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Abstract
The sheer scale of modern datasets has resulted
in a dire need for summarization techniques that
can identify representative elements in a dataset.
Fortunately, the vast majority of data summariza-
tion tasks satisfy an intuitive diminishing returns
condition known as submodularity, which allows
us to find nearly-optimal solutions in linear time.
We focus on a two-stage submodular framework
where the goal is to use some given training func-
tions to reduce the ground set so that optimizing
new functions (drawn from the same distribution)
over the reduced set provides almost as much
value as optimizing them over the entire ground
set. In this paper, we develop the first streaming
and distributed solutions to this problem. In addi-
tion to providing strong theoretical guarantees, we
demonstrate both the utility and efficiency of our
algorithms on real-world tasks including image
summarization and ride-share optimization.

1. Introduction
In the context of machine learning, it is not uncommon to
have to repeatedly optimize a set of functions that are fun-
damentally related to each other. In this paper, we focus on
a class of functions called submodular functions. These
functions exhibit a mathematical diminishing returns prop-
erty that allows us to find nearly-optimal solutions in linear
time. However, modern datasets are growing so large that
even linear time solutions can be computationally expen-
sive. Ideally, we want to find a sublinear summary of the
given dataset so that optimizing these related functions over
this reduced subset is nearly as effective, but not nearly as
expensive, as optimizing them over the full dataset.

As a concrete example, suppose Uber is trying to give their
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drivers suggested waiting locations across New York City
based on historical rider pick-ups. Even if they discretize the
potential waiting locations to just include points at which
pick-ups have occurred in the past, there are still hundreds
of thousands, if not millions, of locations to consider. If
they wish to update these ideal waiting locations every day
(or at any routine interval), it would be invaluable to be able
to drastically reduce the number of locations that need to be
evaluated, and still achieve nearly optimal results.

In this scenario, each day would have a different function
that quantifies the value of a set of locations for that particu-
lar day. For example, in the winter months, spots near ice
skating rinks would be highly valuable, while in the summer
months, waterfront venues might be more prominent. On
the other hand, major tourist destinations like Times Square
will probably be busy year-round.

In other words, although the most popular pick-up locations
undoubtedly vary over time, there is also some underlying
distribution of the user behavior that remains relatively con-
stant and ties the various days together. This means that
even though the functions for future days are technically
unknown, if we can select a good reduced subset of candi-
date locations based on the functions derived from historical
data, then this same reduced subset should perform well on
future functions that we cannot explicitly see yet.

In more mathematical terms, consider some unknown dis-
tribution of functions D and a ground set Ω of n elements
to pick from. We want to select a subset S of ` elements
(with ` � n) such that optimizing functions (drawn from
this distribution D) over the reduced subset S is comparable
to optimizing them over the entire ground set Ω.

This problem was first introduced by Balkanski et al.
(2016) as two-stage submodular maximization. This
name comes from the idea that the overall framework can
be viewed as two separate stages. First, we want to use
the given functions to select a representative subset S, that
is ideally sublinear in size of the entire ground set Ω. In
the second stage, for any functions drawn from this same
distribution, we can optimize over S, which will be much
faster than optimizing over Ω.

Our Contributions. In today’s era of massive data, an
algorithm is rarely practical if it is not scalable. In this
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Table 1. Comparison of algorithms for two-stage monotone submodular maximization. Bounds that hold in expectation are marked (R).
For distributed algorithms, we report the time complexity of each single machine, where M represent the number of machines.

Algorithm Approx. Time Complexity Setup Function

LOCALSEARCH (Balkanski et al., 2016) 1/2(1− 1/e) O(km`n2 log n) Centralized Coverage functions only
REPLACEMENT-GREEDY (Stan et al., 2017) 1/2(1− 1/e2) O(km`n) Centralized Submodular functions
REPLACEMENT-STREAMING (ours) 1/7 O(kmn log `) Streaming Submodular functions
REPLACEMENT-DISTRIBUTED (R) (ours) 1/4(1− 1/e2) O(km`n/M + Mkm`2) Distributed Submodular functions
DISTRIBUTED-FAST (R) (ours) 0.107 O(kmn log /̀M + Mkm`2 log `) Distributed Submodular functions

paper, we build on existing work to provide solutions for
two-stage submodular maximization in both the streaming
and distributed settings. Table 1 summarizes the theoretical
results of this paper and compares them with the previous
state of the art. The proofs of all the theoretical results
are deferred to the Supplementary Material.

