Corollary 3. Let R = [0, 1]n. Let f ∈ Fσ, σ ∈ Σ2,2 be
an ε-approximation of a function g ∈ C2(R) such that
∇g(x) � 0 for any x ∈ R̊. Then,

|Hf | ≥ q(g)dfε
− 1

2df (5)

where q(g) > 0 is a constant that only depends on g.

Proof of Corollary 3. From Theorem 1 we get(Hf
df

+ 1
)df
≥ c(g)√

ε
,

2Recall that Σ2 includes ReLU’s.

where c(g) > 0 is some strictly positive constant, since the
Hessian of g is positive definite everywhere over R̊. Since
Hf/df ≥ 1 the above inequality implies(

2
|Hf |
df

)df
≥ c√

ε
.

Since 1
2c

1
df ≥ q where q = 1

2 min(c, 1), the above inequal-
ity yields the desired result.

Theorem 2. Let R = [0, 1]n. Let f ∈ Fσ, σ ∈ Σt, be
an ε-approximation of a function g : R → R such that
|DJ(g)(x)| ≤ δ for any x ∈ [0, 1]n and any multi-index3

J such that |J | = 3. Then,

(
(t−1)ωf+1

)df ≥
√√√√(max

x∈[0,1]n

∣∣∆(g)(x)
∣∣n−1 − δn 3

2

)+
16ε

,

(6)
where

∆(g)(x) =

n∑
k=1

d2g

dx2k
, (7)

is the Laplacian of g and where a+ = max(a, 0).

For instance, approximating

g(x1, x2) = 10x21 + x21x
2
2 + 10x22

over [0, 1]2 requires logt

(
0.82√
ε

)
hidden units—combine

Theorem 2 with Lemma 1.

Whether it is Theorem 1 or Theorem 2 which provides a
better approximation bound depends on g. For instance, for
g1(x1, x2) = 20x21 − 2x22 + x21x

2
2 Theorem 1 gives a trivial

(zero) lower bound since the two eigenvalues of the Hessian
matrix ∇2(g1) have always different signs. Theorem 2
instead gives 0.737√

ε
. On the other hand, for g2(x1, x2) =

10x21 + 10x22 + x21x
2
2 Theorem 1 gives 1.37√

ε
as lower bound

while Theorem 2 gives 0.82√
ε

.

The next theorem quantifies the effect of a change of activa-
tion function on the output of the neural network. Here, the
activation functions need not be piece-wise affine.

Theorem 3. Let f1 ∈ Fσ1
and f2 ∈ Fσ2

be two neural
networks with identical architectures and weights. Suppose
that σ1 is a δ-Lipschitz continuous function and suppose
that the weights belong to some bounded interval [−A,+A],
A > 0. Then,

||f1−f2||∞ ≤
||σ1 − σ2||∞

δ

((
δ ·A·ωf+1

)df
−1

)
. (8)

3E.g., for J = (2, 1) we have DJ(g(x1, x2)) = ∂3g
∂2x1∂x2

.

Bounds on the Approximation Power of Feedforward Neural Networks

A slightly weaker version of (8) is

||f1 − f2||∞ ≤
||σ1 − σ2||∞

L

((
L2 · ωf + 1

)df
− 1

)
,

where L = max{A, δ} denotes the Lipschitz-bound defined
in (DasGupta & Schnitger, 1993).

As an illustration of Theorem 3 consider a feedforward
neural network f1 with 100 hidden units, a maximum depth
of 5, and the sigmoid as activation function. Suppose the
weights belong to interval [−1, 1]. Replacing the sigmoid
with a 32-bit quantized function results in an error of at most
0.0001—which can readily be obtained from Theorem 3
with δ = 1

4 , A = 1, ||σ1 − σ2||∞ = 2−32.

4. Comparison with Previous Works
Consider first the inequality (2). Restricting attention to
neural networks with d hidden layers, at most ω units per
layer, and where connections are allowed only between
neighbouring layers, this inequality gives

B̄x→y(f) ≤
(

(t− 1)ω + 1
)d
. (9)

This is to be compared with the previously best known
bound (Lemma 3.2 in (Telgarsky, 2016))

2(2(t− 1)ω)d

which is larger by a multiplicative factor that is exponential
in d whenever ω > 1, t ≥ 2. For n = 1, Lemma 2.1 in
(Telgarsky, 2015) gives (tω)d which still differs from (9)
by a multiplicative factor that is exponential is d for ω > 1,
t ≥ 2.

