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A. Brute’s (α, f)–Byzantine–resilience proof
A.1. Background

Definition 1 ((α, f)–Byzantine–resilience).
Let (α, f) ∈ [0, π/2]× [0 .. n] be any angle and any integer.
Let n ∈ N with n > f .
Let (V1 . . . Vn−f ) ∈

(
Rd
)n−f

be independent, identically
distributed random vectors, with Vi ∼ G and E[G] = G.
Let (B1 . . . Bf ) ∈

(
Rd
)f

be random vectors, possibly de-
pendent between them and the vectors (V1 . . . Vn−f ).
Then, an aggregation ruleF is said to be (α, f)-Byzantine-
resilient if, for any 1 ≤ j1 < · · · < jf ≤ n, the vector:

F = F

V1, . . . , B1︸︷︷︸
j1

, . . . , Bf︸︷︷︸
jf

, . . . , Vn


satisfies:

1. 〈E[F ] , G〉 ≥ (1− sinα) · ‖G‖2 > 0

2. ∀r ∈ { 2, 3, 4 } , E ‖F‖r is bounded above by a linear
combination of the terms E ‖G‖r1 · . . . · E ‖G‖rn−1 ,
with r1 + · · ·+ rn−1 = r.

A.2. Definition

Let (n, f) ∈ N2 with n ≥ 2f + 1.
Let (V1 . . . Vn−f ) ∈

(
Rd
)n−f

be independent, identically
distributed random vectors, with Vi ∼ G and E[G] = G.
Let (B1 . . . Bf ) ∈

(
Rd
)f

be random vectors, possibly de-
pendent between them and the vectors (V1 . . . Vn−f ).
Let ‖·‖p be the `p–norm, with p ∈ N∗ ∪ {+∞}.

Let Q = {V1 . . . Vn } be the set of submitted gradients.
Let R = {X | X ⊂ Q, |X | = n− f } be the set of all the
subsets of Q with a cardinality of n− f .

Let S = arg min
X∈R

(
max

(Vi,Vj)∈X 2

(
‖Vi − Vj‖p

))
.

Then, the aggregated gradient F = 1
n−f

∑
V ∈S

V .

A.3. Proof

Let ∀ (i, j) ∈ [1 .. n− f ]
2
, i 6= j be σ̄ , E ‖Vi − Vj‖p.

Under the assumption that 2 f σ̄ < (n− f) ‖G‖p, we will
prove that this rule is (α, f)–Byzantine–resilient.

Trivial case: ∀i ∈ [1 .. f ] , Bi /∈ S.
As the aggregated gradient F is the arithmetic mean of un-
biased vectors Vj , we have E[F ] = G, and points 1. and 2.
of definition 1 are trivially satisfied.

Otherwise, without loss of generality, let b ∈ [1 .. f ] and
S = {V1 . . . Vn−f−b, B1 . . . Bb }, R̄ = R \ S . It holds:

∀S̄ ∈ R̄, ∃Xi ∈ S̄ \ S, ∃Xj ∈ S̄ \ {Xi } ,
∀Xk ∈ S, ∀Xl ∈ S \ {Xk } ,
‖Xk −Xl‖p < ‖Xi −Xj‖p

We can also notice that: ∃V ∈ R̄, ∀i ∈ [1 .. f ] , Bi /∈ V .
Then, by combining this observation with the previous one:

∀a ∈ [1 .. b] , Ba ∈ S

⇒ ∃ (xa, ya) ∈ [1 .. n− f ]
2
, xa 6= ya,

∀k ∈ [1 .. n− f − b] ,
‖Ba − Vk‖p < ‖Vxa

− Vya‖p

This last observation will be reused in the following.