2. Related Work
Data summarization is one of the most natural applications
that falls under the umbrella of submodularity. As such,
there are many existing works applying submodular theory
to a variety of important summarization settings. For exam-
ple, Mirzasoleiman et al. (2013) used an exemplar-based
clustering approach to select representative images from
the Tiny Images dataset (Torralba et al., 2008). Kirchhoff &
Bilmes (2014) and Feldman et al. (2018) also worked on sub-
modular image summarization, while Lin & Bilmes (2011)
and Wei et al. (2013) focused on document summarization.

In addition to data summarization, submodularity appears
in a wide variety of other machine learning applications
including variable selection (Krause & Guestrin, 2005), rec-
ommender systems (Gabillon et al., 2013), crowd teach-
ing (Singla et al., 2014), neural network interpretabil-
ity (Elenberg et al., 2017), robust optimization (Kazemi
et al., 2017), network monitoring (Gomez Rodriguez
et al., 2010), and influence maximization in social net-
works (Kempe et al., 2003).

There have also been many successful efforts in scalable
submodular optimization. For our distributed implementa-
tion we will primarily build on the framework developed
by Barbosa et al. (2015). Other similar algorithms include
works by Mirzasoleiman et al. (2013) and Mirrokni & Zadi-
moghaddam (2015), as well as Kumar et al. (2015). In terms
of the streaming setting, there are two existing works we
will focus on: Badanidiyuru et al. (2014) and Buchbinder
et al. (2015). The key difference between the two is that
Badanidiyuru et al. (2014) relies on thresholding and will
terminate as soon as k elements are selected from the stream,
while Buchbinder et al. (2015) will continue through the end
of the stream, swapping elements in and out when required.

Repeated optimization of related submodular functions has

been a well-studied problem with works on structured pre-
diction (Lin & Bilmes, 2012), submodular bandits (Yue &
Guestrin, 2011; Chen et al., 2017), and online submodular
optimization (Jegelka & Bilmes, 2011). However, unlike
our work, these approaches are not concerned with data
summarization as a key pre-processing step.

The problem of two-stage submodular maximization was
first introduced by Balkanski et al. (2016). They present
two algorithms with strong approximation guarantees,
but both runtimes are prohibitively expensive. Recently,
Stan et al. (2017) presented a new algorithm known as
REPLACEMENT-GREEDY that improved the approximation
guarantee from 1

2 (1 − 1
e ) to 1

2 (1 − 1
e2 ) and the run time

from O(km`n2 log(n)) to O(km`n). They also show that,
under mild conditions over the functions, maximizing over
the sublinear summary can be arbitrarily close to maximiz-
ing over the entire ground set. In a nutshell, their method
indirectly constructs the summary S by greedily building
up solutions Ti for each given function fi simultaneously
over ` rounds.

Although Balkanski et al. (2016) and Stan et al. (2017)
presented centralized algorithms with constant factor ap-
proximation guarantees, there is a dire need for scalable
solutions in order for the algorithm to be practically useful.
In particular, the primary purpose of two-stage submodular
maximization is to tackle problems where the dataset is too
large to be repeatedly optimized by simple greedy-based
approaches. As a result, in many cases, the datasets can be
so large that existing algorithms cannot even be run once.
The greedy approach requires that the entire data must fit
into main memory, which may not be possible, thus requir-
ing a streaming-based solution. Furthermore, even if we
have enough memory, the problem may simply be so large
that it requires a distributed approach in order to run in any
reasonable amount of time.

3. Problem Definition
In general, if we want to optimally choose ` out of n items,
we need to consider every single one of the exponentially
many possibilities. This makes the problem intractable for
any reasonable number of elements, let alone the billions of
elements that are common in modern datasets. Fortunately,
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many data summarization formulations satisfy an intuitive
diminishing returns property known as submodularity.

More formally, a set function f : 2V → R is submodular
(Fujishige, 2005; Krause & Golovin, 2012) if, for all sets
A ⊆ B ⊆ V and every element v ∈ V \ B, we have
f(A + v) − f(A) ≥ f(B + v) − f(B).1 That is, the
marginal contribution of any element v to the value of f(A)
diminishes as the set A grows.

