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Abstract

We tackle the problem of one-shot segmentation:
finding and segmenting a previously unseen ob-
ject in a cluttered scene based on a single instruc-
tion example. We propose a novel dataset, which
we call cluttered Omniglot. Using a baseline ar-
chitecture combining a Siamese embedding for
detection with a U-net for segmentation we show
that increasing levels of clutter make the task pro-
gressively harder. Using oracle models with ac-
cess to various amounts of ground-truth informa-
tion, we evaluate different aspects of the prob-
lem and show that in this kind of visual search
task, detection and segmentation are two inter-
twined problems, the solution to each of which
helps solving the other. We therefore introduce
MaskNet, an improved model that attends to mul-
tiple candidate locations, generates segmentation
proposals to mask out background clutter and se-
lects among the segmented objects. Our findings
suggest that such image recognition models based
on an iterative refinement of object detection and
foreground segmentation may provide a way to
deal with highly cluttered scenes.

1. Introduction

Humans are not only good at learning to recognize novel,
unknown objects from a single instruction example (one-
shot learning), but can also localize these objects in highly
cluttered scenes and segment them from the background.

In the computer vision community, one-shot learning has re-
cently received a lot of attention and substantial progress has
been made in the context of image classification (Koch et al.,
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Figure 1. One-Shot Segmentation. A, Goal: find a rarget in a
cluttered scene and produce a pixel-wise segmentation. B, Our
Siamese U-net baseline localizes the target, then segments it.
C, MaskNet generates proposals of segmented instances, masks
the background, then computes the best match.

2015; Lake et al., 2015; Vinyals et al., 2016; Bertinetto et al.,
2016; Snell et al., 2017; Triantafillou et al., 2017; Shyam
et al., 2017). Segmentation, however, is still very much
tied to classification, limiting its applicability to datasets
with less than a few hundred semantic or object classes
(or subsets thereof, e. g. the SceneParse150 benchmark on
ADE20k (Zhou et al., 2017)). This stands in contrast to
humans who can segment previously unseen objects simply
by using contextual information.

In the present paper, we work towards closing this gap by
tackling the problem of one-shot segmentation: Given a
single instruction example (the fargef) and a cluttered image
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with many objects (the scene), find the target in the scene
and produce a pixel-wise segmentation (Fig 1A). This task
is harder than the multi-way discrimination task often em-
ployed for one-shot learning because it additionally requires
(a) localizing the target among a potentially large number
of distractors and (b) segmenting the detected object. While
a few groups have started working on variants of this task
(Caelles et al., 2017; Shaban et al., 2017), no commonly
employed benchmark has emerged yet.

Our contributions are as follows:

e We propose a new benchmark dataset: “cluttered Om-
niglot” (Fig. 1A). It is based on simple components
— characters from Omniglot (Lake et al., 2015) — yet
turns out to be hard for current state-of-the-art com-
puter vision components. We publish the dataset, the
code and our models. '

e We present a baseline for one-shot segmentation on
cluttered Omniglot. It combines two principled yet
simple components: a Siamese network for object de-
tection and a U-net for segmentation (Fig. 1B).

e We identify clutter as a substantial problem for cur-
rent computer vision systems and investigate it using
various oracles — models with access to some ground
truth information. Although the statistical complex-
ity of the objects in cluttered Omniglot is low — color
alone completely identifies each instance —, the dead
leaves environment creates difficulties for both detec-
tion and segmentation due to the similar foreground
and background statistics.

e We propose to solve this task by a form of object-based
attention: we first generate and segment multiple object
proposals, then mask out background and finally decide
among the “cleaned-up” objects (Fig. 1C). We show
that this approach, which we call MaskNet, improves
both segmentation and localization.

Our paper is structured as follows: We start by describing
the cluttered Omniglot dataset (Sec. 2), then explain our
Siamese U-net baseline (Sec. 3) and MaskNet, our improved
architecture (Sec. 4), as well as the oracles we use (Sec. 5).
We then present our experimental results (Sec. 6), discuss
related work (Sec. 7) and conclude (Sec. 8).

2. Cluttered Omniglot

Cluttered Omniglot is a visual search task: the goal is to find
a previously unseen target character in a cluttered scene and
to produce a pixelwise segmentation (Fig. 1A). It is based on
the Omniglot dataset (Lake et al., 2015), which we chose for
two reasons: First, it is a popular and well-studied dataset

1https ://github.com/michaelisc/cluttered-omniglot

for one-shot learning. Second, the statistics of the individual
objects in Omniglot are relatively simple. Nevertheless,
we show below that cluttered Omniglot presents a serious
challenge to convolutional neural networks. Thus, we think
of this dataset as the essence of the clutter problem.