For general feedforward neural networks the previously best
known bound (see Lemma 4 of (Yarotsky, 2017)) was

B̄x→y(f) ≤
(
t · ω · df

)df
which is a multiplicative factor df df larger than (2).

Now consider the approximation power of neural networks
in terms of number of hidden units required to approxi-
mate a given function within a given error. Theorem 11 in
(Liang & Srikant, 2017) states that to approximate a func-
tion [0, 1]n → R, assumed to be differentiable and strongly
convex with parameter µ, with a neural network f requires

|Hf | ≥
1

2
log2

(µ
16ε

)
,

regardless of the dimension n. Corollary 2 improves this
bound to

1

2
log2

(µ · n
16ε

)

Table 1. Bounds comparisons

Previous This paper

Regular: (Telgarsky, 2016) (Theorem 1)

B̄x→y(f) ≤ 2(2(t− 1)ω)d
(

(t− 1)ω + 1
)d

General: (Yarotsky, 2017) (Theorem 1)

B̄x→y(f) ≤
(
t · ω · df

)df (
(t− 1)ωf + 1

)df
g ∈ C2([0, 1]n)
over µ-convex (Liang & Srikant, 2017) (Corollary 2)
|Hf | ≥ 1

2
log2

(
µ

16ε

)
1
2

log2

(
µ·n
16ε

)
g ∈ C2([0, 1]n)
Hess(g)�0, Σ2 (Yarotsky, 2017) (Corollary 3)

|Hf | ≥ q1ε
−1
2df dfq2ε

−1
2df

which incorporates dimension as well—albeit the depen-
dency on dimension is arguably small.

Corollary 3 provides a lower bound for ReLU types of
networks in terms of the error, the depth, and a constant
term which only depends on g. This bound can be compared
with the bound of Theorem 6 in (Yarotsky, 2017) which is

of order ε
− 1

2df .4 Hence, Corollary 3 provides a linear (in
df) improvement which is particularly relevant in the deep
regime where df = Ω(log(1/ε)). Table 1 summarizes the
above discussion.

To the best of our knowledge Theorem 3 is the first result to
bound the effect of a change in the activation function for
given network topology and weights. Noteworthy perhaps,
this bound is essentially universal in the weights since it
only depends on their range.

Finally, compared to the cited papers it should perhaps be
stressed that the proofs here (see next section) are rela-
tively elementary—e.g., they do not hinge on VC dimension
analysis—and hold true for general feedforward networks.

5. Analysis
We first establish a few lemmas to prove Proposition 1 which
will provide an upper bound on the number of break points.
Then we establish Propositions 2 and 3 which will give
lower bounds on the number of break points in terms of
the approximation error. Combining these propositions will
give Theorems 1 and 2. Finally, we prove Theorem 3.

Definition 4 (Intermediate set of units). Given f ∈ Fσ and

4Theorem 6 of (Yarotsky, 2017) provides a bound of the form

qε
− 1

2df where q is a constant that depends on both g and df .
However, a close inspection of the proof of this theorem reveals
that q depends only on g.

Bounds on the Approximation Power of Feedforward Neural Networks

U ⊆ Hf we define the set of hidden units that lie on a path
between the input and U as

in(U)
def
=
{
v ∈ Hf\U|∃i ∈ If , u ∈ U s.t. v ∈ (i→ u)

}
where (i→ u) denotes the set of intermediate hidden nodes
on the path from i to u.

For instance, in Fig. 1 we have

in({u32}) = {u11, u12, u21, u23}.

The following lemma follows from the above definition.

Lemma 2. Given U ⊆ Hf we have

in(in(U) = ∅

and
in(u) ⊆ (U ∪ in(U))

for any u ∈ U .

Definition 5 (State). Any σ ∈ Σt partitions the real line
(its input) into t intervals I1, I2, ..., It such that on each of
these intervals σ is affine. The state of a unit with activation
function σ is defined to be s ∈ {1, 2, . . . , t} if its input
belongs to Is. By extension, the state of U ⊆ Hf is defined
to be the vector of length |U| whose components are the
state of each unit in U .

