
A Delay-tolerant Proximal-Gradient Algorithm for Distributed Learning

SUPPLEMENTARY MATERIAL

A. Main technical lemma
The improvement of one iteration (with potentially inner multiple steps) at slave i is given by Lemma 1 of the main text
which is the core technical lemma of the paper. We give its proof in the supplementary document. For convenience, we
restate it below. Let us also recall the rule used to produce xki .

Algorithm 1 Update rule for xki .

Input: x = xk−D
k
i

Take x = x
k−Dk

i
i from the previous iteration

Select a number of repetitions p
Initialize ∆ = 0
for q ← 1 to p do
z ← proxγr(x+ ∆)

x+ ← z − γ 1
ni

∑
j∈Si ∇`j(z)

∆← ∆ + 1
M (x+ − x)

x← x+

end for
Output: xki = x , ∆k

i = ∆

Lemma 1. Let Assumption 1 hold. For any i, define x?i = x? − γ 1
ni

∑
j∈Si ∇`j(x

?). Then the algorithm’s local iterates
at slave i satisfy, for all k, ∥∥xki − x?i ∥∥2 6 (1− γµ)2ck−Dk

i

where for all moment k we define

ck = max

(∥∥xk − x?∥∥2 ,∥∥∥xk−i(k) − x?−i(k)∥∥∥2)
with i(k) being the slave making the update k, and

x? =

M∑
i=1

πix
?
i , x?−i =

(∑
j 6=i

πj

)−1∑
j 6=i

πjx
?
j =

∑
j 6=i

nj
n− ni

x?j , xk−i =
(∑
j 6=i

πj

)−1∑
j 6=i

πjx
k
j =

∑
j 6=i

nj
n− ni

xkj .

Proof. Part 1. First, we are going to prove a related result that gives a contraction result for the the slave machine that
is updating at time k. By definition, we have dki = 0, and the machine i last time started computing at moment k − Dk

i .
Removing the global time index k for better readability, Let us also consider xp, x+p , zp are the local variables x, x+, z at
the last (the p-th) inner loop of slave i.

First, we notice that fi = 1
ni

∑
j∈Si `j is a µ-strongly convex and L-smooth function, so that we write∥∥xki − x?i ∥∥2 =

∥∥x+p − x?i ∥∥2
= ‖zp − γ∇fi(zp)− (x? − γ∇fi(x?))‖2

= ‖zp − x?‖2 + γ2 ‖∇fi(zp)−∇fi(x?)‖2 − 2γ〈zp − x?,∇fi(zp)−∇fi(x?)〉

6 ‖zp − x?‖2 + γ2 ‖∇fi(zp)−∇fi(x?)‖2 − 2
γ

µ+ L
‖∇fi(zp)−∇fi(x?)‖2 − 2

γµL

µ+ L
‖zp − x?‖2

=

(
1− 2γµL

µ+ L

)
‖zp − x?‖2 + γ

(
γ − 2

µ+ L

)
‖∇fi(zp)−∇fi(x?)‖2 . (1)



Moreover, since γ 6 2
µ+L , the second term in (1) is negative and we can use strong convexity to further bound it as∥∥xki − x?i ∥∥2 =
∥∥x+p − x?i ∥∥2 6

(
1− 2γµL

µ+ L

)
‖zp − x?‖2 + γ

(
γ − 2

µ+ L

)
‖∇fi(zp)−∇fi(x?)‖2

6

(
1− 2γµL

µ+ L

)
‖zp − x?‖2 + γ

(
γ − 2

µ+ L

)
µ2 ‖zp − x?‖2

= (1− γµ)2 ‖zp − x?‖2 . (2)

Using the non-expansiveness of the proximal operator, we have

‖zp − x?‖2 =
∥∥proxγr(x+ ∆p−1)− proxγr(x

?)
∥∥2

6 ‖x+ ∆p−1 − x?‖2

=

∥∥∥∥∥∥
∑
j 6=i

πj

(
x
k−Dk

i
j − x?j

)
+ πi (xp−1 − x?i )

∥∥∥∥∥∥
2

Note now that, as ∆p = πi
∑p
l=1 (xl − xl−1), we have

x+ ∆p = x+ πi (xp − x0) = πi

∑
j 6=i

x
k−Dk

i
j + xp

 .

We then get the following inequalities

‖zp − x?‖2 =
∥∥∥(1− πi)

(
x
k−Dk

i
−i − x?−i

)
+ πi (xp−1 − x?i )

∥∥∥2
6 (1− πi)

∥∥∥xk−Dk
i

−i − x?−i
∥∥∥2 + πi ‖xp−1 − x?i ‖

2

6 (1− πi)
∥∥∥xk−Dk

i
−i − x?−i

∥∥∥2 + πi(1− γµ)2 ‖zp−1 − x?i ‖
2
. (3)

We now bound this expression, as follows

‖zp − x?‖2 6 max

(∥∥∥xk−Dk
i

−i − x?−i
∥∥∥2 ; ‖zp−1 − x?‖2

)
6 max

(∥∥∥xk−Dk
i

−i − x?−i
∥∥∥2 ; ‖z1 − x?‖2

)
= max

(∥∥∥xk−Dk
i

−i − x?−i
∥∥∥2 ;

∥∥∥proxγr(x
k−Dk

i )− proxγr(x)
∥∥∥2)

6 max

(∥∥∥xk−Dk
i

−i − x?−i
∥∥∥2 ;

∥∥∥xk−Dk
i − x?