Each sample in the dataset consists of three images: a target,
a scene and a segmentation map. Targets are individual
characters from Omniglot, rescaled to 32 x 32 pixels and
colored in a random RGB color. Scenes are 96 x 96 pixel
collages of multiple (4-256) randomly drawn Omniglot
characters, one of which is the target (Fig. 2). The characters
are sequentially “dropped” into the image like dead leaves,
occluding any characters previously drawn at the same pixel
locations. Each character is placed at a random location,
has a random RGB color and is transformed with a random
affine transformation of up to 20° rotation, 10° shearing and
scaling between 16 and 64 pixels. At the end, a random
instance of the target character is added. This instance is
always fully visible and not occluded. We specifically avoid
occlusion of the target instance, so we do not confound the
effect of visual clutter with that of occlusion.

We split the dataset into three splits: training, validation
and one-shot. As in the original work on Omniglot (Lake
et al., 2015), we use the background set for training and
validation, while we use the evaluation set for testing one-
shot performance. For simplicity, we use only the first ten
drawers in each alphabet for the training set and the other
ten drawers for the validation and one-shot sets.

The difficulty of this task depends on the number of distrac-
tors (Wolfe, 1998). We show below (Section 6.1) that our
baseline scores a close-to-perfect Intersection over Union
(IoU) for the easiest version with just four distractors, sim-
ilar to the accuracies of high-performing architectures de-
signed for one-shot discrimination on Omniglot (Koch et al.,
2015; Vinyals et al., 2016; Snell et al., 2017; Triantafillou
et al., 2017; Shyam et al., 2017). In contrast, performance
drops below 40% IoU for the hardest version with 256 dis-
tractors.

For each difficulty level, we generate a training set consist-
ing of 2 million samples and validation and one-shot sets
consisting of 10,000 samples each. Note that the entire
dataset is generated using a total of 9640 (6590) character
instances for the training (one-shot) set.

3. Baseline: Siamese U-net

Intuitively, the one-shot segmentation task can be broken
down into two steps: detect the target in the scene and
segment it. We implement a baseline that performs the
detection part with a Siamese net applied in sliding windows
over the scene to produce a heat map of candidate locations
(Fig. 3A). The segmentation mask is then generated by a
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Figure 2. Multiple scenes form cluttered Omniglot with a common target and varying amounts of clutter defined by the numbers of

characters in each scene.

deconvolutional net with skip connections from the encoder.

3.1. Encoder

The encoder is inspired by Siamese networks. It consists of
two parallel fully convolutional neural networks that process
the target (32 x 32 x 3) and the scene image (96 x 96 x 3),
respectively (Fig. 3A). All convolutions use 3 x 3 kernels
with “same” padding, followed by layer normalization (Ba
et al., 2016) and ReLLUs. An exception is made in the last
two layers, which use 2 x 2 and 1 x 1 kernels respectively
(the size of the feature maps of the target encoder in these
layers) (Fig. 3C). Before each but the first convolution, the
image is downsampled by a factor of two using average
pooling. This architecture produces an embedding of the
target in form of a 384-dimensional vector (1 X 1 spatially).
The scene image is processed analogously. To retain a higher
resolution in the last layer, we do not use downsampling in
the last two layers of the scene encoder. Instead we us a
dilation factor of 2 for the convolutions in the second-to-last
layer. This results in a 12 x 12 pixel encoding with — as for
the target — 384 feature maps.

Although the encoder is inspired by Siamese networks, we
found in initial experiments that untying the weights im-
proves performance and therefore do not use weight sharing
between the two paths (see also Bertinetto et al., 2016).
This result could potentially be attributed to the differing
statistics of the clean target and the cluttered scene image.

3.2. Target matching

To get an estimate of the target’s location in the scene, we
compute the cosine similarity in the embedding space given
by the encoder. We do so by taking the pixelwise inner prod-
uct of the scene embedding with that of the target (Fig. 3C),
which is implemented by a 1 x 1 convolution using the
target embedding as the filter. This step can be thought of
as applying a Siamese network in sliding windows over the
scene image (with a stride of 8, the stride of the final layer
of the scene encoder). The output is a 12 x 12 heatmap,
which can be seen as a (subsampled) pixel-level likelihood
that the target is at a given location within the scene.