Moreover, a submodular function f is said to be monotone
if f(A) ≤ f(B) for all sets A ⊆ B ⊆ V . That is, adding
elements to a set cannot decrease its value. Thanks to a
celebrated result by Nemhauser et al. (1978), we know that
if our function f is monotone submodular, then the classical
greedy algorithm will obtain a (1 − 1/e)-approximation
to the optimal value. Therefore, we can nearly-optimize
monotone submodular functions in linear time.

Now we formally re-state the problem we are going to solve.

Problem Statement. Consider some unknown distribution
D of monotone submodular functions and a ground set Ω of
n elements to choose from. We want to select a set S of at
most ` items that maximizes the following function:

G(S) = Ef∼D[ max
T⊆S,|T |≤k

f(T )]. (1)

That is, the set S we choose should be optimal in expectation
over all functions in this distribution D. However, in general,
the distribution D is unknown and we only have access to
a small set of functions F = (f1, . . . , fm) drawn from D.
Therefore, the best approximation we have is to optimize
the following related function:

Gm(S) =
1

m

m∑
i=1

max
T∗i ⊆S,|T∗i |≤k

fi(T
∗
i ). (2)

Stan et al. (2017, Theorem 1) shows that with enough sam-
ple functions, Gm(S) becomes an arbitrarily good approxi-
mation to G(S).

To be clear, each T ∗i ⊂ S is the corresponding size k optimal
solution for fi. However, in general we cannot find the
true optimal T ∗i , so throughout the paper we will use Ti to
denote the approximately-optimal size k solution we select
for each fi. Table 2 (Appendix A) summarizes the important
terminology and can be used as a reference, if needed.

It is very important to note that although each function fi is
monotone submodular, G(S) is not submodular (Balkanski
et al., 2016), and thus using the regular greedy algorithm
to directly build up S will give no theoretical guarantees.
We also note that although G(S) is an instance of an XOS
function (Feige, 2009), existing methods that use the XOS
property would require an exponential number of evalua-
tions in this scenario (Stan et al., 2017).

1For notational convenience, we use A+ v = A ∪ {v}.

4. Streaming Algorithm
In many applications, the data naturally arrives in a stream-
ing fashion. This may be because the data is too large to
fit in memory, or simply because the data is arriving faster
than we can store it. Therefore, in the streaming setting we
are shown one element at a time and we must immediately
decide whether or not to keep this element. There is a lim-
ited number of elements we can hold at any one time and
once an element is rejected it cannot be brought back.

There are two general approaches for submodular maxi-
mization (under the cardinality constraint k) in the stream-
ing setting: (i) Badanidiyuru et al. (2014) introduced a
thresholding-based framework where each element from the
stream is added only if its marginal value is at least 1

2k of
the optimum value. The optimum is usually not known a
priori, but they showed that with only a logarithmic increase
in memory requirement, it is possible to efficiently guess
the optimum value. (ii) Buchbinder et al. (2015) introduced
streaming submodular maximization with preemption. At
each step, they keep a solution A of size k with value f(A).
Each incoming element is added if and only if it can be
exchanged with a current element of A for a net gain of at
least f(A)

k . In this paper, we combine these two approaches
in a novel and non trivial way in order to design a stream-
ing algorithm (called REPLACEMENT-STREAMING) for the
two-stage submodular maximization problem.

The goal of REPLACEMENT-STREAMING is to pick a set
S of at most ` elements from the data stream, where we
keep sets Ti ⊆ S, 1 ≤ i ≤ m as the solutions for functions
fi. We continue to process elements until one of the two
following conditions holds: (i) ` elements are chosen, or
(ii) the data stream ends. This algorithm starts from empty
sets S and {Ti}. For every incoming element ut, we use
the subroutine EXCHANGE to determine whether we should
keep that element or not. To formally describe EXCHANGE,
we first need to define a few notations.

