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Abstract
In many real-world problems, there is the possibil-
ity to configure, to a limited extent, some environ-
mental parameters to improve the performance
of a learning agent. In this paper, we propose
a novel framework, Configurable Markov Deci-
sion Processes (Conf-MDPs), to model this new
type of interaction with the environment. Fur-
thermore, we provide a new learning algorithm,
Safe Policy-Model Iteration (SPMI), to jointly
and adaptively optimize the policy and the envi-
ronment configuration. After having introduced
our approach and derived some theoretical results,
we present the experimental evaluation in two
explicative problems to show the benefits of the
environment configurability on the performance
of the learned policy.

1. Introduction
Markov Decision Processes (MDPs) (Puterman, 2014) are
a popular formalism to model sequential decision-making
problems. Solving an MDP means to find a policy, i.e., a
prescription of actions, that maximizes a given utility func-
tion. Typically, the environment dynamics is assumed to be
fixed, unknown and out of the control of the agent. Several
exceptions to this scenario can be found in the literature,
especially in the context of Markov Decision Processes
with imprecise probabilities (MDPIPs) (Satia & Lave Jr,
1973; White III & Eldeib, 1994; Bueno et al., 2017) and
non-stationary environments (Bowerman, 1974; Hopp et al.,
1987). In the former case, the transition kernel is known
under uncertainty. Therefore, it cannot be specified using a
conditional probability distribution, but it must be defined
through a set of probability distributions (Delgado et al.,
2009). In this context, Bounded-parameter Markov Deci-
sion Processes (BMDPs) consider a special case in which
upper and lower bounds on transition probabilities are spec-
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ified (Givan et al., 1997; Ni & Liu, 2008). A common
approach is to solve a minimax problem to find a robust
policy maximizing the expected return under the worst pos-
sible transition model (Osogami, 2015). In non-stationary
environments, the transition probabilities (possibly also the
reward function) change over time (Bowerman, 1974). Sev-
eral works tackle the problem of defining an optimality
criterion (Hopp et al., 1987) and finding optimal policies in
non-stationary environments (Garcia & Smith, 2000; Chee-
vaprawatdomrong et al., 2007; Ghate & Smith, 2013).

Although the environment is no longer fixed, both Markov
decision processes with imprecise probabilities and non-
stationary Markov decision processes do not admit the pos-
sibility to dynamically alter the environmental parameters.
However, there exist several real-world scenarios in which
the environment is partially controllable and, therefore, it
might be beneficial to configure some of its features in order
to select the most convenient MDP to solve. For instance, a
human car driver has at her/his disposal a number of possible
vehicle configurations she/he can act on (e.g., seasonal tires,
stability and vehicle attitude, engine model, automatic speed
control, parking aid system) to improve the driving style
or quicken the process of learning a good driving policy.
Another example is the interaction between a student and
an automatic teaching system: the teaching model can be
tailored to improve the student’s learning experience (e.g.,
increasing or decreasing the difficulties of the questions or
the speed at which the concepts are presented). It is worth
noting that the active entity in the configuration process
might be the agent itself or an external supervisor guiding
the learning process. In the latter case, for instance, a super-
visor can dynamically adapt where to place the products in a
supermarket in order to maximize the customer (agent) sat-
isfaction. Similarly, the design of a street network could be
configured, by changing the semaphore transition times or
the direction of motion, to reduce the drivers’ journey time.
In a more abstract sense, the possibility to act on the envi-
ronmental parameters can have essentially two benefits: i)
it allows improving the agent performance; ii) it may allow
to speed up the learning process. This second instance has
been previously addressed in (Ciosek & Whiteson, 2017;
Florensa et al., 2017), where the transition model and the
initial state distribution are altered in order to reach a faster
convergence to the optimal policy. However, in both the
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cases the environment modification is only simulated, while
the underlying environment dynamic remains unchanged.