This heatmap does not contain any information about what

the target is. To inform the decoder about the target that
should be segmented, we compute the outer tensor prod-
uct of the heatmap with the target embedding. Thus, the
final output of the matching step is a 12 x 12 x 384 tensor,
which encodes at each location the direction of the target
in embedding space, weighted by how likely the encoder
considers the target to be at that location. As all other layers,
this output is normalized using layer normalization.

3.3. Decoder

The segmentation part of our baseline model is inspired
by the U-net architecture (Ronneberger et al., 2015). The
decoder is essentially a mirror image of the encoder: six
convolutional layers with 3 x 3 kernels and “same” padding,
followed by layer normalization, ReLU and — for the third,
fourth and fifth layer — nearest neighbor upsampling by
a factor of two to incrementally increase the image size
to the original 96 x 96 pixels (Fig. 3C). The input to each
convolutional layer in the decoder is the concatenation of the
previous layer’s output and the output of the corresponding
layer in the encoder (skip connections). The final layer of
the decoder outputs two feature maps, which are combined
into a segmentation map by taking the pixelwise softmax.

3.4. Training

During training, we minimize the binary cross-entropy be-
tween the ground truth segmentation and the network’s
prediction. The cross-entropy is computed pixelwise and
averaged across all pixels. The weights are initialized ran-
domly from a Gaussian distribution following the MSRA
initialization scheme (He et al., 2015). We regularize the
weights using Ly weight decay with a factor of 1079, We
train the network for 20 epochs using Adam (Kingma & Ba,
2014) with a batch size of 250 and an initial learning rate
of 5 x 104, After 10, 15 and 17 epochs, we divide the
learning rate by 2.

3.5. Evaluation

We evaluated the baseline model using intersection over
union (IoU). Therefore the generated segmentation maps
are binarized using a threshold or 0.3, which was determined
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to be optimal across models and datasets.

4. MaskNet: Segment first, decide later

MaskNet (Fig. 3B) adds two additional processing stages
to the baseline. Instead of generating the segmentation in
a single pass through the U-net, we let the decoder attend
to different locations. We branch off at the target matching
stage and generate multiple object proposals with associ-
ated instance segmentations. We then decide which of these
proposals is the best match. This last stage reduces to the
one-shot multi-way discrimination task for image classifica-
tion, and we solve it using a Siamese net.

4.1. Proposal network

We modify our Siamese U-net to turn it into a targeted
proposal network (Fig.3B+C). Its output is a set of segmen-
tation proposals (96 x96 pixels). To this end, we modify
the target matching step: instead of computing the heatmap
by an inner product of target and scene embeddings, we
simply set it to a one-hot map encoding a single location
(Fig.3C, orange block). We then use the simplest possi-
ble strategy for selecting candidate locations: sweeping all
possible locations, thus generating 144 proposals (Fig.3B).
While there are certainly more elaborate ways of generating
proposals, we opt for simplicity over efficiency. Similar
to the target matching step in the baseline network, these
one-hot heatmaps are multiplied with the target embedding
and normalized using layer normalization. Thus, for each
proposal, the decoder is seeded by an embedding of the
target confined to a single pixel within the 12 x 12 spatial
grid and generates a segmentation mask for the target at this
location (or background if the target is not present).

4.2. Decision stage

The decision stage takes multiple object proposals as input
and uses a Siamese network to pick the one that most closely
resembles the target (Fig. 3B). This step is essentially a 144-
way one-shot discrimination task. The key ingredient here
is the input: instead of just taking crops from the scene, we
use the generated segmentations to mask out background
clutter and perform the discrimination on “clean” objects
(Fig. 3B & Fig. 1C). To do so, we binarize the segmentation
proposals using a threshold of 0.3 and extend them to RGB
colors by simply coloring them white. For each proposal,
we compute the center of mass of the segmentation mask
and extract a 32 x 32 pixel crop centered on this point.
We found this solution using the mask directly to perform
slightly better then applying it to the image. These crops
are then fed into an encoder with the same architecture as
the one used for the target (i. e. outputs a 384-dimensional
embedding). As in Siamese networks (Koch et al., 2015),
we use the sigmoid of a weighted sum of the L1 distance

between two embeddings as a similarity measure. The full
segmentation map corresponding to the crop that is most
similar to the target is the final output.