We define the marginal gain of adding an element x to a
set A as follows: fi(x|A) = fi(x + A) − fi(A). For an
element x and set A, REPi(x,A) is an element of A such
that removing it from A and replacing it with x results in
the largest gain for function fi, i.e.,

REPi(x,A) = arg max
y∈A

fi(A+ x− y)− fi(A). (3)

The value of this largest gain is represented by
∆i(x,A) = fi(A+ x− REPi(x,A))− fi(A). (4)

We define the gain of an element x with respect to a set A
as follows:

∇i(x,A) =

{
1{fi(x|A)≥(α/k)·fi(A)}fi(x|A) if |A| < k,
1{∆i(x,A)≥(α/k)·fi(A)}∆i(x,A) o.w.,

where 1 is the indicator function. That is, ∇i(x,A) tells
us how much we can increase the value of fi(A) by either
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Algorithm 1 EXCHANGE

1: Input: u, S, {Ti}, τ and α {∇i terms use α}
2: if |S| < ` then
3: if 1

m

∑m
i=1∇i(u, Ti) ≥ τ then

4: S ← S + u
5: for 1 ≤ i ≤ m do
6: if∇i(u, Ti) > 0 then
7: if |Ti| < k then
8: Ti ← Ti + u
9: else

10: Ti ← Ti + u− REP(u, Ti)

adding x to A (if |A| < k) or optimally swapping it in (if
|A| = k). However, if this potential increase is less than
α
k · fi(A), then ∇i(x,A) = 0. In other words, if the gain
of an element does not pass a threshold of α

k · fi(A), we
consider its contribution to be 0.

An incoming element is picked if the average of the ∇i
terms is larger than or equal to a threshold τ . Indeed,
for ut, the EXCHANGE routine computes the average gain
1
m

∑m
i=1∇i(ut, Ti). If this average gain is at least τ , then

ut is added to S; ut is also added to all sets Ti with
∇i(ut, Ti) > 0. Algorithm 1 explains EXCHANGE in detail.

Now we define the optimum solution to Eq. (2) by

Sm,` = arg max
S⊆Ω,|S|≤`

1

m

m∑
i=1

max
|T |≤k,T⊆S

fi(T ),

where the optimum solution to each function is defined by

Sm,`i = arg max
S⊆Sm,`,|S|≤k

fi(S).

We define OPT = 1
m

∑m
i=1 fi(S

m,`
i ).

In Section 4.1, we assume that the value of OPT is
known a priori. This allows us to design REPLACEMENT-
STREAMING-KNOW-OPT, which has a constant factor ap-
proximation guarantee. Furthermore, in Section 4.2, we
show how we can efficiently guess the value of OPT by a
moderate increase in the memory requirement. This enables
us to finally explain REPLACEMENT-STREAMING.

4.1. Knowing OPT

If OPT is somehow known a priori, we can use
REPLACEMENT-STREAMING-KNOW-OPT. As shown in
Algorithm 2, we begin with empty sets S and {Ti}. For
each incoming element ut, it uses EXCHANGE to update
sets S and {Ti}. The threshold parameter τ in EXCHANGE
is set to OPT

β` for a constant value of β. This threshold guar-
antees that if an element is added to S, then the average of
functions fi over Ti’s is increased by a value of at least OPT

β` .
Therefore, if we end up with ` elements in S, we guarantee
that 1

m

∑m
i=1 fi(Ti) ≥ OPT

β . On the other hand, if |S| < `,
we are still able to prove that our algorithm has picked good

Algorithm 2 REPLACEMENT-STREAMING-KNOW-OPT

1: Input: OPT, α and β
2: Output: Sets S and {Ti}1≤i≤m, where Ti ⊂ S
3: S ← ∅ and
4: Ti ← ∅ for all 1 ≤ i ≤ m
5: for every arriving element ut do
6: EXCHANGE(ut, S, {Ti}, OPT

β` , α)

7: Return: S and {Ti}1≤i≤m

enough elements such that 1
m

∑m
i=1 fi(Ti) ≥

α·(β−1)·OPT
β·((α+1)2+α) .

The pseudocode of REPLACEMENT-STREAMING-KNOW-
OPT is provided in Algorithm 2.
Theorem 1. The approximation factor of
REPLACEMENT-STREAMING-KNOW-OPT is at least
min{ α(β−1)

β·((α+1)2+α) ,
1
β }. Hence, for α = 1 and β = 6 the

competitive ratio is at least 1/6.

4.2. Guessing OPT in the Streaming Setting

In this section, we discuss ideas on how to efficiently guess
the value of OPT, which is generally not known a priori.
First consider Lemma 1, which provides bounds on OPT.
Lemma 1. Assume δ = 1

m maxu∈Ω

∑m
i=1 fi(u). Then we

have δ ≤ OPT ≤ ` · δ.