∥∥∥2)
= ck−Dk

i
(4)

Putting together Eqs. (2) and (4), we get that for time k and agent i(k) that is updating at time k, we have∥∥xki − x?i ∥∥2 6 (1− γµ)
2
ck−Dk

i
.

Part 2. Now let us use this result to prove the full lemma. For a generic slave j, not necessarily finishing at moment k, we

have xkj = x
k−dkj
j as k − dkj is the last time it was updated. In addition, we can apply the equation above to x

k−dkj
j . We,

thus, obtain the claimed result that for any agent j and any time k∥∥xkj − x?j∥∥2 =

∥∥∥∥xk−dkjj − x?j
∥∥∥∥2 6 (1− γµ)

2
ck−Dk

j

using the fact that k −Dk
j = k − dkj −D

k−dkj
j is the penultimate update time of agent j.



B. Resilience to infinite delays
As explained in the text, a unique feature of our algorithm is that the stepsize and convergence rate do not depend either on
the delays or the computing system. The algorithm then shows of resilience to long delays as illustrated in the numerical
section. Here we consider the extreme case of infinite delays, which correspond to a crash with lost of data. We show that
the algorithm is still able to to converge to a point with guarantees depending of the part of the data lost and the known
information at the moment of the crash

We recall our objective optimization problem

min
x∈Rd

m∑
i=1

πifi(x) + r(x). (5)

Theorem 3. Suppose that some machines, indexed by J , are unresponsive after moment K; so that the proposition π :=∑
j∈J πj of data is considered as missing after this moment. Then, the algorithm can still get an approximate solution x̂

of the full Problem (5) with precision

‖x̂− x?‖2 6
πδ

1− (1− ρ)2

with ρ = γµ is the convergence rate of the algorithm and δ := ‖xKJ − x?J‖2 measures the quality of the information
available at the moment K. We use here the notation xJ :=

∑
j∈j πjxj .

Proof. In this proof, we consider the case where p = 1 for all k > K; the general case follows similarly at the price of
slightly heaviest notation. Take k > K. Let us split xk between the weighted average iterate over the available data and
the one about lost data: by Jensen’s inequality

‖xk − x?‖2 6 (1− π)‖xk
J
− x?

J
‖2 + π‖xkJ − x?J‖2 = (1− π)‖xk

J
− x?

J
‖2 + πδ. (6)

From (2) in the proof of Lemma 1 and the contraction of the prox operator, we get

‖xkj − x?j‖2 6 (1− ρ)2‖xk−D
k
j − x?‖2,

from which we can obtain

‖xk
J
− x?

J
‖ 6

∑
j∈J

πj‖xkj − x?j‖ 6
∑
j∈J

πj(1− ρ)‖xk−D
k
j − x?‖ 6 (1− ρ)(1− π) max

j∈J
‖xk−D

k
j − x?‖. (7)

Combining it with (6) yields

‖xk − x?‖2 6 (1− ρ)2(1− π)3 max
j∈J
‖xk−D

k
j − x∗‖2 + πδ. (8)

From (6), observe now that ‖xk − x?‖2 6 max(‖xk
J
− x?

J
‖2; δ) := dk, then (7) implies that dk 6 maxj∈J d

k−Dk
j . Using

the same reasoning than in the proof of Theorem 1 in the main text1, we can prove that

dk 6 max
`∈[kM−1;kM )

d` <∞ where M = max{m : km 6 K}.

Thus {‖xk − x∗‖2}k is bounded. Consider now c∗ be the limit superior of this sequence and consider the sequence {lk}k
of indices such that

‖xlk − x∗‖2 → c∗.

Using (8) with lk and taking limsup, we obtain

c∗ = lim
k
‖xlk − x∗‖2 6 (1− ρ)2(1− π)c∗ + πδ,

c∗ 6
πδ

1− (1− ρ)2(1− π)3
6

πδ

1− (1− ρ)2
.

1The epoch sequence (km) just has to be slightly reformulated to take into account only the active slaves.



This means that all partial limits of {‖xk − x∗‖2}k are upper bounded by πδ
1−(1−ρ)2 . Since x̂k = proxγr(x

k) and the
proximal operator contracts distances, we get the same result for the sequence {‖x̂k − x∗‖2}k. We can conclude with
introducing x̂ the limit of a converging subsequence.