4.3. Training

We train proposal network and discriminator separately, by
initializing the weights (where possible) from the Siamese
U-net baseline and then fine-tuning (Sec. 3.4). All other
weights are initialized randomly as for the baseline. We use
the same optimizer and regularization as before. We train
for five epochs, dividing the learning rate by two after two,
three and four epochs, respectively.

To train the proposal network, we generate eight proposals
for each training sample: four positive ones as above and
four negative ones, which are drawn from random locations.
We then fine-tune encoder and decoder using the same pix-
elwise cross-entropy loss as above using the ground truth
segmentation for the positive samples and “background” as
the label for the negative ones. The initial learning rate is
setto 5 x 107> and the batch size is 50.

To train the discriminator, we fix the target encoder, train the
encoder for the segmented patches by initializing with the
weights of the target encoder and fine-tuning, and train the
weights for the weighted L, distance. For each training sam-
ple, we generate four segmentation proposals: one centered
at one of the four locations around the center of mass of the
target and three at other random positions. We minimize
the binary cross-entropy of the same/different task for each
proposal. The initial learning rate is set to 2.5 x 10~ and
the batch size is 250.

4.4. Evaluation

To evaluate MaskNet, we use intersection over union (IoU)
as for the baseline. As before, we apply a threshold of 0.3
to the predicted segmentation mask. In addition, we eval-
uate the localization accuracy of the network independent
of the quality of the generated segmentation masks. To
do so, we use the center of mass of the chosen segmenta-
tion proposal as the prediction of the target’s location. We
count all predictions that are within five pixels of the ground
truth location (also center of mass) as correct and report
localization accuracy in percent correct.

5. Oracles

We evaluate two oracles that have access to ground truth
segmentation masks of all characters in the scene. Being
able to define such oracles is a useful feature of cluttered
Omniglot, which allows us to test the quality of individual
model components.
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Figure 3. Architectures and details. A, Siamese U-net baseline (Section 3). B, MaskNet (Section 4). C, Close-up of the individual

components, showing architecture details.

5.1. Pre-segmented discriminator

The pre-segmented discriminator operates on individual
characters that have been pre-segmented and cropped to the
same size as the target. Specifically, we use the fact that the
characters are uniformly colored to segment each character
and extract a 32 x 32 pixel crop centered on its center of
mass. The task of this oracle is the same as for the decision
step of MaskNet (Sec. 4.2) and can be reduced to the widely
used one-shot multi-way discrimination, hence the name
discriminator. We implement it by a Siamese network using
the same encoder as before (Sec. 3.1) comparing the gener-
ated embeddings with a weighted L distance, followed by a
sigmoid (Koch et al., 2015). The pre-segmented discrimina-
tor lets us assess the additional difficulty (if any) introduced
by (a) the random affine transformations in cluttered Om-
niglot and (b) the potentially large number of candidate
characters to decide among.

5.2. Cluttered discriminator

The cluttered discriminator does not pre-segment characters.
Instead it takes the same crops as the pre-segmented dis-
criminator, but keeps the cluttered background intact. The
rest is identical to the pre-segmented discriminator. Thus,
the cluttered discriminator performs the one-shot multi-way
discrimination on cluttered crops. By comparing its perfor-
mance to that of the pre-segmented version, we can directly
assess the effect of clutter on discrimination.

5.3. Training

We train both discriminators by minimizing the binary cross-
entropy in the same/different task. In each training step, four
crops are sampled: one containing the target and three ran-
domly selected ones. Each crop is compared with the target
and the average cross-entropy is computed. Initialization,
regularization and optimization are done in the same way as
for the baseline (Sec. 3.4). A batch size of 250 and an initial
learning rate of 5 x 10~% are chosen. Like the baseline, the
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Figure 4. Performance of various model architectures and oracles on cluttered Omniglot. Performance is measured as intersection over
union (IoU) for segmentation (A—C) or localization accuracy (D); higher is better. All results (except A) are measured on the one-shot sets.
A, IoU of the Siamese-U-Net on validation (light blue) and one-shot set (dark blue). B, MaskNet with targeted (green) and un-targeted
proposals (grey) and the best segmentations generated by the proposal network (black). C, Comparison of Siamese-U-Net (blue), MaskNet
(green) and an oracle: the pre-segmented discriminator (red), which has access to ground truth locations and segmentation masks of
all characters (but not to class labels). D, Localization accuracy of MaskNet (green) in comparison to the cluttered (yellow) and the

pre-segmented discriminator (red).

discriminators are trained for 20 epochs and the learning
rate is divided by 2 after epochs 10, 15 and 17.