Now consider the following set:

Γ = {(1 + ε)l | l ∈ Z,
δ

1 + ε
≤ (1 + ε)l ≤ ` · δ}

We define τl = (1 + ε)l. From Lemma 1, we know that one
of the τl ∈ Γ is a good estimate of OPT. More formally,
there exists a τl ∈ Γ such that OPT

1+ε ≤ τl ≤ OPT. For this
reason, we should run parallel instances of Algorithm 2, one
for each τl ∈ Γ. The number of such thresholds is O( log `

ε ).
The final answer is the best solution obtained among all the
instances.

Note that we do not know the value of δ in advance. So we
would need to make one pass over the data to learn δ, which
is not possible in the streaming setting. The question is, can
we get a good enough estimate of δ within a single pass over
the data? Let’s define δt = 1

m maxut′ ,t′≤t
∑m
i=1 fi(u

t′)
as our current guess for the maximum value of δ. Un-
fortunately, getting δt as an estimate of δ does not re-
solve the problem. This is due to the fact that a newly
instantiated threshold τ could potentially have already seen
elements with additive value of τ/(β`). For this rea-
son, we instantiate thresholds for an increased range of
δt/(1 + ε) ≤ τl ≤ ` · β · δt. To show that this new range
would solve the problem, first consider the next lemma.
Lemma 2. For the maximum gain of an incoming element
ut, we have 1

m

∑m
i=1∇i(ut, T t−1

i ) ≤ δt.

We need to show that for a newly instantiated threshold τ
at time t+ 1, the gain of all elements which arrived before
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Algorithm 3 REPLACEMENT-STREAMING

1: Γ0 = {(1 + ε)l|l ∈ Z}
2: For each τ ∈ Γ0 set Sτ ← ∅ and Tτ,i ← ∅ for all

1 ≤ i ≤ m {Maintain the sets lazily}
3: δ0 ← 0
4: for every arriving element ut do
5: δt = max{δt−1, 1

m

∑m
i=1 fi(u

t)}
6: Γt = {(1 + ε)l | l ∈ Z, δt

(1+ε)·β·` ≤ (1 + ε)l ≤ δt}
7: Delete all Sτ and Tτ,i such that τ /∈ Γt

8: for all τ ∈ Γt do
9: EXCHANGE(ut, Sτ , {Tτ,i}1≤i≤m, τ, α)

10: Return: arg maxτ∈Γn{ 1
m

∑m
i=1 fi(Tτ,i)}

Figure 1. Illustration of REPLACEMENT-STREAMING. Stream of
data arrives at any arbitrary order. At each step t, the set of thresh-
olds Γt is updated based on a new estimation of δt. Note that at
each time the number of such thresholds is bounded. For each
τ ∈ Γt there is a running instance of the streaming algorithm.

time t+ 1 is less than τ ; therefore this new instance of the
algorithm would not have picked them if it was instantiated
from the beginning. To prove this, note that since τ is a
new threshold at time t + 1, we have τ > `·β·δt

β·` = δt.
From Lemma 2 we conclude that the marginal gain of all
the ut

′
, t′ ≤ t is less than τ and EXCHANGE would not have

picked them. The REPLACEMENT-STREAMING algorithm
is shown pictorially in Figure 1 and the pseudocode is given
in Algorithm 3.

Theorem 2. Algorithm 3 satisfies the following properties:

• It outputs sets S and {Ti} ⊂ S for 1 ≤ i ≤ m,
such that |S| ≤ `, |Ti| ≤ k and 1

m

∑m
i=1 fi(Ti) ≥

min{ α(β−1)
β((α+1)2+α) ,

1
β(1+ε)} · OPT.

• For α = 1 and β = 6+ε
1+ε the approximation factor is at

least 1
6+ε . For ε = 1.0 the approximation factor is 1/7.

• It makes one pass over the dataset and stores at most
O( ` log `

ε ) elements. The update time per each element
is O(km log `

ε ).

