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Abstract
Algorithmic approaches endow deep learning sys-
tems with implicit bias that helps them general-
ize even in over-parametrized settings. In this
paper, we focus on understanding such a bias in-
duced in learning through dropout, a popular tech-
nique to avoid overfitting in deep learning. For
single hidden-layer linear neural networks, we
show that dropout tends to make the norm of in-
coming/outgoing weight vectors of all the hidden
nodes equal. In addition, we provide a complete
characterization of the optimization landscape in-
duced by dropout.

1. Introduction
Modern machine learning systems based on deep neural
networks are usually over-parameterized, i.e. the number
of parameters in the model is much larger than the size of
the training data, which makes these systems prone to over-
fitting. Several explicit regularization strategies have been
used in practice to help these systems generalize, including
`1 and `2 regularization of the parameters (Nowlan and Hin-
ton, 1992). Recently, (Neyshabur et al., 2015) showed that
a variety of such norm-based regularizers can provide size-
independent capacity control, suggesting that the network
size is not a good measure of complexity in such settings.
Such a view had been previously motivated in the context of
matrix factorization (Srebro et al., 2005), where it is prefer-
able to have many factors of limited overall influence rather
than a few important ones.

Besides explicit regularization techniques, practitioners
have used a spectrum of algorithmic approaches to improve
the generalization ability of over-parametrized models. This
includes early stopping of back propagation (Caruana et al.,
2001), batch normalization (Ioffe and Szegedy, 2015) and
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dropout (Srivastava et al., 2014). In particular, dropout,
which is the focus of this paper, randomly drops hidden
nodes along with their connections at training time. Dropout
was introduced by Srivastava et al. (2014) as a way of break-
ing up co-adaptation among neurons, drawing insights from
the success of the sexual reproduction model in the evolu-
tion of advanced organisms. While dropout has enjoyed
tremendous success in training deep neural networks, the
theoretical understanding of how dropout (and other algo-
rithmic heuristics) provide regularization in deep learning
remains somewhat limited.

We argue that a prerequisite for understanding implicit reg-
ularization due to various algorithmic heuristics in deep
learning, including dropout, is to analyze their behavior in
simpler models. Therefore, in this paper, we consider the
following learning problem. Let x ∈ Rd2 represent an input
feature vector with some unknown distribution D such that
Ex∼D[xx>] = I. The output label vector y ∈ Rd1 is given
as y = Mx for some M ∈ Rd1×d2 . We consider the hypoth-
esis class represented by a single hidden-layer linear net-
work parametrized as hU,V(x) = UV>x, where V ∈ Rd2×r
and U ∈ Rd1×r are the weight matrices in the first and
the second layers, respectively. The goal of learning is to
find weight matrices U,V that minimize the expected loss
`(U,V) := Ex∼D[‖y−hU,V(x)‖2] = Ex∼D[‖y−UV>x‖2].

A natural learning algorithm to consider is back-propagation
with dropout, which can be seen as an instance of stochastic
gradient descent on the following objective:

f(U,V) :=Ebi∼Ber(θ),x∼D

[∥∥∥∥y− 1

θ
U diag(b)V>x

∥∥∥∥2
]
, (1)

where the expectation is w.r.t. the underlying distribution on
data as well as randomization due to dropout (each hidden
unit is dropped independently with probability 1− θ). This
procedure, which we simply refer to as dropout in this paper,
is given in Algorithm 1.

It is easy to check (see Lemma A.1 in the supplementary)
that the objective in equation (1) can be written as

f(U,V) = `(U,V) + λ

r∑
i=1

‖ui‖2‖vi‖2, (2)

where λ = 1−θ
θ is the regularization parameter, and ui and

vi represent the ith columns of U and V, respectively. Note
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that while the goal was to minimize the expected squared
loss, using dropout with gradient descent amounts to finding
a minimum of the objective in equation (2); we argue that
the additional term in the objective serves as a regularizer,
R(U,V) := λ

∑r
i=1 ‖ui‖2‖vi‖2, and is an explicit instanti-

ation of the implicit bias of dropout. Furthermore, we note
that this regularizer is closely related to path regularization
which is given as the square-root of the sum over all paths,
from input to output, of the product of the squared weights
along the path (Neyshabur et al., 2015). Formally, for a
single layer network, path regularization is given as

ψ2(U,V) =

 r∑
i=1

d1∑
j=1

d2∑
k=1

u2
jiv

2
ki

 1
2

. (3)

Interestingly, the dropout regularizer is equal to the square
of the path regularizer, i.e. R(U,V) = λψ2

2(U,V). While
this observation is rather immediate, it has profound impli-
cations owing to the fact that path regularization provides
size-independent capacity control in deep learning, thereby
supporting empirical evidence that dropout finds good solu-
tions in over-parametrized settings.