5.4. Evaluation

We evaluate the pre-segmented discriminator using the same
two metrics used for MaskNet: IoU and localization accu-
racy. To evaluate IoU, we use the ground truth segmenta-
tions associated with the best-matching crop. Due to the
access to ground truth segmentations, IoU is equivalent to
the percentage of correct decisions in the discrimination
task. To evaluate localization accuracy, we take the same
measure as for MaskNet: The Euclidean distance between
the center of each crop and the true location of the target
thresholded at 5 pixels. For the cluttered discriminator, we
evaluate only localization accuracy.

6. Results

We used the same encoder and decoder architectures for
all experiments. Both consist of six convolutional layers
interleaved with pooling, dilation or upsampling operations
(see Fig. 3C and Sec. 3.1). All comparisons between ar-
chitectures are therefore independent of the expressiveness
of encoder and decoder, but rely only on the different ap-
proaches to segmentation and detection. All reported results
are evaluated on the one-shot set unless specified otherwise.

6.1. Baseline

We start by characterizing the difficulty of the one-shot
segmentation task on cluttered Omniglot by evaluating the
performance of our baseline model (Section 3) on both, the
one-shot and the validation set across all difficulty levels.

We first consider the results on the validation set (Fig. 4A,
light blue). The validation set contains characters seen
during training, but drawn by a different set of drawers (see

Table 1. One-shot segmentation accuracy (IoU in %) across differ-
ent amounts of clutter (number of characters per image).

MODEL 4 8 16 32 64 128 256
PATTERN MATCHING 62.2 50.4 41.7 36.9 32.6 29.0 28.6
P-SEG. DISCRIMINATOR 99.6 99.2 98.9 98.2 97.8 96.9 96.2
BEST SEG. PROPOSAL 98.9 96.8 90.5 80.9 68.7 60.5 58.2
SIAMESE U-NET 97.1 92.1 79.8 62.4 48.1 39.3 38.4
MaskNet 95.8 90.5 79.3 65.6 52.8 4.8 43.7
MASKN. UNTARGETED - - 52.7 39.0 30.7 27.3

Section 2). For a small number of distractors, the network
performs well — as expected, because the characters are
mostly isolated within the scene. Performance is above 90%
IoU, similar to discrimination performance in one-shot five-
way discrimination on regular Omniglot (Koch et al., 2015;
Vinyals et al., 2016; Snell et al., 2017; Triantafillou et al.,
2017; Shyam et al., 2017). However, performance drops
substantially with increasing number of distractors (< 40%
for 256 distractors).

On the one-shot set — that is, characters from alphabets not
seen during training — performance is on average only 3%
worse than validation performance (Fig. 4A, blue), show-
ing that the network has indeed learned the right metric to
identify previously unseen letters and segment them.

6.2. Clutter reduces performance more than the
number of comparisons

The performance drop of our baseline model with increasing
number of distractors could have two reasons. First, the
scenes are highly cluttered, which may cause problems for
the detection of the target. Second, the large number of
comparisons may simply increase the probability of making
a mistake by chance (n-way discrimination with large n).
To understand the influence of these factors, we constructed
two oracles, which both have access to the ground truth
locations of all characters in the scene (Sec. 5). Both models
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Table 2. One-shot localization accuracy (in %) across different
amounts of clutter (number of characters per image).

MODEL 4 8 16 32 64 128 256

P-SEG. DISCRIMINATOR 99.6 99.2 98.9 98.2 97.8 96.9 96.2

CLUTT. DISCRIMINATOR 97.0 92.1 82.2 67.1 54.7 44.2 41.3
MASKNET 97.4 94.1 87.0 71.5 66.1 58.5 57.7

extract crops centered at the location of each character in
the scene and perform a discrimination task between these
crops and the target.

The pre-segmented discriminator has access not only to the
ground truth location but also the segmentation mask of
each character, allowing it to pre-segment all crops. The
resulting task is essentially the classical one-shot n-way
discrimination task. The only difference is that it is a bit
easier since many characters in the background are highly
occluded, whereas the target is always unoccluded. Remark-
ably, the performance of the pre-segmented discriminator
remains above 95% IoU even for the most cluttered scenes
with 256 characters (Fig. 4C+D, red), demonstrating that our
encoder can solve the task in an uncluttered environment.