In this paper, we propose a framework to model a Config-
urable Markov Decision Process (Conf-MDP), i.e., an MDP
in which the environment can be configured to a limited
extent. In principle, any of the Conf-MDP’s parameters can
be tuned, but we restrict our attention to the transition model
and we focus to the problem of identifying the environment
that allows achieving the highest performance possible. At
an intuitive level, there exists a tight connection between
environment and policy: variations of the environment in-
duce modifications of the optimal policy. Furthermore, even
for the same task, in presence of agents having access to
different policy spaces, the optimal environment might be
different.1 The spirit of this work is to investigate and
exercise the tight connection between policy and model,
pursuing the goal of improving the final policy performance.
After having introduced the definition of Conf-MDP, we
propose a method to jointly and adaptively optimize the
policy and the transition model, named Safe Policy-Model
Iteration (SPMI). The algorithm adopts a safe learning ap-
proach (Pirotta et al., 2013b) based on the maximization of
a lower bound on the guaranteed performance improvement,
yielding a sequence of model-policy pairs with monoton-
ically increasing performance. The safe learning perspec-
tive makes our approach suitable for critical applications
where performance degradation during learning is not al-
lowed (e.g., industrial scenarios where extensive exploration
of the policy space might damage the machinery). In the
standard Reinforcement Learning (RL) framework (Sutton
& Barto, 1998), the usage of a lower bound to guide the
choice of the policy has been first introduced by Conserva-
tive Policy Iteration (CPI) (Kakade & Langford, 2002), im-
proved by Safe Policy Iteration (SPI) (Pirotta et al., 2013b)
and subsequently exploited by (Ghavamzadeh et al., 2016;
Abbasi-Yadkori et al., 2016; Papini et al., 2017). These
methods revealed their potential thanks to the preference
towards small policy updates, preventing from moving in a
single step too far away from the current policy and avoiding
premature convergence to suboptimal policies. A similar
rationale is at the basis of Relative Entropy Policy Search
(REPS) (Peters et al., 2010), and, more recently, Trust Re-
gion Policy Optimization (TRPO) (Schulman et al., 2015)
and Proximal Policy Optimization (PPO) (Schulman et al.,
2017). In order to introduce our framework and highlight
its benefits, we limit our analysis to the scenario in which
the model space (and the policy space) is known. However,
when the model space is unknown, we could resort to a
sample-based version of SPMI, which could be derived by
adapting that of SPI (Pirotta et al., 2013b).

1In general, a modification of the environment (e.g., changing
the configuration of a car) is more expensive and more constrained
w.r.t. to a modification of the policy.

We start in Section 2 by recalling some basic notions about
MDPs and providing the definition of Conf-MDP. In Sec-
tion 3 we derive the performance improvement bound and
we outline the main features of SPMI (Section 4) along
with some theoretical results (Section 5).2 Then, we present
the experimental evaluation (Section 6) in two explicative
domains, representing simple abstractions of the main ap-
plication of Conf-MDPs, with the purpose of showing how
configuring the transition model can be beneficial for the
final policy performance.

2. Preliminaries
A discrete-time Markov Decision Process (MDP) (Puter-
man, 2014) is defined as M = (S,A, P,R, γ, µ) where
S is the state space, A is the action space, P (s′|s, a) is
a Markovian transition model that defines the conditional
distribution of the next state s′ given the current state s
and the current action a, γ ∈ (0, 1) is the discount factor,
R(s, a) ∈ [0, 1] is the reward for performing action a in
state s and µ is the distribution of the initial state. A policy
π(a|s) defines the probability distribution of an action a
given the current state s. Given a model-policy pair (P, π)
we indicate with Pπ the state kernel function defined as
Pπ(s′|s) =

∫
A π(a|s)P (s′|s, a)da. We now formalize the

Configurable Markov Decision Process (Conf-MDP).

Definition 2.1. A Configurable Markov Decision Process is
a tuple CM = (S,A, R, γ, µ,P,Π) where (S,A, R, γ, µ)
is an MDP without the transition model and P and Π are
the model and policy spaces.

More specifically, Π is the set of policies the agent has
access to and P is the set of available environment config-
urations (transition models). The performance of a model-
policy pair (P, π) ∈ P×Π is evaluated through the expected
return, i.e., the expected discounted sum of the rewards col-
lected along a trajectory:

JP,πµ =
1

1− γ

∫
S
dP,πµ (s)

∫
A
π(a|s)R(s, a)dads, (1)

where dP,πµ is the γ-discounted state distribution (Sutton
et al., 2000), defined recursively as:

dP,πµ (s) = (1− γ)µ(s) + γ

∫
S
dP,πµ (s′)Pπ(s′|s)ds′. (2)

We can also define the γ-discounted state-action distribu-
tion as δP,πµ (s, a) = π(a|s)dP,πµ (s). While solving an MDP
consists in finding a policy π∗ that maximizes JP,πµ un-
der the given fixed environment P , solving a Conf-MDP
consists in finding a model-policy pair (P ∗, π∗) such that
P ∗, π∗ = arg maxP∈P,π∈Π J

π,P
µ . For control purposes,

the state-action value function, or Q-function, is introduced
as the expected return starting from a state s and performing

2The proofs of all the lemmas and theorems can be found in
Appendix A.
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action a:

QP,π(s, a) = R(s, a) + γ

∫
S
P (s′|s, a)V P,π(s′)ds′. (3)

For learning the transition model we introduce the state-
action-next-state value function or U-function, defined as
the expected return starting from the state s, performing
action a and landing to state s′:

UP,π(s, a, s′) = R(s, a) + γV P,π(s′), (4)
where V P,π is the state value function or V-function.
These three functions are tightly connected due to the
trivial relations: V P,π(s) =