Algorithm 4 REPLACEMENT-DISTRIBUTED

1: for e ∈ Ω do
2: Assign e to a machine chosen uniformly at random
3: Run REPLACEMENT-GREEDY on each machine l to

obtain Sl and {T li } for 1 ≤ i ≤ m
4: S, {Ti} ← arg maxSl,{T l

i }
1
m

∑m
i=1 fi(T

l
i )

5: S′, {T ′i} ← REPLACEMENT-GREEDY(
⋃
l S

l)
6: Return: arg max{ 1

m

∑m
i=1 fi(Ti),

1
m

∑m
i=1 fi(T

′
i )}

5. Distributed Algorithm
In recent years, there have been several successful ap-
proaches to the problem of distributed submodular max-
imization (Kumar et al., 2015; Mirzasoleiman et al., 2013;
Mirrokni & Zadimoghaddam, 2015; Barbosa et al., 2015).
Specifically, Barbosa et al. (2015) proved that the following
simple procedure results in a distributed algorithm with a
constant factor approximation guarantee: (i) randomly split
the data amongst M machines, (ii) run the classical greedy
on each machine and pass outputs to a central machine, (iii)
run another instance of the greedy algorithm over the union
of all the collected outputs from all M machines, and (iv) out-
put the maximizing set amongst all the collected solutions.
Although our objective function G(S) is not submodular,
we use a similar framework and still manage to prove that
our algorithms achieve constant factor approximations to
the optimal solution.

In REPLACEMENT-DISTRIBUTED (Algorithm 4), a central
machine first randomly partitions data among M machines.
Next, each machine runs REPLACEMENT-GREEDY (Stan
et al., 2017) on its assigned data. The outputs Sl, {T li }
of all the machines are sent to the central machine, which
runs another instance of REPLACEMENT-GREEDY over the
union of all the received answers. Finally, the highest value
set amongst all collected solutions is returned as the fi-
nal answer. See Appendix F for a detailed explanation of
REPLACEMENT-GREEDY.

Theorem 3. The REPLACEMENT-DISTRIBUTED algorithm
outputs sets S∗, {T ∗i } ⊂ S, with |S∗| ≤ `, |T ∗i | ≤ k, such
that

E[
1

m

m∑
i=1

fi(T
∗
i )] ≥ α

2
· OPT,

where α = 1
2 (1− 1

e2 ). The time complexity of algorithm is
O(km`n/M + Mkm`2).

Unfortunately, for very large datasets, the time com-
plexity of REPLACEMENT-GREEDY could be still pro-
hibitive. For this reason, we can use a modified version
of REPLACEMENT-STREAMING (called REPLACEMENT-
PSEUDO-STREAMING) to design an even more scalable
distributed algorithm. This algorithm receives all elements
in a centralized way, but it uses a predefined order to gen-
erate a (pseudo) stream before processing the data. This
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consistent ordering is used to ensure that the output of
REPLACEMENT-PSEUDO-STREAMING is independent of
the random ordering of the elements. The only other dif-
ference between REPLACEMENT-PSEUDO-STREAMING
and REPLACEMENT-STREAMING is that it outputs all sets
Sτ , {Tτ,i} for all τ ∈ Γn (instead of just the maximum).
We use this modified algorithm as one of the main building
blocks for DISTRIBUTED-FAST (outlined in Appendix E).

Theorem 4. The DISTRIBUTED-FAST algorithm outputs
sets S∗, {T ∗i } ⊂ S, with |S∗| ≤ `, |T ∗i | ≤ k, such that

E[
1

m

m∑
i=1

fi(T
∗
i )] ≥ α · γ

α+ γ
· OPT,

where α = 1
2 (1 − 1

e2 ) and γ = 1
6+ε . The time complexity

of algorithm is O(kmn log /̀M + Mkm`2 log `).

From Theorems 3 and 4, we conclude that the optimum num-
ber of machines M for REPLACEMENT-DISTRIBUTED and
DISTRIBUTED-FAST isO(

√
n/`) andO(

√
n/`), respectively.

Therefore, DISTRIBUTED-FAST is a factor of O(
√
n/log `)

and O(
√
/̀log `) faster than REPLACEMENT-GREEDY and

REPLACEMENT-DISTRIBUTED, respectively.

6. Applications
In this section, we evaluate the performance of our algo-
rithms in both the streaming and distributed settings. We
compare our work against several different baselines.

6.1. Streaming Image Summarization
In this experiment, we will use a subset of the VOC2012
dataset (Everingham et al.). This dataset has images con-
taining objects from 20 different classes, ranging from birds
to boats. For the purposes of this application, we will use
n = 756 different images and we will consider all m = 20
classes that are available. Our goal is to choose a small
subset S of images that provides a good summary of the
entire ground set Ω. In general, it can be difficult to even
define what a good summary of a set of images should look
like. Fortunately, each image in this dataset comes with a
human-labelled annotation that lists the number of objects
from each class that appear in that image.