In this paper, we focus on studying the optimization land-
scape of the objective in equation (2) for a single hidden-
layer linear network with dropout and the special case of an
autoencoder with tied weights. Furthermore, we are inter-
ested in characterizing the solutions to which dropout (i.e.
Algorithm 1) converges. We make the following progress
toward addressing these questions.

1. We formally characterize the implicit bias of dropout.
We show that, when minimizing the expected loss
`(U,V) with dropout, any global minimum (Ũ, Ṽ) sat-
isfies ψ2(Ũ, Ṽ) = min{ψ2(U,V) s.t. UV> = ŨṼ

>}.
More importantly, for auto-encoders with tied weights,
we show that all local minima inherit this property.

2. Despite the non-convex nature of the problem, we com-
pletely characterize the global optima by giving neces-
sary and sufficient conditions for optimality.

3. We describe the optimization landscape of the dropout
problem. In particular, we show that for a sufficiently
small dropout rate, all local minima of the objective
in equation (2) are global and all saddle points are
non-degenerate. This allows Algorithm 1 to efficiently
escape saddle points and converge to a global optimum.

The rest of the paper is organized as follows. In Section 2,
we study dropout for single hidden-layer linear auto-encoder
networks with weights tied between the first and the second
layers. This gives us the tools to study the dropout prob-
lem in a more general setting of single hidden-layer linear

Algorithm 1 Dropout with Stochastic Gradient Descent

input Data {(xt, yt)}
T−1
t=0 , dropout rate 1−θ, learning rate η

1: Initialize U0,V0

2: for t = 0, 1, . . . , T − 1 do
3: sample bt element-wise from Bernoulli(θ)
4: Update the weights

Ut+1←Ut−η
(
1

θ
Ut diag(bt)V>

t xt−yt

)
x>
t Vt diag(bt)

Vt+1←Vt−ηxt

(
1

θ
x>
t Vt diag(bt)U>

t −y>
t

)
Ut diag(bt)

5: end for
output UT ,VT

networks in Section 3. In Section 4, we characterize the
optimization landscape of the objective in (2), show that
it satisfies the strict saddle property, and that there are no
spurious local minima. We specialize our results to ma-
trix factorization in Section 5, and in Section 6, we discuss
preliminary experiments to support our theoretical results.

1.1. Notation

We denote matrices, vectors, scalar variables and sets by
Roman capital letters, Roman small letters, small letters and
script letters respectively (e.g. X, x, x, and X ). For any
integer d, we represent the set {1, . . . , d} by [d]. For any in-
teger i, ei denotes the i-th standard basis. For any integer d,
1d ∈ Rd is the vector of all ones, ‖x‖ represents the `2-norm
of vector x, and ‖X‖, ‖X‖F , ‖X‖∗ and λi(X) represent the
spectral norm, the Frobenius norm, the nuclear norm and
the i-th largest singular value of matrix X, respectively. 〈·, ·〉
represents the standard inner product, for vectors or matri-
ces, where 〈X,X′〉 = Tr(X>X′). For a matrix X ∈ Rd1×d2 ,
diag(X) ∈ Rmin{d1,d2} returns its diagonal elements. Sim-
ilarly, for a vector x ∈ Rd, diag(x) ∈ Rd×d is a diagonal
matrix with x on its diagonal. For any scalar x, we define
(x)+ = max{x, 0}, and for a matrix X, (X)+ is the ele-
mentwise application of (·)+ to X. For a matrix X with a
compact singular value decomposition X = UΣV>, and for
any scalar α ≥ 0, we define the singular-value shrinkage-
thresholding operator as Sα(X) := U(Σ− αI)+V>.