∫
A π(a|s)QP,π(s, a)da and

QP,π(s, a) =
∫
S P (s′|s, a)UP,π(s, a, s′)ds′. Furthermore,

we define the policy advantage function AP,π(s, a) =
QP,π(s, a) − V P,π(s) that quantifies how much an action
is better than the others and the model advantage function
AP,π(s, a, s′) = UP,π(s, a, s′)−QP,π(s, a) that quantifies
how much the next state is better than the other ones. In
order to evaluate the one-step improvement in performance
attained by a new policy π′ or model P ′ when the current
policy is π and the current model is P , we introduce the
relative advantage functions (Kakade & Langford, 2002):

AP,π
′

P,π (s) =

∫
A
π′(a|s)AP,π(s, a)da,

AP
′,π

P,π (s, a) =

∫
S
P ′(s′|s, a)AP,π(s, a, s′)ds′,

and the corresponding expected values under the γ-
discounted distributions: AP,π

′

P,π,µ =
∫
S d

P,π
µ (s)AP,π

′

P,π (s)ds

and AP
′,π

P,π,µ =
∫
S
∫
A δ

P,π
µ (s, a)AP

′,π
P,π (s, a)dsda.

3. Performance Improvement
The goal of this section is to provide a lower bound to
the performance improvement obtained by moving from a
model-policy pair (P, π) to another pair (P ′, π′).

3.1. Bound on the γ-discounted distribution

We start providing a bound for the difference of γ-
discounted distributions under different model-policy pairs.

Proposition 3.1. Let (P, π) and (P ′, π′) be two model-
policy pairs, the `1-norm of the difference between the γ-
discounted state distributions can be upper bounded as:∥∥∥dP ′,π′µ − dP,πµ

∥∥∥
1
≤ γ

1− γ
DP ′π

′
,Pπ

E ,

where DP ′π
′
,Pπ

E = Es∼dP,πµ
∥∥P ′π′(·|s)− Pπ(·|s)

∥∥
1
.

This proposition provides a way to upper bound the dif-
ference of the γ-discounted state distributions in terms of
the state kernel dissimilarity.3 The state kernel couples
the effects of the policy and the transition model, but it is

3More formally, DP ′π
′
,Pπ

E is just a premetric (Deza & Deza,
2009) and not a metric (see Appendix B for details).

convenient to keep their contribution separated, getting the
following looser bound.
Corollary 3.1. Let (P, π) and (P ′, π′) be two model-
policy pairs, the `1-norm of the difference between the γ-
discounted state distributions can be upper bounded as:∥∥∥dP ′,π′µ − dP,πµ

∥∥∥
1
≤ γ

1− γ

(
Dπ′,π
E +DP ′,P

E

)
,

where Dπ′,π
E = Es∼dP,πµ

∥∥π′(·|s)− π(·|s)
∥∥

1
and DP ′,P

E =

E(s,a)∼δP,πµ

∥∥P ′(·|s, a)− P (·|s, a)
∥∥

1
.

It is worth noting that when P = P ′ the bound resembles
Corollary 3.2 in (Pirotta et al., 2013b), but it is tighter as:

E
s∼dP,πµ

∥∥π′(·|s)− π(·|s)
∥∥

1
≤ sup

s∈S

∥∥π′(·|s)− π(·|s)
∥∥

1
,

in particular the bound of (Pirotta et al., 2013b) might yield a
large bound value in case there exist states in which the poli-
cies are very different even if those states are rarely visited
according to dP,πµ . In the context of policy learning, a lower

bound employing the same dissimilarity index Dπ′,π
E in the

penalization term has been previously proposed in (Achiam
et al., 2017).

3.2. Bound on the Performance Improvement

In this section, we exploit the previous results to obtain a
lower bound on the performance improvement as an effect
of the policy and model updates. We start introducing the
coupled relative advantage function:

AP
′,π′

P,π (s) =

∫
S

∫
A
π′(a|s)P ′(s′|s, a)ÃP,π(s, a, s′)ds′da,

where ÃP,π(s, a, s′) = UP,π(s, a, s′) − V P,π(s). AP
′,π′

P,π

represents the one-step improvement attained by the new
model-policy pair (P ′, π′) over the current one (P, π), i.e.,
the local gain in performance yielded by selecting an action
with π′ and the next state with P ′. The corresponding
expectation under the γ-discounted distribution is given by:
A
P ′,π′

P,π,µ =
∫
S d

P,π
µ (s)AP

′,π′

P,π (s)ds. Now, we have all the
elements to express the performance improvement in terms
of the relative advantage functions and the γ-discounted
distributions.
Theorem 3.1. The performance improvement of model-
policy pair (P ′, π′) over (P, π) is given by:

JP
′,π′

µ − JP,πµ =
1

1− γ

∫
S
dP
′,π′

µ (s)AP
′,π′

P,π (s)ds.

