Supplementary materials of HAFVFE

Anonymous

June 5, 2018

1 Proof of Proposition 1

Proof. To apply the NCVMP algorithm |[Knowles and Minka(2011)], we first need to compute
the inverse posterior covariance of the sufficient statistics of the beta distribution:

[n(0%) — i (9™ + 67) —ih1 (9™ + ¢°)
C(T(w)|¢) = l (@67 i(8F) — (6% 4+ ¢°)]

Next, we need to take the derivative of the expected log-joint probability wrt. ¢. Noting
that Eqq[w] = ¢a — ¢a and that E,,)[w] intervenes twice in the expression of the ELBO (in

E, [logp(z | 19)]) and in C(T(z) | 19)), we can use the chain rule and write:

C(T(w)| ¢) 74 {Eq(z> o8 (2] 9)] + Egulog (6| @)] — 5 Vet [w]C(T(2)

19)
-1 C(1(6%) — Y1 (™ + ¢°) P11 (9 + ¢°)
C(T(w)]) (WE‘I(@ o} or. + [o E¢1(¢ %) — (67 + ¢ﬁ>)) S (67 + ¢ }

+H/—/

1
3 (Vqs {Vargu[w]} C(T(2) |9) + Varyu) [w] Vg, {Egw [w]} 5=C(T(2)| >)
Expanding this final expression gives back the expression in proposition 1. O

Corollary 1. For a given value of d1, and dc, ¢ > qbf implies that ¢f is more affected
(positively or negatively) than wtﬁ by o1, and dc, and conversely.

Proof. This directly follows from the fact that
0F > ¢ & O + Bo) > O/ + A
O

Note also that, for a given value of ¢¢, K(¢°,¢*) — 0 if qbf — 0, and conversely for

K(¢%, ¢7).

2 Proof of Lemma 1

Proof. Let g3 := Vgp(z| 1A9) be the score function of the prior distribution and @ := Eq, (. [w].
We want to solve the following equality wrt d:

Ve {Batw [95] } = Ve, 0L

Which has the following solution:

R . d
Ve, W o, = Ve, {w}%EQt(Z) [9?9}

= V¢t{@}><
) .
th(z) ZT(0§_1 - 08) - A(Z) (9?—1 - 98) - %\VgB (19)
1
= Vg, {B} % ()

(Em) 27 (65, — 65) — By A(z)] (61, — 03) +

v -
000 3
dw °)
As p(z) is assumed to be from the exponential family, the derivative of the log-partition
function B(-) wrt the natural parameter 8(w) is equal to the expected value of the sufficient

statistics: R -
o (9) - 0; 1 — 6; Ep(z)[2]
dw 07 , — 64 EP(Z)[_A(Z)]
which can be plugged into Equation to retrieve the expression of Lemma 1.]

We see that the value of d, depends on two elements: the first being whether the sign
of Eqz)[2] — Epz)[z] matches the sign of 6;_; — 6y, and if the difference of the expected
log-partitions under the posterior ¢ and prior p is negative (because @], is always greater
than). The first summand can therefore be understood as a measure of how much the
new observations 7'(x;), which conditions ¢ matches the observed difference between the
previous posterior ¢;_1 and the initial prior pg: if it does (i.e. both differences are negative /
positive) then there is evidence that w should increase (because o, will grow, see below). The
second summand somehow measures whether the new posterior ¢; will on average decrease
the entropy of the model p(x |z), which is linearly determined by A(z).

3 AdaFVF implementation

Following [Kingma and Ba(2015)], we propose a scheme similar to the Adam optimizer where
the mean gradient and preconditioner are optimized according to the HAFVF. We will
consider the problem of inferring the vectors m and v?, i.e. the vectors of first and second
moments of the gradient. We will use a slightly different notation than ??: the decays [,
and [y will be replaced by w; and wy respectively, for the sake of coherence.