The following definition is inspired by the notion of pattern
transition introduced in (Raghu et al., 2017):

Definition 6 (Transition). Let f ∈ Fσ , U ⊆ Hf and x,y ∈
R. Let zα = (1 − α)x + αy be a parametrization of the
line segment [x,y] as α goes from 0 to 1. We say that
the state of U experiences a transition at point zα∗ for
some α∗ ∈ (0, 1] if the state vector of U changes at zα∗

while the state vector of in(U) does not change at zα∗ .
The number of state transitions of U on the segment [x,y],
denoted by Nx→y(U), is defined to be the number of state
transitions of U as the input changes from x to y on zα. If
in(U) = ∅, then Nx→y(U) is defined to be the number of
state transitions of U as the input changes from x to y.

Note that if the state vectors of both U and in(U) change atα,
Nx→y(U) does not change at that α. For example, consider
the neural network f in Fig. 1. Suppose that U = {u11, u12}
and suppose that the state of u11 and u12 changes exactly
once along segment zα for some x and y, respectively at
α1 and α2. Then Nx→y({u11}) = 1 and Nx→y({u12}) =
1. If α1 = α2, Nx→y(U) = 1, otherwise Nx→y(U) =
2. If U ′ = {u21, u22, u23}, and the state of each of u21,
u22 and u23 changes exactly once at either α1 or α2, then
Nx→y(U ′) = 0 since the state vector of in(U ′) = U has
also changed at both α1 and α2.

Lemma 3. Given f ∈ Fσ and U1,U2 ⊆ Hf such that
in(U2) = ∅ and in(U1) ⊆ U2, we have

Nx→y

(
U1 ∪ U2

)
≤ Nx→y

(
U1
)

+Nx→y

(
U2
)
.

Proof. Suppose Nx→y

(
U1 ∪ U2

)
increases by one at α =

α∗. If U2 undergoes a state transition at α∗ then, because
in(U2) = ∅, we have that Nx→y

(
U2
)

also increases by one
at α∗. Instead, if no state change happens in U2 at α∗ then,
due to the state change of U1∪U2 at α∗, the state of U1 must
change as well at α∗. Since in(U1) ⊆ U2 and no change in
the state of U2 is observed at α∗ we have that Nx→y

(
U1
)

necessarily increases by one at α∗.

Lemma 4. Given f ∈ Fσ and U1,U2 ⊆ Hf such that
U1 ⊆ U2 and in(U2) = ∅ we have

Nx→y

(
U1
)
≤ Nx→y

(
U2
)
.

Proof. Suppose Nx→y

(
U1
)

increases by one at α∗. Since
U1 ⊆ U2 the state of U2 changes as well at α∗. Since
in(U2) = ∅ we deduce that Nx→y

(
U2
)

increases at α∗ by
one, thereby concluding the proof.

Lemma 5. Given f ∈ Fσ , for any U ⊆ Hf we have

Nx→y(U) ≤
∑
u∈U

Nx→y(u).

Proof. Suppose that Nx→y(U) increases by one at α∗. Let
V ⊆ U be the set of units that experience a transition at α∗.
Since we have a transition in the state of U at α∗ we have
V 6= ∅. Now, because the neural network is cycle-free,5

there exists some v ∈ V such that in(v) ∩ V = ∅. We claim
that the state of in(v) has not changed at α∗. To prove this
note that by Lemma 2 we have in(v) ⊆ in(U)∪U and since
in(v) ∩ V = ∅ we deduce that in(v) ⊆ (in(U) ∪ U\V). On
the other hand neither U\V nor in(U) has a transition at α∗.
This implies that in(v) has no transition at α∗ and therefore
Nx→y(v) increases by one at α∗. This concludes the proof
since v ∈ U .

Lemma 6. Given f ∈ Fσ , for any u ∈ Hf we have

Nx→y(u) ≤ (t− 1)
(
Nx→y(in(u)) + 1

)
.

Proof. To establish the lemma we show that between transi-
tions of in(u) there are at most t− 1 transitions of u.

5Recall that throughout the paper neural networks are feedfor-
ward.