C. Refined rate with more than p0 inner iterations
We provide here the proof of Theorem 2 of the paper.

Theorem 2. In addition to the assumptions of Theorem 1, assume that every local loop in DAve-RPG uses p > p0. Then,∥∥x̂k − x?∥∥2 6 [η(p0)]2m max
i

∥∥x0i − x?i ∥∥2
where the rate is defined from ρ = γµ as

η(p0) = (1− ρ)

(
1− ρ

M
− · · · − ρ(1− ρ)p0−2

Mp0−1

)

Proof. The case p0 = 1 reduces to Theorem 1, so we assume p0 > 2. We use the notation of Lemma 1, and refine its
argumentation with the extra information that p ≥ p0. Let us resume from (3): using the triangle inegality rather that the
convexity inequality, we get similarly

‖zp − x?‖ 6 (1− πi)
∥∥∥xk−Dk

i
−i − x?−i

∥∥∥+ πi(1− ρ) ‖zp−1 − x?i ‖ .

Note that we have this inequality of p but also recursively for p− 1, p− 2,... Encapsulating these inequalities, we obtain:

‖zp − x?‖ 6 (1− πi)
√
ck−Dk

i
+ πi(1− ρ) ‖zp−1 − x?i ‖

6 (1− πi)
√
ck−Dk

i
+ πi(1− ρ)

(
(1− πi)

√
ck−Dk

i
+ πi(1− ρ)

∥∥tki − x?∥∥)
6
(

1− ρπi − (1− ρ)ρπ2
i − · · · − (1− ρ)p0−2ρπp0−1i

)√
ck−Dk

i
.

We now work for all machines at a fixed time k as follows

∥∥xk − x?∥∥ 6
M∑
i=1

∥∥πi(xki − x?i )∥∥ 6
M∑
i=1

πi
∥∥xki − x?i ∥∥ 6 (1− ρ)

M∑
i=1

πi
∥∥zki − x?∥∥

6 (1− ρ) max
i

√
ck−Dk

i

M∑
i=1

πi

(
1− ρπi − (1− ρ)ρπ2

i − · · · − (1− ρ)p0−2ρπp0−1i

)
6 (1− ρ) max

i

√
ck−Dk

i

(
1− ρ

M∑
i=1

π2
i − (1− ρ)ρ

M∑
i=1

π3
i − · · · − (1− ρ)p0−2ρ

M∑
i=1

πp0i

)
.

Note finally that by Jensen’s inequality for any p we have

1

M

M∑
i=1

πpi > (
1

M

M∑
i=1

πi)
p =

1

Mp
, so that

M∑
i=1

πpi >
1

Mp−1 .

This allows us to bound all the terms in the above expression and then proves the result.

D. Additional numerical results
We run our numerical experiments on three standard datasets. To save room, we have not included in the main text the
results for News20 dataset nor the suboptimality plots for different number of machines. They are provided here with the
same setups as described in the main text for Fig. 3 and 6 respectively.



0 20 40 60 80 100 120 140 160 180 200 220

10−3

10−2

Wallclock time (s)

Su
bo

pt
im

al
ity

DAve-RPG p = 1 Synchronous PG PIAG

Figure 1. Regularized loss suboptimality on the training set versus wall clock time. News20 dataset, 30% of the data on the 1st machine.

0 50 100 150 200 250 300 350 400
10−2

10−1

100

Wallclock time (s)

Su
bo

pt
im

al
ity

M = 5 M = 15 M = 25
M = 50 M = 100

Figure 2. Scalability with respect to the number of slave machines for URL dataset.

E. Comparison with SAGA
As explained in introduction, parallel stochastic optimization methods are not adapted to the setting of distributed data. We
go beyond this and we implement a direct extension of one of most popular stochastic algorithms, Prox-ASAGA (Leblond
et al., 2017),(Pedregosa et al., 2017), that handles the considered optimization problems using only local data.

We run some numerical experiments in order to have a comparison between this algorithm and the batch algorithms
(including ours). We observe on Figure 3 that Prox-ASAGA does not manage to reach high precision.

This bad behaviour was expected as our setting breaks the uniform sampling assumption under which Prox-ASAGA is
proved to work well. In the experiment, we use indeed 100 workers, which implies heterogeneous delays and highly
non-uniform sampling of the data. On top of this, Prox-ASAGA does not accept the efficient (fixed) stepsize.

References
Leblond, Rémi, Pedregosa, Fabian, and Lacoste-Julien, Simon. ASAGA: Asynchronous Parallel SAGA. In 20th Interna-

tional Conference on Artificial Intelligence and Statistics, pp. 46–54, 2017.



0 20 40 60 80 100 120 140 160 180 200 220

10−3

10−2

10−1

Wallclock time (s)

Su
bo

pt
im

al
ity

DAve-RPG p = 1 Synchronous PG PIAG Prox-ASAGA

Figure 3. Regularized loss suboptimality on the training set versus wall clock time, for Covtype dataset, 100 workers.

Pedregosa, Fabian, Leblond, Rémi, and Lacoste-Julien, Simon. Breaking the nonsmooth barrier: A scalable parallel
method for composite optimization. Advances in Neural Information Processing System 30 (NIPS), 2017.