2. Linear autoencoders with tied weights
We begin with a simpler hypothesis family of single hidden-
layer linear auto-encoders with weights tied such that
U = V. Studying the problem in this setting helps our
intuition about the implicit bias that dropout induces on
weight matrices U. This analysis will be extended to the
more general setting of single hidden-layer linear networks
in the next section.
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Recall that the goal here is to find an autoencoder network
represented by a weight matrix U ∈ Rd2×r that solves:

min
U∈Rd2×r

`(U,U) + λ

r∑
i=1

‖ui‖4, (4)

where ui is the ith column of U. Note that the loss function
`(U,U) is invariant under rotations, i.e., for any orthogonal
transformation Q ∈ Rd×d,Q>Q = QQ> = Id, it holds that

`(U,U)=Ex∼D[‖y− UQQ>U>x‖2]=`(UQ,UQ),

so that applying a rotation matrix to a candidate solution U
does not change the value of the loss function. However, the
regularizer is not rotation-invariant and clearly depends on
the choice of Q. Therefore, in order to solve Problem (4),
we need to find a rotation matrix that minimizes the value
of the regularizer for a given weight matrix.

To that end, let us denote the squared column norms of
the weight matrix U by nu = (‖u1‖2, . . . , ‖ur‖2) and let
1r ∈ Rr be the vector of all ones. Then, for any U,

R(U,U) = λ

r∑
i=1

‖ui‖4 =
λ

r
‖1r‖2‖nu‖2

≥ λ

r
〈1r, nu〉2 =

λ

r

(
r∑
i=1

‖ui‖2
)2

=
λ

r
‖U‖4F ,

where the inequality follows from Cauchy-Schwartz inequal-
ity. Hence, the regularizer is lower bounded by λ

r ‖U‖
4
F ,

with equality if and only if nu is parallel to 1r, i.e. when
all the columns of U have equal norms. Since the loss func-
tion is rotation invariant, one can always decrease the value
of the overall objective by rotating U such that UQ has a
smaller regularizer. A natural question to ask, therefore, is if
there always exists a rotation matrix Q such that the matrix
UQ has equal column norms. In order to formally address
this question, we introduce the following definition.
Definition 2.1 (Equalized weight matrix, equalized autoen-
coder, equalizer). A weight matrix U is said to be equalized
if all its columns have equal norms. An autoencoder with
tied weights is said to be equalized if the norm of the in-
coming weight vector is equal across all hidden nodes in
the network. An orthogonal transformation Q is said to
be an equalizer of U (equivalently, of the corresponding
autoencoder) if UQ is equalized.

Next, we show that any matrix U can be equalized.
Theorem 2.2. Any weight matrix U ∈ Rd×r (equivalently,
the corresponding autoencoder network hU,U) can be equal-
ized. Furthermore, there exists a polynomial time algorithm
(Algorithm 2) that returns an equalizer for a given matrix.

The key insight here is that if GU := U>U is the Gram ma-
trix associated with the weight matrix U, then hU,U is equal-
ized by Q if and only if all diagonal elements of Q>GUQ

Algorithm 2 EQZ(U) equalizer of an auto-encoder hU,U

input U ∈ Rd×r
1: G← U>U
2: Q← Ir
3: for i = 1 to r do
4: [V,Λ]←eig(G) {G=VΛV> eigendecomposition}
5: w = 1√

r−i+1

∑r−i+1
i=1 vi

6: Qi ← [w w⊥] {w⊥ ∈ R(r−i+1)×(r−i) orthonormal
basis for the Null space of w}

7: G← Q>i GQi {Making first diagonal element zero}
8: G← G(2 : end, 2 : end) {First principal submatrix}

9: Q← Q
[

Ii−1 0
0 Qi

]
10: end for
output Q {such that UQ is equalized}

are equal. More importantly, if GU = VΛV> is an eigende-
composition of GU, then for w = 1√

r

∑r
i=1 vi, it holds that

w>GUw = Tr GU
r ; Proof of Theorem 2.2 uses this property

to recursively equalize all diagonal elements of GU.

Finally, we argue that the implicit bias induced by dropout is
closely related to the notion of equalized network introduced
above. In particular, our main result of the section states
that the dropout enforces any globally optimal network to
be equalized. Formally, we show the following.
Theorem 2.3. If U is a global optimum of Problem 4, then
U is equalized. Furthermore, it holds that

R(U) =
λ

r
‖U‖4F .

Theorem 2.3 characterizes the effect of regularization in-
duced by dropout in learning autoencoders with tied weights.
It states that for any globally optimal network, the columns
of the corresponding weight matrix have equal norms. In
other words, dropout tends to give equal weights to all
hidden nodes – it shows that dropout implicitly biases the
optimal networks towards having hidden nodes with limited
overall influence rather than a few important ones.