This theorem is the natural extension of the result proposed
by Kakade & Langford (2002), but, unfortunately, it cannot
be directly exploited in an algorithm as the dependence of
dP
′,π′

µ on the candidate model-policy pair (P ′, π′) is highly
nonlinear and difficult to treat. We aim to obtain, from this
result, a lower bound on JP

′,π′
µ −JP,πµ that can be efficiently

computed using information on the current pair (P, π).
Theorem 3.2 (Coupled Bound). The performance improve-
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ment of model-policy pair (P ′, π′) over (P, π) can be lower
bounded as:

JP
′,π′

µ − JP,πµ︸ ︷︷ ︸
performance
improvement

≥
A
P ′,π′

P,π,µ

1− γ︸ ︷︷ ︸
advantage

−
γ∆AP

′,π′

P,π DP ′π
′
,Pπ

E

2(1− γ)2︸ ︷︷ ︸
dissimilarity penalization

,

where ∆AP
′,π′

P,π = sups,s′∈S
∣∣AP ′,π′P,π (s′)−AP

′,π′

P,π (s)
∣∣.

The bound is composed of two terms, like in (Kakade &
Langford, 2002; Pirotta et al., 2013b): the first term, ad-
vantage, represents how much gain in performance can be
locally obtained by moving from (P, π) to (P ′, π′), whereas
the second term, dissimilarity penalization, discourages up-
dates towards model-policy pairs that are too far away.

The coupled bound, however, is not suitable to be used in
an algorithm as it does not separate the contribution of the
policy and that of the model. In practice, an agent cannot
directly update the kernel functionPπ since the environment
model can only partially be controlled, whereas, in many
cases, we can assume a full control on the policy. For this
reason, it is convenient to derive a bound in which the policy
and model effects are decoupled.

Theorem 3.3 (Decoupled Bound). The performance im-
provement of model-policy pair (P ′, π′) over (P, π) can be
lower bounded as:

JP
′,π′

µ − JP,πµ︸ ︷︷ ︸
performance
improvement

≥ B(P ′, π′) =

=
A
P ′,π
P,π,µ +AP,π

′

P,π,µ

1− γ︸ ︷︷ ︸
advantage

− γ∆QP,πD

2(1− γ)2︸ ︷︷ ︸
dissimilarity
penalization

,

where D is a dissimilarity term defined as:

D = Dπ′,π
E

(
Dπ′,π
∞ +DP ′,P

∞
)

+DP ′,P
E

(
Dπ′,π
∞ + γDP ′,P

∞
)
,

Dπ′,π
∞ = sups∈S

∥∥π′(·|s) − π(·|s)
∥∥

1
, DP ′,P

∞ =

sups∈S,a∈A
∥∥P ′(·|s, a) − P (·|s, a)

∥∥
1

and ∆QP,π =

sups,s′∈S,a,a′∈A
∣∣QP,π(s′, a′)−QP,π(s, a)

∣∣.
4. Safe Policy Model Iteration
To deal with the learning problem in the Conf-MDP frame-
work we could, in principle, learn the optimal policy by
using a classical RL algorithm and adapt it to learn the op-
timal model, sequentially or in parallel. Alternatively, we
could resort to general-purpose global optimization tools,
like CEM (Rubinstein, 1999) or genetic algorithms (Holland
& Goldberg, 1989), using as objective function the perfor-
mance of the policy learned by a standard RL algorithm.
Nonetheless, they may not correspond to the preferable, nor
the safest, choices in this context as there exists an inherent
connection between policy and model we could not over-
look during the learning process. Indeed, a policy learned
by interacting with a sub-optimal model could result in poor

Algorithm 1 Safe Policy Model Iteration
initialize π0, P0.
for i = 0, 1, 2, ... until ε-convergence do
πi = PolicyChooser(πi)
P i = ModelChooser(Pi)
Vi = {(α∗0,i, 0), (α∗1,i, 1), (0, β∗0,i), (1, β

∗
1,i)}

α∗i , β
∗
i = arg maxα,β{B(α, β) : (α, β) ∈ Vi}

πi+1 = α∗i πi + (1− α∗i )πi
Pi+1 = β∗i P i + (1− β∗i )Pi

end for

performance paired with a different, optimal model. At the
same time, a policy far from the optimum could mislead the
search for the optimal model. The goal of this section is to
present an approach, Safe Policy-Model Iteration (SPMI),
inspired by (Pirotta et al., 2013b), capable of learning the
policy and the model simultaneously,4 possibly taking ad-
vantage of the inter-connection mentioned above.