We can compute the aggregated gradient:

F =
1

n− f

(
n−f−b∑
i=1

Vi +

b∑
i=1

Bi

)
and compare it with the average of the non–Byzantine ones:

Ĝ =
1

n− f

n−f∑
i=1

Vi

F − Ĝ =
1

n− f

 b∑
i=1

Bi −
n−f∑

i=n−f−b+1

Vi


=

1

n− f

b∑
i=1

Bi − Vi+n−f−b
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∥∥∥F − Ĝ∥∥∥
p
≤ 1

n− f

b∑
i=1

‖Bi − Vi+n−f−b‖p

≤ 1

n− f

b∑
i=1

(
‖Bi − V1‖p

+ ‖V1 − Vi+n−f−b‖p
)

≤ 1

n− f

b∑
i=1

(
‖Vxi − Vyi‖p

+ ‖V1 − Vi+n−f−b‖p
)

We can then compute the expected value of this distance,
and with E

[
Ĝ
]
, G and the Jensen’s inequality:

‖E[F ]−G‖p ≤ E
∥∥∥F − Ĝ∥∥∥

p

≤ 1

n− f

b∑
i=1

σ̄ + σ̄

≤ 2 b σ̄

n− f
≤ 2 f σ̄

n− f

So, under the assumption that 2 f σ̄ < (n− f) ‖G‖p, we
verify that ‖E[F ]−G‖p < ‖G‖p, and so: 〈E[F ] , G〉 > 0.

Point 2. can also be verified formally, ∀r ∈ { 2, 3, 4 }:

E ‖F‖rp ≤
n− f − b
n− f

E ‖G‖rp +
1

n− f

b∑
i=1

E ‖Bi‖rp

Then, by using the binomial theorem twice:

‖Bi‖rp ≤
∑

r1+r2=r

(
r

r1

)
‖Bi − Vk‖r1p ‖Vk‖

r2
p

with k ∈ [1 .. n− f − d]

‖Bi − Vk‖r1p ≤ ‖Vx − Vy‖
r1
p

≤
∑

r3+r4=r1

(
r1
r3

)
‖Vx‖r3p ‖Vy‖

r4
p

Finally, as (V1 . . . Vn−f ) are independent, identically dis-
tributed random variables following the same distribu-
tion G, we have that ∀ (i, j) ∈ [1 .. n− f ]

2
, i 6= j,

E
[
‖Vi‖r1p ‖Vj‖

r2
p

]
= E ‖G‖r1p · E ‖G‖

r2
p , and so E ‖Bi‖rp

is bounded as described in point 2. of definition 1.

B. Approximation of αm, with p ∈ N∗

B.1. Prior conventions and assumptions

Let remind: ∀i ∈ [1 .. n− f ] , Vi =
(
v
(i)
1 . . . v

(i)
d

)
∼ G.

We model each coordinate as a normal distribution:

∀j ∈ [1 .. d] , ∃ (µj , σj) ∈ R2,

∀i ∈ [1 .. n− f ] , v
(i)
j ∼ N

(
µj , σj

2
)

We assume d� 1, and we will write δ̄ for:

∀ (i, j) ∈ [1 .. n− f ]
2
, i 6= j, δ̄ =

1

d

d∑
k=1

E
∣∣∣v(i)k − v(j)k ∣∣∣

=
2

d
√
π

d∑
k=1

σk

and note that:
1

d

d∑
k=1

E
∣∣∣v(i)k − µk∣∣∣ =

√
2

d
√
π

d∑
k=1

σk

=
δ̄√
2

Then, ∀ (i, j) ∈ [1 .. n− f ]
2
, i 6= j, we can approximate:

‖Vi − Vj‖p =

(
d∑
k=1

∣∣∣v(i)k − v(j)k ∣∣∣p
) 1

p

≈
(
d δ̄p

) 1
p

Let E = (0 . . . 0, 1, 0 . . . 0) ∈ Rd the attacked coordinate.
Then, with αm > 0, B = V +αmE, we can approximate:

‖B − Vi‖p =

((
d∑
k=1

∣∣∣v(i)k − v̄k∣∣∣p
)

−
∣∣∣v(i)e − v̄e∣∣∣p +

∣∣∣v(i)e − v̄e + αm

∣∣∣p) 1
p

≈

(
αm

p +

d∑
k=1

∣∣∣v(i)k − µk∣∣∣p
) 1

p

≈
(
αm

p + d

(
δ̄√
2

)p) 1
p

B.2. Attack against Brute

We only study the worst case scenario, where n = 2f + 1,
maximizing the proportion of Byzantine workers.