Bounds on the Approximation Power of Feedforward Neural Networks

Suppose, by way of contradiction, that at least t transitions
in the state of u happen while in(u) experiences no change.
Then there exists an increasing sequence of real numbers
α1, ..., αt+1 from interval [0, 1] and an increasing set of
integers k1, k2, ..., kt+1 from S = {1, 2, ..., t}, with ki 6=
ki+1, such that for particular w ∈ Rn and b ∈ R we have

xi
def
= (1− αi)x + αiy

w · xi + b ∈ Iki
where Ii is defined in Definition 5. Since |S| = t there exists
i < j such that ki = kj . Now since ki 6= ki+1 we deduce
that j 6= i + 1 and therefore j > i + 1. But w · xi+1 + b
lies between w · xi + b and w · xj + b since the sequence
α1, α2, ..., αt+1 is increasing. Since w ·xj+b and w ·xi+b
belong to Iki , by the connectedness property of the set Ii
we deduce that that w · xi+1 + b ∈ Ii. Therefore, we get
ki = ki+1 = kj , a contradiction.

Since a break point of f ∈ Fσ necessarily implies a change
in the state of the units we get:
Lemma 7. Given (x,y) ∈ R2 and f ∈ Fσ we have

Bx→y(f) ≤ Nx→y(Hf).

Propositions 1 and 2 establish inequalities (2) and (3) of
Theorem 1.
Proposition 1. Given f ∈ Fσ , σ ∈ Σt, we have

Bx→y(f) ≤
((
t− 1

)
ωf + 1

)df
− 1. (10)

Proof of Proposition 1. Fix f ∈ Fσ where σ ∈ Σt. Refer-
ring to Definition 1, consider the partition

∪di=1Hif
ofHf according to unit depth where d = df .

Fix u ∈ Hi+1
f , 0 ≤ i < d. From the definitions of in(u)

andHif we get

in(u) ⊆
i⋃

j=1

Hjf (11)

in
(
Hi+1
f

)
⊆

i⋃
j=1

Hjf

in
(i⋃
j=1

Hjf
)

= ∅.

Applying Lemma 3 with U1 = Hi+1
f and U2 =

i⋃
j=1

Hjf we

get

Nx→y(

i+1⋃
j=1

Hjf) ≤ Nx→y(

i⋃
j=1

Hjf) +Nx→y(Hi+1
f).

From Lemma 5

Nx→y(

i+1⋃
j=1

Hjf) ≤ Nx→y(

i⋃
j=1

Hjf) +
∑

u∈Hi+1
f

Nx→y(u)

and applying Lemma 6 to the previous inequality

Nx→y(

i+1⋃
j=1

Hjf) ≤ Nx→y(

i⋃
j=1

Hjf)

+
∑

u∈Hi+1
f

(
t− 1

)(
Nx→y

(
in(u)

)
+ 1
)
.

Then, using (11) and Lemma 4 we get

Nx→y(

i+1⋃
j=1

Hjf)

≤ Nx→y(

i⋃
j=1

Hjf) +
∑

u∈Hi+1
f

(
t− 1

)(
Nx→y

(i⋃
j=1

Hjf
)

+ 1
)

=
(
ωi+1(t− 1) + 1

)
Nx→y(

i⋃
j=1

Hjf) + ωi+1(t− 1).

(12)

For u ∈ H1
f we have in(u) = ∅ and according to Lemma 6

we deduce that Nx→y(H1
f) ≤ (t− 1)ω1. With this initial

condition and the recursive relation in (12) we get

Nx→y(

d⋃
j=1

Hjf)

≤
d∑
j=1

(∏
1≤α1<α2<...<αj≤d

ωα1
ωα2
· · ·ωαj

(
t− 1

)j)

≤
d∑
j=1

((d
j

)(
ωf (t− 1)

)j)
=
(
ωf (t− 1) + 1

)d
− 1

with ωf as width of f . Finally, apply Lemma 7 to obtain

Bx→y(f) ≤
((
t− 1

)
ωf + 1

)df
− 1.

Proposition 2. Let R be a convex region in Rn. For any
affine ε-approximation f : R → R of a function g ∈ C2(R)
we have

Bx→y(f) ≥ ||x− y||2
4
√
ε
·Ψ(g,x,y)− 1 (13)

where Ψ(g,x,y) is defined in (4).