While Theorem 2.3 makes explicit the bias of dropout and
gives a necessary condition for global optimality in terms
of the weight matrix U∗, it does not characterize the bias
induced in terms of the network (i.e. in terms of U∗U>∗ ).
The following theorem completes the characterization by
describing globally optimal autoencoder networks. Since
the goal is to understand the implicit bias of dropout, we
specify the global optimum in terms of the true concept, M.
Theorem 2.4. For any j ∈ [r], let κj := 1

j

∑j
i=1 λi(M).

Furthermore, define ρ := max{j ∈ [r] : λj(M) >
λjκj
r+λj }.

Then, if U∗ is a global optimum of Problem 4, it satisfies
that U∗U>∗ = S λρκρ

r+λρ

(M).
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λ = 0 λ = 0.6 λ = 2

Figure 1: Optimization landscape (top) and contour plot (bottom) for a single hidden-layer linear autoencoder network with
one dimensional input and output and a hidden layer of width r = 2 with dropout, for different values of the regularization
parameter λ. Left: for λ = 0 the problem reduces to squared loss minimization, which is rotation invariant as suggested by
the level sets. Middle: for λ > 0 the global optima shrink toward the origin. All local minima are global, and are equalized,
i.e. the weights are parallel to the vector (±1,±1). Right: as λ increases, global optima shrink further.

Remark 2.5. In light of Theorem 2.3, the proof of Theo-
rem 2.4 entails solving the following optimization problem

min
U∈Rd×r

`(U,U) +
λ

r
‖U‖4F , (5)

instead of Problem 4. This follows since the loss function
`(U,U) is invariant under rotations, hence a weight matrix
U cannot be optimal if there exists a rotation matrix Q such
that R(UQ,UQ) < R(U,U). Now, while the objective in
Problem 5 is a lower bound on the objective in Problem 4,
by Theorem 2.2, we know that any weight matrix can be
equalized. Thus, it follows that the minimum of the two
problems coincide. Although Problem 5 is still non-convex,
it is easier to study owing to a simpler form of the regular-
izer. Figure 1 shows how optimization landscape changes
with different dropout rates for a single hidden layer linear
autoencoder with one dimensional input and output and with
a hidden layer of width two.

3. Single hidden-layer linear networks
Next, we consider the more general setting of a shallow
linear network with a single hidden layer. Recall, that the

goal is to find weight matrices U,V that solve

min
U∈Rd1×r,V∈Rd2×r

`(U,V) + λ

r∑
i=1

‖ui‖2‖vi‖2. (6)

As in the previous section, we note that the loss function
is rotation invariant, i.e. `(UQ,VQ) = `(U,V) for any
rotation matrix Q, however the regularizer is not invariant to
rotations. Furthermore, it is easy to verify that both the loss
function and the regularizer are invariant under rescaling of
the incoming and outgoing weights to hidden neurons.
Remark 3.1 (Rescaling invariance). The objective function
in Problem (2) is invariant under rescaling of weight matri-
ces, i.e. invariant to transformations of the form Ū = UD,
V̄ = VD−1, where D is a diagonal matrix with positive
entries. This follows since ŪV̄> = UDD−>V> = UV>,
so that `(Ū, V̄) = `(U,V), and also R(Ū, V̄) = R(U,V)
since
r∑
i=1

‖ūi‖2‖v̄i‖2 =

r∑
i=1

‖diui‖2‖
1

di
vi‖2 =

r∑
i=1

‖ui‖2‖vi‖2.

As a result of rescaling invariance, f(Ū, V̄) = f(U,V).
Now, following similar arguments as in the previous section,
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we define nu,v = (‖u1‖‖v1‖, . . . , ‖ur‖‖vr‖), and note that

R(U,V) = λ

r∑
i=1

‖ui‖2‖vi‖2 =
λ

r
‖1r‖2‖nu,v‖2

≥ λ

r
〈1r, nu,v〉2 =

λ

r

(
r∑
i=1

‖ui‖‖vi‖

)2

,

where the inequality is due to Cauchy-Schwartz, and the
lower bound is achieved if and only if nu,v is a scalar multi-
ple of 1r, i.e. iff ‖ui‖‖vi‖ = ‖u1‖‖v1‖ for all i = 1, . . . , r.
This observation motivates the following definition.
Definition 3.2 (Jointly equalized weight matrices, equal-
ized linear networks). A pair of weight matrices (U,V) ∈
Rd1×r×Rd2×r is said to be jointly equalized if ‖ui‖‖vi‖ =
‖u1‖‖v1‖ for all i ∈ [r]. A single hidden-layer linear net-
work is said to be equalized if the product of the norms
of the incoming and outgoing weights are equal for all
hidden nodes. Equivalently, a single hidden-layer net-
work parametrized by weight matrices U,V, is equalized if
U,V are jointly equalized. An orthogonal transformation
Q ∈ Rr×r is an equalizer of a single hidden-layer network
hU,V parametrized by weight matrices U,V, if hUQ,VQ is
equalized. The network hU,V (the pair(U,V)) then are said
to be jointly equalizable by Q.