The cluttered discriminator has access to only the ground
truth locations. It cannot segment the characters and has
to perform the n-way discrimination on cluttered crops.
In contrast to the pre-segmented discriminatior its perfor-
mance takes a substantial hit with increased clutter (Fig. 4D,
yellow). Thus we conclude that the difficulty of cluttered
Omniglot arises due to clutter rather than the potentially
large number of candidate characters in the scene.

6.3. Template matching is not sufficient

A lot of work on one-shot learning has used Omniglot, but
we are not aware of any work evaluating simple approaches
like template matching. As a sanity check, we implemented
a template matching procedure for our task based on the pre-
segmented discriminator.> Accuracy ranged from 62% for 4
characters to 29% for 256 characters (Table 1). Despite the
highly simplified setting with oracle information available,
template matching performs not only worse than the pre-
segmented discriminator (99—96%), but even worse than
our baseline on the full task (97—38%). Thus, template
matching is not a viable solution for (cluttered) Omniglot.

6.4. Background masking improves performance

Motivated by the superb discrimination performance on pre-
segmented objects, we developed MaskNet, a novel model

>We generated 9317 transformed versions of the target (11 ro-
tations, 7 shearing angles, 11x11 x/y scales), convolved them with
each segmented, binarized character and picked the best match.

3For comparison: on the standard 5-way one-shot task on Om-
niglot, we achieved 84% accuracy using template matching.

that operates in three steps (Sec. 4). First, we generate a
number of object proposals. Next, we generate correspond-
ing object segmentations which mask out the background.
In the last step, we perform discrimination on these seg-
mented objects to decide which one to pick. This model
outperforms the baseline (Fig. 4B+C, green line), suggest-
ing that segmenting objects (and masking out background)
before classifying them is beneficial when processing highly
cluttered scenes. Nevertheless, there is still a large margin
to the performance of the pre-segmented oracle. We investi-
gate the reasons for this margin below.

6.5. Quality of segmentation limits performance

A crucial feature of MaskNet (and perhaps its main weak-
ness) is that the final discriminator can only be as good as
the segmentations it receives as input. We therefore evaluate
the quality of these segmentations. To this end, we evaluate
the maximal IoU among all proposals, which is equivalent
to assuming a perfect discriminator that always picks the
correct character. We find that indeed the instance segmen-
tations of the proposals appear to be a limiting factor: for
the most cluttered scenes the proposal with the highest IoU
achieves only around 60% on average (Fig. 4B, black).

6.6. Targeted segmentations improve performance

Next, we test whether it is necessary to seed the decoder
with an embedding of the target, instead of just seeding it
with a location and segment the most salient character at that
location. To this end, we remove the target multiplication
step from MaskNet’s proposal network and simply seed
the decoder with the spatial one-hot encoding (Section 4.1).
Using this non-targeted proposal network instead of the
targeted one reduces performance (Fig. 4B, grey), showing
that it is important to supply the decoder with information
what to segment.

6.7. Performing segmentation improves localization

So far, we have focused our evaluation of MaskNet’s perfor-
mance on segmentation. Interestingly, though, segmenting
objects also helps if we are interested only in localizing
the target rather than segmenting it. To provide evidence
for this claim, we compare the localization performance
of MaskNet to that of the cluttered discriminator. For the
cluttered discriminator, we simply use the location of the
crop it chooses as the prediction for the target’s location.
For MaskNet, we use the center of mass of its predicted seg-
mentation mask. We then compute the localization accuracy
(Sec. 4.4) of these predictions to the ground truth center of
mass of the target. Indeed, MaskNet predicts the location of
the target more accurately than the cluttered discriminator
(Fig. 4D and Table. 2), showing that segmenting objects to
mask out background clutter improves localization.
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7. Related Work

7.1. One-shot discrimination

One-shot learning has been explored mostly in the context
of multi-way discrimination for image classification. Lake
etal. (2015) developed the Omniglot dataset for this purpose
and approach it using a generative model of stroke patterns.
Most competing approaches learn an embedding to compute
a similarity metric (Koch et al., 2015; Vinyals et al., 2016;
Snell et al., 2017; Triantafillou et al., 2017). Bertinetto et al.
(2016) train a meta network that predicts the weights of
a discriminator in a single feedforward step. Another ap-
proach compares image parts in an iterative fashion (Shyam
et al., 2017).