4.1. The Algorithm

Following the approach proposed in (Pirotta et al., 2013b),
we define the policy and model improvement update rules:

π′ = απ + (1− α)π, P ′ = βP + (1− β)P,

where α, β ∈ [0, 1], π ∈ Π and P ∈ P are the target policy
and the target model respectively. Extending the rationale
of (Pirotta et al., 2013b) to our context, we aim to determine
the values of α and β which jointly maximize the decoupled
bound (Theorem 3.3). In the following we will abbreviate
B(P ′, π′) with B(α, β).

Theorem 4.1. For any π ∈ Π and P ∈ P , the decoupled
bound is optimized for:

α∗, β∗ = arg max
α,β

{B(α, β) : (α, β) ∈ V},

where V = {(α∗0, 0), (α∗1, 1), (0, β∗0), (1, β∗1)} and the val-
ues of α∗0, α∗1, β∗0 and β∗1 are reported in Table 1.

The theorem expresses the fact that the optimal (α, β) pair
lies on the boundary of [0, 1]×[0, 1], i.e., either one between
policy and model is moved and the other is kept unchanged
or one is moved and the other is set to target.

Algorithm 1 reports the basic structure of SPMI. The algo-
rithm stops when both the expected relative advantages fall
below a threshold ε. The procedures PolicyChooser and
ModelChooser are designated for selecting the target policy
and model (see Section 4.3).

4.2. Policy and Model Spaces

The selection of the target policy and model is a rather cru-
cial component of the algorithm since the quality of the

4In the context of Conf-MDPs we believe that knowing the
model of the configurable part of the environment is a reasonable
requirement.
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Table 1. The four possible optimal (α, β) pairs, the optimal pair is the one yielding the maximum bound value (all values are clipped in
[0, 1]). The corresponding guaranteed performance improvements can be found in Appendix A.

β∗ = 0 α∗ = 0 β∗ = 1 α∗ = 1

α∗0 =
(1−γ)A

P,π
P,π,µ

γ∆QP,πD
π,π
∞ D

π,π
E

β∗0 =
(1−γ)A

P,π
P,π,µ

γ2∆QP,πD
P,P
∞ D

P,P
E

α∗1 = α∗0 − 1
2

(
D
P,P
E

D
π,π
E

+
DP,P∞
D
π,π
∞

)
β∗1 = β∗0 − 1

2γ

(
D
π,π
E

D
P,P
E

+
Dπ,π∞
D
P,P
∞

)

updates largely depends on it. To effectively adopt a target
selection strategy we have to know which are the degrees
of freedom on the policy and model spaces. Focusing on
the model space first, it is easy to discriminate two macro-
classes in real-world scenarios. In some cases, there are
almost no constraints on the direction in which to update
the model. In other cases, only a limited model portion,
typically a set of parameters inducing transition probabil-
ities, can be accessed. While we can naturally design the
first scenario as an unconstrained model space, to repre-
sent the second scenario we limit the model space to the
convex hull co(P ), where P is a set of extreme (or vertex)
models. Since only the convex combination coefficients can
be controlled, we refer to the latter as a parametric model
space. It is noteworthy that we can symmetrically extend the
dichotomy to the policy space, although the need to limit the
agent on the direction of policy updates is less significant in
our perspective.

4.3. Target Choice

To deal with unconstrained spaces, it is quite natural to
adopt the target selection strategy presented in (Pirotta et al.,
2013b), by introducing the concept of greedy model as
P+(·|s, a) ∈ arg maxs′∈S U

P,π(s, a, s′), i.e., the model
that maximizes the relative advantage in each state-action
pair. At each step, the greedy policy and model w.r.t. the
QP,π and UP,π are selected as targets. When we are not
free to choose the greedy model, like in the parametric
setting, we select the vertex model that maximizes the ex-
pected relative advantage (greedy choice). The greedy strat-
egy is based on local information and is not guaranteed to
provide a model-policy pair maximizing the bound. How-
ever, testing all the model-policy pairs is highly inefficient
in the presence of large model-policy spaces. A reason-
able compromise is to select, as a target, the model that
yields the maximum bound value between the greedy target
P i ∈ arg maxP∈P A

P,π
Pi,π,µ

and the previous target P i−1

(the same procedure can be employed for the policy). This
procedure, named persistent choice, effectively avoids the
oscillating behavior, common with the greedy choice.

5. Theoretical Analysis
In this section, we outline some relevant theoretical results
related to SPMI. We start by analyzing the scenario in which

the model/policy space is parametric, i.e., is limited to the
convex hull of a set of vertex models/policies, and then we
provide some rationales for the target choices adopted. In
most of the section, we restrict our attention to the transition
model, as for the policy all results apply symmetrically.