Note that Theorem 2.2 only guarantees the existence of
an equalizer for an autoencoder with tied weights. It does
not inform us regarding the existence of a rotation matrix
that jointly equalizes a general network parameterized by
a pair of weight matrices (U,V); in fact, it is not true in
general that any pair (U,V) is jointly equalizable. Indeed,
the general case requires a more careful treatment. It turns
out that while a given pair of matrices (U,V) may not be
jointly equalizable there exists a pair (Ũ, Ṽ) that is jointly
equalizable and implements the same network function, i.e.
hŨ,Ṽ = hU,V. Formally, we state the following result.
Theorem 3.3. For any given pair of weight matrices
(U,V) ∈ Rd1×r×Rd2×r, there exists another pair (Ũ, Ṽ) ∈
Rd1×r × Rd2×r and a rotation matrix Q ∈ Rr×r such
that hŨ,Ṽ = hU,V and hŨ,Ṽ is jointly equalizable by Q.
Furthermore, for Ū := ŨQ and V̄ := ṼQ it holds that
‖ūi‖2 = ‖v̄i‖2 = 1

r‖UV>‖∗ for i = 1, . . . , r.

Theorem 3.3 implies that for any network hU,V there exists
an equalized network hŪ,V̄ such that hŪ,V̄ = hU,V. Hence,
it is always possible to reduce the objective by equalizing
the network, and a network hU,V is globally optimal only if
it is equalized.
Theorem 3.4. If (U,V) is a global optimum of Problem 6,
then U,V are jointly equalized. Furthermore, it holds that

R(U,V) =
λ

r

(
r∑
i=1

‖ui‖‖vi‖

)2

=
λ

r
‖UV>‖2∗

Remark 3.5. As in the case of autoencoders with tied
weights in Section 2, a complete characterization of the
implicit bias of dropout is given by considering the global
optimality in terms of the network, i.e. in terms of the prod-
uct of the weight matrices UV>. Not surprisingly, even in
the case of single hidden-layer networks, dropout promotes
sparsity, i.e. favors low-rank weight matrices.

Theorem 3.6. For any j ∈ [r], let κj := 1
j

∑j
i=1 λi(M).

Furthermore, define ρ := max{j ∈ [r] : λj(M) >
λjκj
r+λj }.

Then, if (U∗,V∗) is a global optimum of Problem 6, it
satisfies that U∗V>∗ = S λρκρ

r+λρ

(M).

4. Geometry of the Optimization Problem
While the focus in Section 2 and Section 3 was on under-
standing the implicit bias of dropout in terms of the global
optima of the resulting regularized learning problem, here
we focus on computational aspects of dropout as an opti-
mization procedure. Since dropout is a first-order method
(see Algorithm 1) and the landscape of Problem 4 is highly
non-convex, we can perhaps only hope to find a local min-
imum, that too provided if the problem has no degenerate
saddle points (Lee et al., 2016; Ge et al., 2015). Therefore,
in this section, we pose the following questions: What is the
implicit bias of dropout in terms of local minima? Do local
minima share anything with global minima structurally or in
terms of the objective? Can dropout find a local optimum?

For the sake of simplicity of analysis, we focus on the case
of autoencoders with tied weight as in Section 2. We show
in Section 4.1 that (a) local minima of Problem 4 inherit
the same implicit bias as the global optima, i.e. all local
minima are equalized. Then, in Section 4.2, we show that for
sufficiently small regularization parameter, (b) there are no
spurious local minima, i.e. all local minima are global, and
(c) all saddle points are non-degenerate (see Definition 4.2).