Assuming B is selected by Brute:

B ∈ S

⇒ ∃ (x, y) ∈ [1 .. n− f ]
2
, x 6= y,
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∀k ∈ [1 .. n− f − b] , ‖B − Vk‖p < ‖Vx − Vy‖p

 

(
αm

p + d

(
δ̄√
2

)p) 1
p

<
(
d δ̄p

) 1
p

 αm <

((
1− 1
√

2
p

)
d

) 1
p

δ̄

This is a necessary, approximated condition. It is only to
give broad insights on the relation between some hyper–
parameters and αm: with p, q constants, αm = O

(
δ̄ p
√
d
)

.

B.3. Attack against Krum/GeoMed

We only study the worst case scenario, where n = 2f + 3,
maximizing the proportion of Byzantine workers.
Let q ∈ { 1, 2 }, q = 1 for GeoMed and q = 2 for Krum.

First, we approximate the Byzantine submission’s score:

s (B) ≈ 2 ‖B − Vi‖qp

≈ 2

(
αm

p + d

(
δ̄√
2

)p) q
p

∀i ∈ [1 .. n− f ], let b ∈ [0 .. f ] be how many B belongs to
the n− f − 2 closest vectors to Vi. Then the score of Vi is:

s (Vi) ≈ b ‖B − Vi‖qp + (f + 1− b) ‖Vj − Vi‖qp

≈ b
(
αm

p + d

(
δ̄√
2

)p) q
p

+ (f + 1− b)
(
d δ̄p

) q
p

Finally,B is selected ⇒ ∀i ∈ [1 .. n− f ] , s (B) / s (Vi)

⇒
↑
∀i

(2− b)
(
αm

p + d

(
δ̄√
2

)p) q
p

/ (f + 1− b)
(
d δ̄p

) q
p

⇒
↑
∃i

αm /

((
f + 1− b

2− b

) p
q

− 1
√

2
p

) 1
p

d
1
p δ̄

This last implication is always true: there must be at least
one non–Byzantine vector Vj for which b ∈ { 0, 1 }; else
αm could increase unbounded, which would be absurd.

In conclusion, with p, q constants: αm = O
(
δ̄ q
√
f p
√
d
)

.

C. Supplementary experiments
C.1. Attack on Brute, Krum and GeoMed

On MNIST, here we use η0 = 1, rη = 10000, a batch size
of 83 images (256 for Brute), and for the workers:

Krum/GeoMed 30 non–Byzantines + 27 Byzantines
Brute 6 non–Byzantines + 5 Byzantines

Average 30 non–Byzantines + 0 Byzantines
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Figure 1. MNIST: accuracy on the testing set up to epoch 1000,
comparing the presented aggregation rules under our attack. The
attack was maintained only up to epoch 50 (dotted line). The
average is the reference: it is the accuracy the model would have
shown if only non–Byzantine gradients had been selected.
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Figure 2. CIFAR–10: accuracy on the testing set up to epoch
1000, comparing the presented aggregation rules under our attack.
The average is the reference: it is the accuracy the model would
have shown if only non–Byzantine gradients had been selected.

On CIFAR–10, we use η0 = 0.5, rη = 2000, a batch size
of 128 images (256 for Brute), and for the worker counts:

Krum/GeoMed 21 non–Byzantines + 18 Byzantines
Brute 6 non–Byzantines + 5 Byzantines

Average 21 non–Byzantines + 0 Byzantines

In Figure 1, the attack is maintained only up to 50 epochs.
The attack variant for `∞ norm–based gradient aggregation
rules exhibited a very strong impact. None of the presented
gradient aggregation rules prevented the stochastic gradient
descent from being pushed and remaining in a sub–space of
ineffective models, and for at least 1000 epochs.

In Figure 2, the attack is never stopped. Again, none of the
presented gradient aggregation rules prevented the stochas-
tic gradient descent from being pushed and remaining in a
sub–space of ineffective models, for at least 1000 epochs.