Bounds on the Approximation Power of Feedforward Neural Networks

Proof of Proposition 2. We partition R into convex subre-
gionsRi, such that in each subregion f(x) is an affine func-
tion. These convex subregions partition a segment [x,y]

into sub-segments with end points
{
x0,x1, ...,xs

}
, where

x0 = x,xs = y and s = Bx→y(f)+1. In the sub-segment
i ∈ {0, 1, ..., s− 1},

f(x) = pi.x + qi, x ∈ [xi,xi+1], (14)

for some pi and qi. Let xi(r) = (1 − r)xi + rxi+1, r ∈
[0, 1], and define

fi(r) = (1− r)g(xi) + rg(xi+1),

hi(r) = g
(
xi(r)

)
,

li(r) = f(x(r)).

From the definition of ε-approximation, ||hi(r)−li(r)||∞ ≤
ε. Thus

||fi(r)−hi(r)||∞ ≤ ||fi(r)− li(r)||∞ + ||li(r)− hi(r)||∞
(a)

≤ max
{
|fi(0)− li(0)|, |fi(1)− li(1)|

}
+ ε

≤ 2ε, (15)

where ||k(r)||∞ = sup
0≤r≤1

k(r) and step (a) follows because

fi(r) and li(r) are both line segments and the maximum
distance between them is achieved at end points.

As h(r) on (0, 1) is differentiable so there exists r∗i ∈ (0, 1)
such that h′i(r

∗
i) = hi(1) − hi(0). Consider x∗i = (1 −

r∗i)xi + r∗i xi+1. From (15) we obtain

|(1− r∗i)
(
g(xi)− g(xi+1)

)
− g(x∗i) + g(xi+1)| ≤ 2ε,

|r∗i
(
g(xi+1)− g(xi)

)
+ g(xi)− g(x∗i)| ≤ 2ε.

Then, from the definition of r∗i we have

|(r∗i − 1)∇g(x∗i).(xi+1 − xi)− g(x∗i) + g(xi+1)| ≤ 2ε
(16)

|r∗i∇g(x∗i).(xi+1 − xi)− g(x∗i) + g(xi)| ≤ 2ε. (17)

Since g ∈ C2(R) a Taylor expansion of g(xi) and g(xi+1)
around x∗i gives

g(xi) = g(x∗i)− r∗i∇g
(
x∗i
)
.(xi+1 − xi)

+
r∗i

2

2
(xi+1 − xi)

T∇2g
(
xi(αi)

)
(xi+1 − xi),

g(xi+1) = g(x∗i) + (1− r∗i)∇g
(
x∗i
)
.(xi+1 − xi)

+
(1− r∗i)

2

2
(xi+1 − xi)

T∇2g
(
xi(βi)

)
(xi+1 − xi),

where 0 ≤ αi ≤ r∗i ≤ βi ≤ 1.

Substituting the above relations in inequalities (16) and (17)
we get

|(1− r∗i)
2
(xi+1 − xi)

T∇2g
(
xi(βi)

)
(xi+1 − xi)| ≤ 4ε,

(18)

|r∗i
2(xi+1 − xi)

T∇2g
(
xi(αi)

)
(xi+1 − xi)| ≤ 4ε. (19)

Use the Rayleigh quotient and the definitions of θ(α), γ(α)
to obtain

|
(xi+1 − xi)

T∇2g
(
xi(αi)

)
(xi+1 − xi)

(xi+1 − xi)T (xi+1 − xi)
|

≥ inf
0≤α≤1

(
max

{
0, θ(α)γ(α)

})
.

Combining the above inequality with (18) and (19) and the
fact that r∗i

2 + (1− r∗i)2 ≥ 1
2 we get

||xi+1 − xi||22. inf
0≤α≤1

(
max

{
0, θ(α)γ(α)

})
≤ 16ε.

Accordingly,

s−1∑
i=0

(
||xi+1 − xi||2

4
√
ε

.

√
inf

0≤α≤1

(
max

{
0, θ(α)γ(α)

}))
≤ s,

which gives

Bx→y(f) ≥ ||x− y||2
4
√
ε

Ψ(g,x,y)− 1.

Proposition 3. Let g : [0, 1]n → R be such that
DJ(g)(x) ≤ δ for any x ∈ [0, 1]n and any multi-index
J such that |J | = 3. Then, for any affine ε-approximation f

Bx→y(f) ≥

√√√√(max
x∈[0,1]n

∣∣∆(g)(x)
∣∣ · n−1 − δ · n 3

2

)+
16ε

− 1

for any x,y ∈ [0, 1]n, where ∆ denotes the Laplace opera-
tor (7).