4.1. Implicit bias in local optima

We begin by recalling that the loss `(U,U) is rotation invari-
ant, i.e. `(UQ,UQ) = `(U,U) for any rotation matrix Q.
Now, if the weight matrix U were not equalized, then there
exist indices i, j ∈ [r] such that ‖ui‖ > ‖uj‖. We show
that it is easy to design a rotation matrix (equal to identity
everywhere expect for columns i and j) that moves mass
from ui to uj such that the difference in the norms of the
corresponding columns of UQ decreases strictly while leav-
ing the norms of other columns invariant. In other words,
this rotation strictly reduces the regularizer and hence the
objective. Formally, this implies the following result.

Lemma 4.1. All local optima of Problem 4 are equalized,
i.e. if U is a local optimum, then ‖ui‖ = ‖uj‖ ∀i, j ∈ [r].

Lemma 4.1 unveils a fundamental property of dropout. As
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soon as we perform dropout in the hidden layer – no mat-
ter how small the dropout rate – all local minima become
equalized.

4.2. Landscape properties

Next, we characterize the solutions to which dropout (i.e.
Algorithm 1) converges. We do so by understanding the op-
timization landscape of Problem 4. Central to our analysis,
is the following notion of strict saddle property.
Definition 4.2 (Strict saddle point/property). Let f : U →
R be a twice differentiable function and let U ∈ U be a
critical point of f . Then, U is a strict saddle point of f if the
Hessian of f at U has at least one negative eigenvalue, i.e.
λmin(∇2f(U)) < 0. Furthermore, f satisfies strict saddle
property if all saddle points of f are strict saddle.

Strict saddle property ensures that for any critical point U
that is not a local optimum, the Hessian has a significant
negative eigenvalue which allows first order methods such
as gradient descent (GD) and stochastic gradient descent
(SGD) to escape saddle points and converge to a local min-
imum (Lee et al., 2016; Ge et al., 2015). Following this
idea, there has been a flurry of works on studying the land-
scape of different machine learning problems, including low
rank matrix recovery (Bhojanapalli et al., 2016), generalized
phase retrieval problem (Sun et al., 2016), matrix comple-
tion (Ge et al., 2016), deep linear networks (Kawaguchi,
2016), matrix sensing and robust PCA (Ge et al., 2017) and
tensor decomposition (Ge et al., 2015), making a case for
global optimality of first order methods.

For the special case of no regularization (i.e. λ = 0; equiva-
lently, no dropout), Problem 4 reduces to standard squared
loss minimization which has been shown to have no spu-
rious local minima and satisfy strict saddle property (see,
e.g. (Baldi and Hornik, 1989; Jin et al., 2017)). However,
the regularizer induced by dropout can potentially introduce
new spurious local minima as well as degenerate saddle
points. Our next result establishes that that is not the case,
at least when the dropout rate is sufficiently small.
Theorem 4.3. For regularization parameter λ <

rλr(M)∑r
i=1 λi(M)−rλr(M) , (a) all local minima of Problem 4 are

global, and (b) all saddle points are strict saddle points.

A couple of remarks are in order. First, Theorem 4.3 guaran-
tees that any critical point U that is not a global optimum is a
strict saddle point, i.e. ∇2f(U,U) has a negative eigenvalue.
This property allows first order methods, such as dropout
given in Algorithm 1, to escape such saddle points. Second,
note that the guarantees in Theorem 4.3 hold when the reg-
ularization parameter λ is sufficiently small. Assumptions
of this kind are common in the literature (see, for example
(Ge et al., 2017)). While this is a sufficient condition for the
result in Theorem 4.3, it is not clear if it is necessary.

5. Matrix Factorization with Dropout
The optimization problem associated with learning a shallow
network, i.e. Problem 6, is closely related to the optimiza-
tion problem for matrix factorization. Recall that in matrix
factorization, given a matrix M ∈ Rd1×d2 , one seeks to
find factors U,V that minimize `(U,V) = ‖M − UV>‖2F .
Matrix factorization has recently been studied with dropout
by Zhai and Zhang (2015); He et al. (2016) and Cavazza
et al. (2018) where at each iteration of gradient descent on
the loss function, the columns of factors U,V are dropped in-
dependently and with equal probability. Following Cavazza
et al. (2018), we can write the resulting problem as

min
U∈Rd1×r,V∈Rd2×r

‖M− UV>‖2F + λ

r∑
i=1

‖ui‖2‖vi‖2, (7)

which is identical to Problem 6. However, there are two key
distinctions. First, we are interested in stochastic optimiza-
tion problem whereas the matrix factorization problem is
typically posed for a given matrix. Second, for the learning
problem that we consider here, it is unreasonable to assume
access to the true model (i.e. matrix M). Nonetheless, many
of the insights we develop here as well as the technical
results and algorithmic contributions apply to matrix factor-
ization. Therefore, the goal in this section is to bring to bear
the results in Sections 2, 3 and 4 to matrix factorization.