5.1. Parametric Model Space

We consider the setting in which the transition model space
is limited to the convex hull of a finite set of vertex models
(e.g., a set of deterministic models): P = co(P ), where
P = {P1, P2, ..., PM}. Each model in co(P ) is defined
by means of a coefficient vector ω belonging to the M -
dimensional fundamental simplex: Pω =

∑M
i=1 ωiPi. For

the sake of brevity, we omit the dependency on π of all
the quantities. Moreover, we define the optimal transition
model Pω∗ as the model that maximizes the expected return,
i.e., JPω∗

µ ≥ JPω
µ for all Pω ∈ co(P ). We start by stating

some results on the expected relative advantage functions.
Lemma 5.1. For any transition model Pω ∈ co(P ) it holds
that:

∑M
i=1 ωiA

Pi
Pω

(s, a) = 0 for all s ∈ S and a ∈ A.

As a consequence, we observe that also the expected relative
advantage functions APiPω,µ

sums up to zero when weighted
by the coefficients ω. An analogous statement holds when
the policy is defined as a convex combination of vertex
policies. The following theorem establishes an essential
property of the optimal transition model.
Theorem 5.1. For any transition model Pω ∈ co(P ) it
holds that APω

Pω∗ ,µ
≤ 0. Moreover, for all Pω ∈ co

(
{Pi ∈

P : ω∗i > 0}
)
, it holds thatAPω

Pω∗ ,µ
= 0.

The theorem provides a necessary condition for a transition
model to be optimal, i.e., all the expected relative advan-
tages must be non-positive and, moreover, those of the ver-
tex transition models associated with non-zero coefficients
must be zero. It is worth noting that the expected relative
advantage APω′

Pω,µ
represents only a local measure of the

performance improvement, as it is defined by taking the
expectation of the relative advantage APω′

Pω
(s, a) w.r.t. the

current δPω
µ . On the other hand, the actual performance

improvement JPω′
µ − JPω

µ is a global measure, being ob-
tained by averaging the relative advantage APω′

Pω
(s, a) over

the new δ
Pω′
µ (Theorem 3.1). This is intimately related to the

measure mismatch claim provided in (Kakade et al., 2003)
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as the model expected relative advantage APω∗
Pω,µ

might be
null even if JPω∗

µ > JPω
µ , making SPMI, like CPI and SPI,

stop into locally optimal models. Furthermore, it is intuitive
to get convinced that asking for a guaranteed performance
improvement may prevent from finding the global optimum,
as this may require visiting a lower performance region
(see Appendix C.1 for an example). Nevertheless, we can
provide a bound for the performance gap between a locally
optimal model and the global optimal model.
Proposition 5.1. Let Pω be a transition model having non-
positive relative advantage functions w.r.t. the target models.
Then:

JPω∗
µ − JPω

µ ≤ 1

1− γ
sup

s∈S,a∈A
max

i=1,2,...,M
APiPω

(s, a).

From this result we notice that a sufficient condition for
a model to be optimal is that APiPω

(s, a) = 0 for all state-
action pairs. This is a stronger requirement than the maxi-
mization of JPω

µ as it asks the model to be optimal in every
state-action pair independently of the initial state distribu-
tion µ;5 such a model might not exist when considering a
model space P that does not include all the possible transi-
tion models (see Appendix C.2 for an example).

5.2. Analogy with Policy Gradient Methods

In this section, we elucidate the relationship between the
relative advantage function and the gradient of the expected
return. Let us start by stating the expression of the gradient
of the expected return w.r.t. a parametric transition model.
This is the equivalent of the Policy Gradient Theorem (Sut-
ton et al., 2000) for the transition model.
Theorem 5.2 (P -Gradient Theorem). Let Pω be a class of
parametric stochastic transition models differentiable in ω,
the gradient of the expected return w.r.t. ω is given by:

∇ωJ
Pω
µ =

∫
S

∫
A
δPω
µ (s, a)

∫
S
∇ωPω(s′|s, a)×

× UPω (s, a, s′)ds′dads.

Let us now show the connection between ∇ωJ
Pω
µ and the

expected relative advantage functions. This result extends
that of Kakade et al. (2003) to multiple parameter updates.
Proposition 5.2. Let P be the current transition model. Let
us consider a target model which is a convex combination
of the models in P: P =

∑M
i=1 ηiPi and the update rule:

P ′ = βP + (1− β)P, β ∈ [0, 1].

Then, the derivative of the expected return of P ′ w.r.t. the β
coefficients evaluated in P is given by:

∂JP
′

µ

∂β

∣∣∣∣
β=0

=

M∑
i=1

ηiA
Pi
P,µ.

5This is the same difference between a policy that maximizes
the value function V π in all states and a policy that maximizes the
expected return Jπ .