Using the exemplar-based clustering approach (Mirza-
soleiman et al., 2013), for each image we generate an m-
dimensional vector x such that xi represents the number of
objects from class i that appear in the image (an example is
given in Appendix G). We define Ωi to be the set of all im-
ages that contain objects from class i, and correspondingly
Si = Ωi ∩ S (i.e. the images we have selected that contain
objects from class i).

We want to optimize the following monotone submodu-
lar functions: fi(S) = Li({e0}) − Li(S ∪ {e0}), where
Li(S) = 1

|Ωi|
∑
x∈Ωi

miny∈Si
d(x, y). We use d(x, y) to

denote the “distance” between two images x and y. More
accurately, we measure the distance between two images as
the `2 norm between their characteristic vectors. We also
use e0 to denote some auxiliary element, which in our case
is the all-zero vector.

Since image data is generally quite storage-intensive,
streaming algorithms can be particularly desirable. With
this in mind, we will compare our streaming algorithm
REPLACEMENT-STREAMING against the non-streaming
baseline of REPLACEMENT-GREEDY. We also compare
against a heuristic streaming baseline that we call STREAM-
SUM. This baseline first greedily optimizes the submodular
function F (S) =

∑m
i=1 fi(S) using the streaming algo-

rithm developed by Buchbinder et al. (2015). Having se-
lected ` elements from the stream, it then constructs each
Ti by greedily selecting k of these elements for each fi.

To evaluate the various algorithms, we consider two pri-
mary metrics: the objective value, which we define as∑m
i=1 fi(Ti), and the wall-clock running time. We note

that the trials were run using Python 2.7 on a quad-core
Linux machine with 3.3 GHz Intel Core i5 processors and 8
GB of RAM. Figure 2 shows our results.

The graphs are organized so that each column shows the
effects of varying a particular parameter, with the objective
value being shown in the top row and the running time in the
bottom row. The primary observation across all the graphs is
that our streaming algorithm REPLACEMENT-STREAMING
not only achieves an objective value that is similar to that
of the non-streaming baseline REPLACEMENT-GREEDY,
but it also speeds up the running time by a full order of
magnitude. We also see that REPLACEMENT-STREAMING
outperforms the streaming baseline STREAM-SUM in both
objective value and running time.

Another noteworthy observation from Figure 2(c) is that ε
can be increased all the way up to ε = 0.5 before we start to
see loss in the objective value. Recall that ε is the parameter
that trades off the accuracy of REPLACEMENT-STREAMING
with the running time by changing the granularity of our
guesses for OPT. As seen Figure 2(f), increasing ε up to
0.5 also covers the majority of running time speed-up, with
diminishing returns kicking in as we get close to ε = 1.

Also in the context of running time, we see in Figure 2(e)
that REPLACEMENT-STREAMING actually speeds up as k
increases. This seems counter-intuitive at first glance, but
one possible reason is that the majority of the time cost
for these replacement-based algorithms comes from the
swapping that must be done when the Ti’s fill up. Therefore,
the longer each Ti is not completely full, the faster the
overall algorithm will run.

Figure 3 shows some sample images selected by
REPLACEMENT-GREEDY (top) and REPLACEMENT-
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Figure 2. The top row of graphs shows the objective values achieved by the various algorithms, while the bottom row shows the run times.
In (a) and (d) we vary l, the maximum size of the subset S. In (b) and (e), we vary k, the maximum size of the set Ti assigned to each
function fi. Lastly, in (c) and (f), we vary ε, the parameter that controls the number of guesses we make for OPT.

STREAMING (bottom). Although the two summaries con-
tain only one image that is exactly the same, we see that
the different images still have a similar theme. For example,
both images in the second column contain bikes and people;
while in the third column, both images contain sheep.

Replacement-Streaming

Replacement-Greedy

Figure 3. Representative images selected in the different settings.

6.2. Distributed Ride-Share Optimization
In this application we want to use past Uber data to select
optimal waiting locations for idle drivers. Towards this end,
we analyze a dataset of 100,000 Uber pick-ups in Manhattan
from September 2014 (UberDataset), where each entry in
the dataset is given as a (latitude, longitude) coordinate
pair. We model this problem as a classical facility location
problem, which is known to be monotone submodular.

