
Differentiable plasticity

Supplementary Materials

S1. Code example for differentiable plasticity
The code in Listing 1 shows how to implement differentiable plasticity with PyTorch. The code defines and meta-trains a
simple recurrent neural network with plastic connections. The code specific to differentiable plasticity has been highlighted
in yellow; without these highlighted passages, the code simply implements a standard RNN. Note that implementing
differentiable plasticity requires less than four lines of additional code on top of a simple RNN implementation.

The full program from which this snippet is extracted is available at https://github.com/uber-common/
differentiable-plasticity/blob/master/simple/simplest.py.

Listing 1: Code snippet for meta-training a plastic RNN. Additional code to implement plasticity is highlighted in yellow.
w = Variable(.01 * torch.randn(NBNEUR, NBNEUR), requires_grad=True) # Fixed weights

alpha = Variable(.01 * torch.randn(NBNEUR, NBNEUR), requires_grad=True) # Plasticity coeffs.

optimizer = torch.optim.Adam([w, alpha], lr=3e-4)

for numiter in range(1000): # Loop over episodes
y = Variable(torch.zeros(1, NBNEUR)) # Initialize neuron activations

hebb = Variable(torch.zeros(NBNEUR, NBNEUR)) # Initialize Hebbian traces

inputs, target = generateInputsAndTarget() # Generate inputs & target for this episode
optimizer.zero_grad()
Run the episode:
for numstep in range(NBSTEPS):

yout = F.tanh(y.mm(w + torch.mul(alpha, hebb)) +

Variable(inputs[numstep], requires_grad=False))

hebb = .99 * hebb + .01 * torch.ger(y[0], yout[0]) # torch.ger = Outer product

y = yout
Episode done, now compute loss, apply backpropagation
loss = (y[0] - Variable(target, requires_grad=False)). pow(2). sum()
loss.backward()
optimizer.step()

S2. Details for the image reconstruction task
Stimuli are natural images taken from the CIFAR10 dataset, of size 32× 32 pixels. All images are normalized within the
[−1, 1] range by subtracting the mean pixel value from each pixel and then dividing the resulting values by the maximum
absolute pixel value.

The network is a fully-connected recurrent network of 1,025 neurons (one per image pixel, plus one “bias” neuron with
output clamped to 1). Each of the non-bias neurons corresponds to one pixel. During each episode, three images are
presented three times each in succession (within each of the three presentations, the three images are shown in random
order). Each image is shown for 20 time steps, with 3 time steps of zero input between each image presentation. Then the
test stimulus (one of the three images, with either the top or bottom half zeroed out and providing no input) is shown for
3 time steps. The error to be minimized by the network is the sum of squared difference between the pixel values in the
(non-degraded) test image and the output of the corresponding neurons at the last time step.

Input is provided to the network by clamping the output of each input-receiving neuron to the value of the corresponding
pixel. Zero pixels (i.e. the pixels in the blanked out portion of the test image) provide no input. At each time step, neurons
not currently receiving image input update their activation according to Eq. 1, and the plastic component of each connection
is updated according to Eq. 2.

At the end of each episode, the loss was computed, and the gradient of this loss over the αi,j , wi,j and η parameters was
computed using PyTorch’s backward() function. This gradient was then fed to an Adam optimizer (learning rate 1e-4) to
update the parameters.

Differentiable plasticity

S3. Discussion of the plasticity structure in trained image-reconstructing networks
The matrix of plasticity coefficients in the trained image-reconstructing network (Figure 4b, bottom) shows significant
structure. This pattern contrasts with traditional models of pattern completion in plastic recurrent networks (such as Hopfield
networks), which generally use homogenous plasticity across connections. Here we suggest an explanation for this complex
structure.

In short, we propose that the network has learned a clever mechanism, not only to reconstruct the missing portion of
the image, but also to clear away the remnant, unneeded activity from previous stimuli that might interfere with the
reconstruction. This mechanism exploits the fact that partial images are always shown as top or bottom halves, and also the
high autocorrelation of natural images.

At test time, if a neuron falls within the blank part of the degraded stimulus, it must determine its correct output from the
activity of other neurons. For this purpose, it should take information from neurons from the other half, because they will
receive the informative portion of the stimulus. This requirement is reflected in the homogenous domains of small, but
significantly positive coefficients in the top-right and bottom-left quadrants of the matrix: neurons receive small positive
plastic connections from the other half. Because these connections are nearly homogeneous, this portion of the network
operates exactly like a standard Hopfield network (each plastic connection develops a weight that is proportional to the
correlation between the two pixels across learned images, providing a total input to each pixel that is roughly the regression
of that pixel’s value over the values of the source pixels).

The thin diagonal stripes of high, positive plasticity simply reflect the high correlation between neighboring pixels that
occurs in natural images: because neighboring neurons are highly correlated, it is useful for each pixel to receive information
from its immediate neighbors.

The purpose of the large alternating bands near the mid-section is less obvious. The dark horizontal bands near the midsection
mean that every pixel in the image receives connections with a large, negative plasticity coefficient from the farthest portion
of its own half (i.e. the bottom of the top half if the pixel is in the top half, or the top few of the bottom half if the pixel is in
the bottom half). Similarly, the pale bands show that each pixel receives connections with positive plasticity coefficients
from the closest portion of the other half. What could be the purpose of this arrangement?

Due to Hebbian plasticity, plastic connections store the correlation between the two pixels (positive or negative), and thus at
test time a highly plastic incoming connection will instruct the receiving neuron to fire according to their observed historical
correlation with the source neuron - “how much should I fire, given your current firing rate and our observed historical
correlation during the episode?”

When the plasticity coefficient has negative sign, the opposite occurs: the source neuron not only ignores, but acts contrarily
to its expected firing based on current activity of the source neuron – “tell me how much I should fire based on your current
firing and our past correlation, and I’ll do the opposite!”

Therefore, we propose the following hypothesis: To adequately complete the partial pattern, the network must not only fill
the blank portion with adequate data – it must also erase whatever information was already there as a remnant of previous
activity. That seems to be the purpose of the negative plasticity coefficient from the extremum of the same half: at test time,
if a neuron is within the half receiving the informative portion of the stimulus, then this connection has no effect (because
neural output is clamped to the incoming stimulus). However, if they are in the blank half of the test stimulus (the one that
must be reconstructed), this negative-plastic connection will instruct the neurons to alter their firing in opposition to what is
predicted from the current value of their same-half brethren, thus actively “forgetting” whatever remnant activation is still
echoing in this half of the network from previous stimuli. Note that on its own, this “cleaning” mechanism might interfere
with correct reconstruction, e.g. when neurons start to settle on the correct reconstruction, this forced decorrelation might
impair it. Yet that outcome is prevented by the counter-balancing positive-plasticity connections from the closest portion of
the other half. At test time, these opposite-half pixels will always contain correct information (because they receive the
informative part of the test pattern), while generally having very similar values to the nearby same-half pixels sending out
negative-plasticity connections (because the corresponding pixels are very close, falling immediately on either side of the
midsection). As a result, the “cleaning” effect will be strong when distal same-half pixels differ from proximal other-half
pixels, but will cancel out if they have similar (correct) activity. This mechanism allows the network to actively discard junk
activity while preserving accurate reconstructions generated by the low-level, homogenous plastic connections from the
entire opposite half described above.