7.2. Semantic/instance segmentation

Most recent approaches to segmentation use an en-
coder/decoder architecture (Noh et al., 2015; Badri-
narayanan et al., 2017). The encoders are usually high-
performing architectures for image classification [e.g.
AlexNet (Krizhevsky et al., 2012), VGG (Simonyan &
Zisserman, 2015), ResNet (He et al., 2016)]. The main
differences lie in the decoder design. Where early works
converted high-level representations into pixelwise labels
using upsampling in combination with linear transforma-
tion (Long et al., 2015) or conditional random fields (Chen
et al., 2014; 2018), recent approaches rely on more complex
decoders [DeconvNet (Noh et al., 2015), SegNet (Badri-
narayanan et al., 2017), RefineNet (Lin et al., 2017)] and
introduce skip connections from the encoder. The U-net
architecture (Ronneberger et al., 2015), which uses skip
connections is a particularly simple and elegant general-
purpose architecture for dense labeling and image-to-image
problems (e. g. Isola et al., 2016).

More recent work focuses on multi-scale pooling (Zhao
et al., 2017) and dilated convolutions (Chen et al., 2017).
These architectures improve performance, but simplify the
decoders, relying more on upsampling. While this approach
works well on datasets such as MS-COCO, it renders them
infeasible for segmenting on Omniglot, where characters
have fine detail at the pixel level.

Our proposal network is inspired by Mask R-CNN (He
et al., 2017), which achieved state-of-the-art performance
on MS-COCO by splitting object detection and instance
segmentation into two consecutive steps. Similarly, our
class-agnostic segmentation is inspired by the work of Hong
et al. (2015) and Mask R-CNN (He et al., 2017). Also
related is work on class-agnostic segmentation using ex-
treme point annotations (Maninis et al., 2017; Papadopoulos
et al., 2017): while these works inform the segmentation by
clicks in the image, our architecture seeds the decoder with
a location information at the embedding layer.

7.3. One-shot segmentation

One-shot segmentation has emerged only recently. Caelles
et al. (2017) tackle the problem of segmenting an unseen
object in a video based on a single (or a few) initial labeled
frame(s). The work by Shaban et al. (2017) is very similar to
our approach, except that they use logistic regression with
a large stride and upsampling for the decoder and tackle
Pascal VOC (Everingham et al., 2012).

7.4. Other related problems

Co-segmentation (Faktor & Irani, 2013; Quan et al., 2016;
Sharma, 2017) is somewhat related to one-shot segmenta-
tion, as the common object in multiple images has to be
segmented. However, objects are typically quite salient
(otherwise the problem is not well defined). We can think
of cluttered Omniglot as an asymmetric co-segmentation
problem with one object-centered and one scene image.

Apparel recognition (Hadi Kiapour et al., 2015; Zhao et al.,
2016; Cheng et al., 2017) and particular object retrieval
(Razavian et al., 2014; Tolias et al., 2016; Li et al., 2017;
Siméoni et al., 2017) are related in the sense that the goal
is to find objects specified by one image in other images.
However, both problems are primarily about image retrieval
rather than segmentation of objects within these images.
One exception is the work of Zhao et al. (2016) in which
co-segmentation is performed on pieces of clothing.

8. Conclusions

We explored one-shot segmentation in cluttered Omniglot
and found increasing clutter to quickly diminish perfor-
mance even though characters can be easily identified by
color. Thus clutter is a serious problem for current state-of-
the-art CNN architectures. As a first step towards solving
this problem, we showed that segmenting objects first im-
proves detection when scenes are cluttered. We aimed for a
proof of principle and thus used the simplest model possible,
which performs only one iteration of segmentation and then
decides directly based upon this first segmentation. Fully
recurrent architectures that iteratively refine detection and
segmentation by cycling through this process multiple times
could lead to even larger performance gains.

As we focus on the role of clutter, we specifically designed
cluttered Omniglot to have relatively simple object statis-
tics but various levels of clutter. An interesting avenue for
future work would be to specifically investigate cluttered
image regions in real-world datasets such as Pascal VOC,
MS-COCO or ADE20k. Both, the task and our MaskNet
architecture should be directly applicable to these datatsets,
for instance by searching for unseen object categories in
natural scenes could be done by replacing our encoder by a
state-of-the-art ImageNet classifier.
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