The proposition provides an interesting interpretation of
the expected relative advantage function. Suppose that Pω

is the current model and we have to choose which target
model(s) we should move toward. The local performance
improvement, at the first order, is given by JP

′
µ − JPµ '

∂JP
′

µ

∂β

∣∣
β=0

β = β
∑M
i=1 ηiA

Pi
P,µ. Given that β will be deter-

mined later by maximizing the bound, the local performance
improvement is maximized by assigning one to the coeffi-
cient of the model yielding the maximal advantage. There-
fore, the choice of the direction to follow, when considering
the greedy target choice, is based on local information only
(gradient), while the step size β is obtained by maximiz-
ing the bound on the guaranteed performance improvement
(safe), as done in (Pirotta et al., 2013a).

6. Experimental Evaluation
The goal of this section is to show the benefits of config-
uring the environment while the policy learning goes on.
The experiments are conducted on two explicative domains:
the Student-Teacher domain (unconstrained model space)
the Racetrack Simulator (parametric model space). We
compare different target choices (greedy and persistent, see
Section 4.3) and different update strategies. Specifically,
SPMI, that adaptively updates policy and model, is com-
pared with some alternative model learning approaches:
SPMI-alt(ernated) in which model and policy updates are
forced to be alternated, SPMI-sup that uses a looser bound,
obtained from Theorem 3.3 by replacing D?′,?

E with D?′,?
∞ ,6

SPI+SMI7 that optimizes policy and model in sequence and
SMI+SPI that does the opposite.

6.1. Student-Teacher domain

The Student-Teacher domain is a simple model of concept
learning, inspired by (Rafferty et al., 2011). A student
(agent) learns to perform consistent assignments to literals
as a result of the statements (e.g., “A+C=3”) provided by
an automatic teacher (environment, e.g., online platform).
The student has a limited policy space as she/he can only
change the values of the literals by a finite quantity, but
it is possible to configure the difficulty of the teacher’s
statements, selecting the number of literals in the statement,
in order to improve the student’s performance (detailed
description in Appendix D.1).8

We start considering the illustrative example in which there
are two binary literals, and the student can change only one

6When considering only policy updates, this is equivalent to
the bound used in SPI (Pirotta et al., 2013b).

7SMI (Safe Model Iteration) is SPMI without policy updates.
8A problem setting is defined by the 4-tuple number of literals

- maximum literal value - maximum update allowed - maximum
number of literals in the statement (e.g., 2-1-1-2)
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Figure 1. Expected return, α and β coefficients for the Student-Teacher domain 2-1-1-2 for different update strategies.

102 103 104

0

0.5

1

iteration

po
lic

y
di

ss
im

ila
ri

ty

SPMI-persistent SPMI-greedy

Figure 2. Policy dissimilarity for greedy and
persistent target choices in the 2-1-1-2 case.
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Figure 3. Expected return for the Student-Teacher domains 2-1-1-2 (left) and 2-3-1-2
(right) for different update strategies.

literal at a time (2-1-1-2). This example aims to illustrate
benefits of SPMI over other update strategies and target
choices. Further scenarios are reported in Appendix E.1. In
Figure 1, we show the behavior of the different update strate-
gies starting from a uniform initialization. We can see that
both SPMI and SPMI-sup perform the policy updates and
the model updates in sequence. This is a consequence of the
fact that, by looking only at the local advantage function, it
is more convenient for the student to learn an almost optimal
policy with no intervention on the teacher and then refining
the teacher model to gain further reward. The joint and
adaptive strategy of SPMI outperforms both SPMI-sup and
SPMI-alt. The alternated model-policy update (SPMI-alt) is
not convenient since, with an initial poor-performing policy,
updating the model does not yield a significant performance
improvement. It is worth noting that all the methods con-
verge in a finite number of steps and the learning rates α
and β exhibit an exponential growth trend.

In Figure 2, we compare the greedy target selection with the
persistent target selection. The former, while being the best
local choice maximizing the advantage, might result in an
unstable behavior that slows down the convergence of the
algorithm. In Figure 3, we can notice that learning both pol-
icy and model is convenient since the performance of SPMI
at convergence is higher than the one of SPI (only policy
learned) and SMI (only model learned), corresponding to
the markers in Figure 3. Although SPMI adopts the tightest
bound, its update strategy is not guaranteed to yield globally
the fastest convergence as it is based on local information,

i.e., expected relative advantage (Figure 3 right).

6.2. Racetrack simulator

The Racetrack simulator is an abstract representation of a
car driving problem. The autonomous driver (agent) has
to optimize a driving policy to run the vehicle on the track,
reaching the finish line as fast as possible. During the pro-
cess, the agent can configure two vehicle settings to improve
her/his driving performance: the vehicle stability and the
engine boost (detailed description in Appendix D.2). We
first present an introductory example on a simple track (T1)
in which only the vehicle stability can be configured and
then we show a case on a different track (T2) including also
engine boost configuration. These examples show that the
optimal model is not necessarily one of the vertex models.
Results on other tracks are reported in Appendix E.2.