Given a set of potential waiting locations for drivers, we
want to pick a subset of these locations so that the distance
from each customer to his closest driver is minimized. In

particular, given a customer location a = (xa, ya), and a
waiting driver location b = (xb, yb), we define a “conve-
nience score” c(a, b) as follows: c(a, b) = 2− 2

1+e−200d(a,b) ,
where d(a, b) = |xa − xb|+ |ya − yb| is the Manhattan dis-
tance between the two points.

Next, we need to introduce some functions we want to
maximize. For this experiment, we can think about different
functions corresponding to different (possibly overlapping)
regions around Manhattan. The overlap means that there
will still be some inherent connection between the functions,
but they are still relatively distinct from each other. More
specifically, we construct regions R1, . . . , Rm by randomly
picking m points across Manhattan. Then, for each point
pi, we want to define the corresponding region Ri by all
the pick-ups that have occurred within one kilometer of pi.
However, to keep the problem computationally tractable, we
instead randomly select only ten pick-up locations within
that same radius. Figure 4(a) shows the center points of the
m = 20 randomly selected regions, overlaid on top of a
heat map of all the customer pick-up locations.

Given any set of driver waiting locations Ti, we define fi(Ti)
as follows: fi(Ti) =

∑
a∈Ri

maxb∈Ti
c(a, b). For this ap-

plication, we will use every customer pick-up location as
a potential waiting location for a driver, meaning we have
100,000 elements in our ground set Ω. This large number of
elements, combined with the fact that each single function
evaluation is computationally intensive, means running the
regular REPLACEMENT-GREEDY will be prohibitively ex-
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Figure 4. (a) shows a heatmap of all pick-up locations, as well as the centers of the twenty random regions that define each function fi. (b)
and (c) show the effects of changing the number of machines we use to distribute the computation. (d) shows the centers of the twenty
new regions (chosen from the same distribution) used for the evaluation in (e). (f) shows the training time for each summary used in (e).

pensive. Hence, we will use this setup to evaluate the two
distributed algorithms we presented in Section 5. We will
also compare our algorithms against a heuristic baseline that
we call DISTRIBUTED-GREEDY. This baseline will first
select ` elements using the greedy distributed framework in-
troduced by Mirzasoleiman et al. (2013), and then greedily
optimize each fi over these ` elements.

Each algorithm produces two outputs: a small subset S of
potential waiting locations (with size ` = 30), as well as a
solution Ti (of size k = 3) for each function fi. In other
words, each algorithm will reduce the number of potential
waiting locations from 100,000 to 30, and then choose 3
different waiting locations for drivers in each region.

In Figure 4(b), we graph the average distance from each
customer to his closest driver, which we will refer to as
the cost. One interesting observation is that while the cost
of DISTRIBUTED-FAST decreases with the number of ma-
chines, the costs of the other two algorithms stay relatively
constant, with REPLACEMENT-DISTRIBUTED marginally
outperforming DISTRIBUTED-GREEDY. In Figure 4(c), we
graph the run time of each algorithm. We see that the algo-
rithms achieve their optimal speeds at different values of M ,
verifying the theory at the end of Section 5. Overall, we see
that while all three algorithms have very comparable costs,
DISTRIBUTED-FAST is significantly faster than the others.

While in the previous application we only looked at the

objective value for the given functions f1, . . . , fm, in this
experiment we also evaluate the utility of our summary on
new functions drawn from the same distribution. That is,
using the regions shown in Figure 4(a), each algorithm will
select a subset S of potential waiting locations. Using only
these reduced subsets, we then greedily select k waiting
locations for each of the twenty new regions shown in 4(d).

In Figure 4(e), we see that the summaries from all three
algorithms achieve a similar cost, which is significantly
better than RANDOM. In this scenario, RANDOM is defined
as the cost achieved when optimizing over a random size `
subset and OPTIMAL is defined as the cost that is achieved
when optimizing the functions over the entire ground set
rather than a reduced subset. In Figure 4(f), we confirm
that DISTRIBUTED-FAST is indeed the fastest algorithm for
constructing each summary. Note that 4(f) is demonstrating
how long each algorithm takes to construct a size ` summary,
not how long it is taking to optimize over this summary.

7. Conclusion
To satisfy the need for scalable data summarization algo-
rithms, this paper focused on the two-stage submodular
maximization framework and provided the first streaming
and distributed solutions to this problem. In addition to
constant factor theoretical guarantees, we demonstrated the
effectiveness of our algorithms on real world applications
in image summarization and ride-share optimization.
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