We note that Theorem 3.6 and Theorem 3.3, both of which
hold for matrix factorization, imply that there is a poly-
nomial time algorithm to solve the matrix factorization
problem. In order to find a global optimum of Problem 7,
we first compute the optimal M̄ = ŨṼ

>
using shrinkage-

thresholding operation (see Theorem 3.6). A global opti-
mum (Ū, V̄) is then obtained by joint equalization of (Ũ, Ṽ)
(see Theorem 3.3) using Algorithm 2. The whole procedure
is described in Algorithm 3. Few remarks are in order.

Remark 5.1 (Computational cost of Algorithm 3). It is
easy to check that computing ρ, M̄, Ũ and Ṽ requires com-
puting a rank-r SVD of M, which costs O(d2r), where

Algorithm 3 Polynomial time solver for Problem 7

input Matrix M ∈ Rd2×d1 to be factorized, size of factor-
ization r, regularization parameter λ

1: ρ← max{j ∈ [r] : λj(M) >
λjκj
r+λj },

where κj = 1
j

∑j
i=1 λi(M) for j ∈ [r].

2: M̄← S λρκρ
r+λρ

(M)

3: (U,Σ,V)← svd(M̄)

4: Ũ← UΣ
1
2 , Ṽ← VΣ

1
2

5: Q← EQZ(Ũ) {Algorithm 2}
6: Ū← ŨQ, V̄← ṼQ

output Ū, V̄ {global optimum of Problem 7}
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λ = 0.1 λ = 0.5 λ = 1

Figure 2: Convergence of dropout (Algorithm 1) from two different initialization (marked in red circles) to a global optimum
of Problem 4 (marked in green circles), for the simple case of scalar M (one dimensional input and output) and r = 2. It
can be seen that dropout quickly converges to a global optimum, which is equalized (i.e. weights are parallel to (±1,±1))
regardless of the value of the regularization parameter, λ = 0.1 (left), λ = 0.5 (middle) and λ = 1.0 (right).

d = max{d1, d2}. Algorithm 2 entails computing GU =
U>U, which costs O(r2d) and the cost of each iterate of
Algorithm 2 is dominated by computing the eigendecompo-
sition which is O(r3). Overall, the computational cost of
Algorithm 3 is O(d2r + dr2 + r4).

Remark 5.2 (Universal Equalizer). While Algorithm 2 is
efficient (only linear in the dimension) for any rank r, there
is a more effective equalization procedure when r is a power
of 2. In this case, we can give a universal equalizer which
works simultaneously for all matrices in Rd×r. Let U ∈
Rd×r, r = 2k, k ∈ N and let U = WΣV> be its full SVD.
The matrix Ũ = UQ is equalized, where Q = VZk and

Zk :=


1 k = 1

2
−k+1

2

[
Zk−1 Zk−1

−Zk−1 Zk−1

]
k > 1

.

Finally, we note that Problem 7 is an instance of regularized
matrix factorization which has recently received consider-
able attention in the machine learning literature (Ge et al.,
2016; 2017; Haeffele and Vidal, 2017). These works show
that the saddle points of a class of regularized matrix factor-
ization problems have certain “nice” properties (i.e. escape
directions characterized by negative curvature around saddle
points) which allow variants of first-order methods such as
perturbed gradient descent (Ge et al., 2015; Jin et al., 2017)
to converge to a local optimum. Distinct from that line of re-
search, we completely characterize the set of global optima
of Problem 7, and provide a polynomial time algorithm to
find a global optimum.

The work most similar to the matrix factorization problem
we consider in this section is that of Cavazza et al. (2018),
with respect to which we make several important contribu-
tions: (I) Cavazza et al. (2018) characterize optimal solu-

tions only in terms of the product of the factors, and not in
terms of the factors themselves, whereas we provide glob-
ally optimal solutions in terms of the factors; (II) Cavazza
et al. (2018) require the rank r of the desired factorization
to be variable and above some threshold, whereas we con-
sider fixed rank-r factorization for any r; (III) Cavazza et al.
(2018) can only find low rank solutions using an adaptive
dropout rate, which is not how dropout is used in practice,
whereas we consider any fixed dropout rate; and (IV) we
give an efficient poly time algorithm to find optimal factors.