In Figure 4 left, we highlight the effectiveness of SPMI
updates over SPMI-sup and SPMI-alt and sequential ex-
ecutions of SMI and SPI on track T1. Furthermore, the
SPMI-greedy, which selects the target greedily in each itera-
tion, results in lower performance w.r.t. SPMI. Comparing
SPMI with the sequential approaches, we can easily deduce
that is not valuable to configure the vehicle stability, i.e.,
updating the model, while the driving policy is still really
rough. Although in the showed example the difference be-
tween SPMI and SPI+SMI is way less significant in terms
of expected return, their learning paths are quite peculiar. In
Figure 4 right, we show the trend of the model coefficient
related to high-speed stability. While the optimal configu-
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Figure 4. Expected return and coefficient of the high speed stabiliy vertex model for
different update strategies in track T1.

10,000 20,000 30,000 40,000 50,000

0

0.05

0.1

0.15

iteration

ex
pe

ct
ed

re
tu

rn

SPMI SPMI-sup
SPMI-greedy SPMI-alt

Figure 5. Expected return in track T2 with 4
vertex models.

ration results in a mixed model for vehicle stability, SPMI
exploits the maximal high-speed stability to learn the driv-
ing policy efficiently in an early stage, SPI+SMI, instead,
executes all the policy updates and then directly leads the
model to the optimal configuration. SPMI-greedy prefers
to avoid the maximal high-speed stability region as well.
It is worthwhile to underline that SPMI could temporar-
ily drive the process aside from the optimum if it leads to
higher performance from a local perspective. We consider
this behavior quite valuable, especially in scenarios where
performance degradations during learning are unacceptable.

Figure 5 shows how the previous considerations generalize
to an example on a morphologically different track (T2), in
which also the engine boost can be configured. The learning
process is characterized by a long exploration phase, both in
the model and the policy space, in which the driver cannot
lead the vehicle to the finish line to collect any reward.
Then, we observe a fast growth in expected return when the
agent has acquired enough information to reach the finish
line consistently. SPMI displays a more efficient exploration
phase compared to other update strategies and target choices,
leading the process to a quicker convergence to the optimal
model that prefers high speed stability and an intermediate
engine boost configuration.

7. Discussion and Conclusions
In this paper, we proposed a novel framework (Conf-MDP)
to model a set of real-world decision-making scenarios that,
from our perspective, have not been covered by the litera-
ture so far. In Conf-MDPs the environment dynamics can
be partially modified to improve the performance of the
learning agent. Conf-MDPs allow modeling many relevant
sequential-decision making problems that we believe cannot
be effectively addressed using traditional frameworks.

Why not a unique agent? Representing the environment
configurability in the agent model when the environment is
under the control of a supervisor is certainly inappropriate.
Even when the environment configuration is carried out by
the agent, this approach would require the inclusion of “con-

figuration actions” in the action space to allow the agent to
configure the environment directly as a part of the policy
optimization. However, in our framework, the environment
configuration is performed just once at the beginning of the
episode. Moreover, with configuration actions the agent is
not really learning a probability distribution on actions, i.e.,
a policy, but a probability distribution on state-state couples,
i.e., a state kernel. This formulation prevents distinguishing,
during the process, the effects of the policy from those of
the model, making it difficult to finely constrain the config-
urations, limit the feasible model space, and recovering, a
posteriori, the optimal model-policy pair.

Why not a multi-agent system? When there is no supervi-
sor, the agent is the only learning entity and the environment
is completely passive. In the presence of a supervisor, it
would be misleading to adopt a cooperative multi-agent ap-
proach. The supervisor acts externally, at a different level
and could be, possibly, totally transparent to the learning
agent. Indeed, the supervisor does not operate inside the
environment but it is in charge of selecting the most suitable
configuration, whereas the agent needs to learn the optimal
policy for the given environment.

The second significant contribution of this paper is the for-
mulation of a safe approach, suitable to manage critical
tasks, to solve a learning problem in the context of the newly
introduced Conf-MDP framework. To this purpose, we pro-
posed a novel tight lower bound on the performance im-
provement and an algorithm (SPMI) optimizing this bound
to learn the policy and the model configuration simulta-
neously. We then presented an empirical study to show
the effectiveness of SPMI in our context and to uphold the
introduction of the Conf-MDP framework.

This is a seminal paper on Conf-MDPs and the proposed
approach represents only a first step in solving these kinds of
problems: many future research directions are open. Clearly,
a first extension could tackle the problem from a sample-
based perspective, removing the requirement of knowing the
full model space. Furthermore, we could consider different
learning approaches, like policy search methods, suitable
for continuous state-action spaces.
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