Proof of Proposition 3. Define

z
def
= arg max

x∈R
ρ
(
∇2g(x)

)
where ρ(·) denotes the spectral radius. Let u be a normal-
ized eigenvector corresponding to an eigenvalue λ where
|λ| = ρ

(
∇2g(z)

)
, i.e.,

∇2g(z)u = λu, ||u|| = 1. (20)

Consider any segment [x,y] in R in the direction of u,
i.e., such that x− y = u. The convex subregions of f ,
defined in the proof of Proposition 2, divide this segment
into sub-segments with end points {x0,x1, ...,xs} where
x0 = x,xs = y and s = Bx→y(f) + 1. Using the same

Bounds on the Approximation Power of Feedforward Neural Networks

analysis as in the proof of Proposition 2, from (14)–(19) we
obtain (18) and (19). On the other hand, note that

|(xi+1 − xi)
T∇2g

(
xi(αi)

)
(xi+1 − xi)|

≥ |(xi+1 − xi)
T∇2g

(
z
)
(xi+1 − xi)|

− |(xi+1 − xi)
T
(
∇2g

(
xi(αi)

)
−∇2g

(
z
))

(xi+1 − xi)|

= |λ| · ||xi+1 − xi||2

−
∣∣tr{(∇2g

(
xi(αi)

)
−∇2g

(
z
))

(xi+1 − xi)(xi+1 − xi)
T
}∣∣

(a)

≥ |λ| · ||xi+1 − xi||2

−
∣∣∣∣∇2g

(
xi(αi)

)
−∇2g

(
z
)∣∣∣∣

F

∣∣∣∣(xi+1 − xi)(xi+1 − xi)
T
∣∣∣∣
F

= |λ| · ||xi+1 − xi||2

−
∣∣∣∣∇2g

(
xi(αi)

)
−∇2g

(
z
)∣∣∣∣

F
||xi+1 − xi||2

= ||xi+1 − xi||2 ·
(
|λ| − nδ · ||z − xi(αi)||

)
≥ ||xi+1 − xi||2 ·

(
|λ| − δ · n 3

2

)
,

where in step (a) we used the inequality∣∣∣tr(AB)∣∣∣ ≤ ||A||F ||B||F ,
|| · ||F stands for Frobenius norm.

Combining the above relation with (18), (19) and the fact
that r∗i

2 + (1− r∗i)2 ≥ 1
2 we get

16ε ≥ ||xi+1 − xi||2 ·
(
|λ| − δ · n 3

2

)
,

which gives

4
√
ε ·
(
Bx→y(f) + 1

)
≥ ||x− y|| ·

√(
|λ| − δ · n 3

2

)+
.

Finally, rewriting the above inequality we get

Bx→y(f) ≥ 1

4
√
ε
·
√(
|λ| − δ · n 3

2

)+
− 1.

Since |λ| = ρ
(
∇2g(z)

)
= max

x∈[0,1]n
ρ
(
∇2g(x)

)
and

|∆(g)(x)| = |tr(∇2g(x))| ≤ ρ(∇2g(x)) · n,

we obtain the desired result.

Proofs of Theorems 1 and 2

Propositions 1 and 2 give Theorem 1 and Propositions 1
and 3 give Theorem 2.

Proof of Theorem 3

Given a neural network f we use o to denote the output unit,
w(u, v) to denote the weight of two connected units u and

v, and b(u) to denote the bias of unit u. Furthermore, given
u ∈ Hf and x ∈ R let fu1 (x) denote the output of unit u
when the input to f1 is x, and similarly for f2(x). Finally,
define the maximum change in hidden layer i as

εi(x)
def
= max

u∈Hi
f

{
|fu1 (x)− fu2 (x)|

}
.