6. Empirical Results
Dropout is a popular algorithmic technique used for avoid-
ing overfitting when training large deep neural networks.
The goal of this section is not to attest to the already well-
established success of dropout. Instead, the purpose of
this section is to simply confirm the theoretical results we
showed in the previous section, as a proof of concept.

We begin with a toy example in order to visually illustrate
the optimization landscape. We use dropout to learn a simple
linear auto-encoder with one-dimensional input and output
(i.e. a network represented by a scalar M = 2) and a single
hidden layer of width r = 2. The input features are sam-
pled for a standard normal distribution. Figure 2 shows the
optimization landscape along with the contours of the level
sets, and a trace of iterates of dropout (Algorithm 1). The
initial iterates and global optima (given by Theorem 2.4)
are shown by red and green dots, respectively. Since at
any global optimum the weights are equalized, the optimal
weight vector in this case is parallel to the vector (±1,±1).
We see that dropout converges to a global minimum.

For a second illustrative experiment, we use Algorithm 1
to train a shallow linear network, where the input x ∈ R80
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Figure 3: Dropout converges to global optima for different values of λ ∈ {0.1, 0.5, 1} and different widths of the hidden
layer r = 20 (top) and r = 80 (bottom). The right column shows the variance of the product of column-wise norms for each
of the weight matrices. As can be seen, the weight matrices become equalized very quickly since variance goes to zero.

is distributed according to the standard Normal distribu-
tion. The output y ∈ R120 is generated as y = Mx, where
M ∈ R120×80 is drawn randomly by uniformly sampling
the right and left singular subspaces and with a spectrum
decaying exponentially. Figure 3 illustrates the behavior of
Algorithm 1 for different values of the regularization param-
eter (λ ∈ {0.1, 0.5, 1}), and for different sizes of factors
(r ∈ {20, 80}). The curve in blue shows the objective value
for the iterates of dropout, and the line in red shows the
optimal value of the objective (i.e. objective for a global
optimum found using Theorem 3.6). All plots are averaged
over 50 runs of Algorithm 1 (averaged over different random
initializations, random realizations of Bernoulli dropout, as
well as random draws of training examples).

To verify that the solution found by dropout actually has
equalized factors, we consider the following measure. At
each iteration, we compute the “importance scores”, α(i)

t =
‖uti‖‖vti‖, i ∈ [r], where uti and vti are the i-th columns
of Ut and Vt, respectively. The rightmost panel of Figure 3
shows the variance of α(i)

t ’s, over the hidden nodes i ∈ [r],
at each iterate t. Note that a high variance in αt corresponds
to large variation in the values of ‖uti‖‖vti‖. When the
variance is equal to zero, all importance scores are equal,
thus the factors are equalized. We see that iterations of Algo-
rithm 1 decrease this measure monotonically, and the larger
the value of λ, the faster the weights become equalized.

7. Discussion

There has been much effort in recent years to understand
the theoretical underpinnings of dropout (see Baldi and Sad-

owski (2013); Gal and Ghahramani (2016); Wager et al.
(2013); Helmbold and Long (2015)). In this paper, we study
the implicit bias of dropout in shallow linear networks. We
show that dropout prefers solutions with minimal path reg-
ularization which yield strong capacity control guarantees
in deep learning. Despite being a non-convex optimization
problem, we are able to fully characterize the global optima
of the dropout objective. Our analysis shows that dropout
favors low-rank weight matrices that are equalized. This
theoretical finding confirms that dropout as a procedure uni-
formly allocates weights to different subnetworks, which is
akin to preventing co-adaptation.

We characterize the optimization landscape of learning au-
toencoders with dropout. We first show that the local optima
inherit the same implicit bias as global optimal, i.e. all local
optima are equalized. Then, we show that for sufficiently
small dropout rates, there are no spurious local minima
in the landscape, and all saddle points are non-degenerate.
These properties suggest that dropout – as an optimization
procedure – can efficiently converge to a globally optimal
solution specified by our theorems.

Understanding dropout in shallow linear networks is a pre-
requisite for understanding dropout in deep learning. We
see natural extensions of our results in two directions: 1)
shallow networks with non-linear activation function such
as rectified linear units (ReLU) which have been shown to
enable faster training (Glorot et al., 2011) and are better un-
derstood in terms of the family of functions represented by
ReLU-nets (Arora et al., 2018), and 2) exploring the global
optimality in deeper networks, even for linear activations.
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