Fix 1 ≤ i ≤ df − 1 and v ∈ Hi+1
f . Then,∣∣fv1 (x)− fv2 (x)

∣∣
=

∣∣∣∣∣σ1(∑
u∈

i⋃
j=1
Hj

f

w(u, v) · fu1 (x) + b(v)
)

− σ2
(∑
u∈

i⋃
j=1
Hj

f

w(u, v) · fu2 (x) + b(v)
)∣∣∣∣∣

≤ ε+ δ ·
(∑
u∈

i⋃
j=1
Hj

f

|w(u, v)| ·
∣∣fu1 (x)− fu2 (x)

∣∣)

≤ ε+ δA ·
(i∑
j=1

∑
u∈Hj

f

∣∣fu1 (x)− fu2 (x)
∣∣)

≤ ε+ δA ·
(i∑
j=1

ωjεj(x)
)

where the first inequality holds since σ1 is δ-Lipschitz and
assuming that ||σ1−σ2||∞ ≤ ε. Hence we get the recursion
between εi’s

εi+1(x) ≤ ε+ δA ·
(i∑
j=1

ωjεj(x)
)

(21)

for 1 ≤ i ≤ df − 1. Now, since ε1(x) ≤
∣∣σ1(x)− σ2(x)

∣∣
we get ε1(x) ≤ ε. From this initial condition and (21)

εi+1(x) ≤ ε(1 + δAω1)(1 + δAω2) · · · (1 + δAωi). (22)

On the other hand we have

|f1(x)− f2(x)| =
∣∣∣ ∑
u∈

df⋃
j=1
Hj

f

w(u, o) ·
(
fu1 (x)− fu2 (x)

)∣∣∣
≤ A

(
ε1(x)ω1 + ε2(x)ω2 + ...+ εd(x)ωdf

)
and from (22) we finally get

|f1(x)− f2(x)|

≤ ε

δ

(
(1 + δAω1)(1 + δAω2)...(1 + δAωdf)− 1

)
≤ ||σ1 − σ2||∞

δ

((
δ ·A · ωf + 1

)df
− 1

)
which gives the desired result.

Bounds on the Approximation Power of Feedforward Neural Networks

References
Bianchini, Monica and Scarselli, Franco. On the complexity

of neural network classifiers: A comparison between shal-
low and deep architectures. IEEE Transactions on Neural
Networks and Learning Systems, 25(8):1553–1565, 2014.

DasGupta, Bhaskar and Schnitger, Georg. The power of
approximating: A comparison of activation functions.
In Advances in Neural Information Processing Systems
(NIPS), pp. 615–622, 1993.

Delalleau, Olivier and Bengio, Yoshua. Shallow vs. deep
sum-product networks. In Advances in Neural Informa-
tion Processing Systems (NIPS), pp. 666–674, 2011.

Hornik, Kurt, Stinchcombe, Maxwell, and White, Halbert.
Multilayer feedforward networks are universal approxi-
mators. Neural Networks, 2(5):359–366, 1989.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing
Systems (NIPS), pp. 1097–1105, 2012.

Liang, Shiyu and Srikant, R. Why deep neural networks for
function approximation? In 5th International Conference
on Learning Representations (ICLR), pp. 1–13, 2017.

Lu, Zhou, Pu, Hongming, Wang, Feicheng, Hu, Zhiqiang,
and Wang, Liwei. The expressive power of neural net-
works: A view from the width. In Advances in Neural
Information Processing Systems, pp. 6232–6240, 2017.

Mhaskar, Hrushikesh, Liao, Qianli, and Poggio, Tomaso.
Learning functions: When is deep better than shallow.
arXiv preprint, arXiv:1603.00988, 2016.

Montufar, Guido F, Pascanu, Razvan, Cho, Kyunghyun, and
Bengio, Yoshua. On the number of linear regions of
deep neural networks. In Advances in Neural Information
Processing Systems, pp. 2924–2932, 2014.

Pascanu, Razvan, Montufar, Guido, and Bengio, Yoshua.
On the number of inference regions of deep feed forward
networks with piece-wise linear activations. In Interna-
tional Conference on Learning Representations, 2014.

Raghu, Maithra, Poole, Ben, Kleinberg, Jon, Ganguli, Surya,
and Sohl-Dickstein, Jascha. On the expressive power of
deep neural networks. In International Conference on
Machine Learning (ICML), pp. 2847–2854, 2017.

Telgarsky, Matus. Representation benefits of deep feedfor-
ward networks. arXiv preprint, arXiv:1509.08101, 2015.

Telgarsky, Matus. Benefits of depth in neural networks.
Journal of Machine Learning Research (JMLR), 49:1–23,
2016.

Yarotsky, Dmitry. Error bounds for approximations with
deep relu networks. Neural Networks, 94:103–114, 2017.