Let us consider that the partial derivative at the iteration ¢ follows a normal distribution
with mean and covariance my, s;. The conjugate prior of this distribution is a Normal Inverse
Gamma distribution with parameters 6 := {uq, ko, 2o, So}. One could already apply the
HAFVF to this model, with the restriction that w; = ws. To keep the constraint w; < wo,
we assume a fully factorized posterior, and factorize the joint probability defined in the paper
(equation 3) to:

p(dt7 my, S?? wy, Wy, b| Xl:t—l) ~ p(dt | my, S?>X

(qr—1(my | my_1, 8%/ ke—1) " p(8? | a1, Bi1))™?
Z(wa 0t—17 00)

1—

(p(mt | mo, 52/”0)%5;2]9(3? | v, 50))1 "
Z(w,0;_1,60)
q(wi | @1,)'p(wi | @10)" " q(wa | gy 1) p(ws | Pop)*
Z(b, @1,y P1) Z(b, Pgy_1s Pay)
p(b|Byi-1)

where 6 is defined as the prior or approximate posterior parameters at the trial 0 or t — 1,
respectively. This new formulation ensured that the decay of m was equal to w; * ws.

For a set of N partial derivatives, the natural implementation of the joint probability
presented here before for multiple, univariate gaussians would be

X

X (2)

N
p(d,m,s,w,b) = [[p(d | m', s")p(m’, s | 0")p(wr, ws | @)p(b]| B)

=1

but this model is hard to fit in practice, because the posterior over w is highly sensitive to the
dimensionality of the data at the level below (see Proposition 1). In order to deal with this,
we modified the above equation by taking the N radical of the joint probability p(d?, m?, s?).
The normalized log-joint probability then reads:

SN logp(di | m?, s7) + log p(m?, s' | 9")
N

An important consideration to make is that we fitted the HAFVF to each of the sets of
weights and biases independently: this ensured that the decays were adapted to the scale of
each of these gradients independently. For instance, the extreme layers of a neural network
usually have a wider distribution of partial derivatives than the intermediate layers: the
HAFVF can account for this and adapt accordingly. Also, unlike other approaches, our

log p(d, m, s, w,b) = +log p(wy, w2 | @) +log p(b| B).

Algorithm 1 AdaFVF algorithm. £7(q(m, s*,wy, b;)) stands for the ELBO value, d is the

vector of expected first moment of the partial derivatives, and d? the vector of expected
second moments. 7 is the step size.

Input: noisy function f(z) with parameters z = {2’ €]RDj} for j =1 : J, hyperparameters
{60, ¢, By}, learning rate n
Initialize randomly z;.
fort=1to T do
get dy = Vg, f(2z)
for j=1to J do

set 1:=0

set L7(q(my, s, wy, by)) = —00

while 7 < 100 and §£7(q(my, s¢, wy, b)) > 0.001 do
1 +=1
update:

expE [log B(d.m.s? wi wa b

0 s.t. q(my,s?|0]) = wnt {see CVMP}
(81,51} = axgmax,, 5 £(g(m, s b)) {see NOVMP)
compute L£7(q(m, s, wy, b;))

end while s
update 27,1 = 2/, — nxd/d?
end for
end for

method does not deal with degenerate samples by ignoring the step, but by decreasing their
relative importance: in this way, the algorithm can discriminate which layer should be ignored
(or better, reset) and which should not.

The full algorithm is given in Section [3]

Considering the fact that the function f is supposedly computationally expensive, the
computational cost of this approach comparatively not much higher than the one of other SGD
algorithms: update of the variational posterior over m, s is virtually identical to the update
achieved by Adam, and most of the cost comes from the (possibly grouped) computation of
the expected log-joint probability and its gradient. Expensive function in the ELBO include
mostly the logarithm of the rate parameter of the prior log f(w) and approximate posterior
log 8 which appear in the Gamma log-likelihood and in the expectation of the log-variance,
respectivelyE]. This evaluation is the step with the highest computational burden.

A final point to emphasize it that AdaFVF requires a careful choice of prior distribution
over m, s2, wy, wy and b. As stated in the main text, we used high and confident prior over w;
and ws to ensure that these parameters did not increase too much (so that they kept following
the current distribution of gradients) and also to ensure that, after an degenerate gradient
was observed, these parameters quickly came back to a value close the prior initially chosen.
For m, s* the value of 8 was set to 8y = {uy = 0,k9 = 0,9 = 2, By = 107°}. The gradient

the full expression of the latter is E, [log 82] = log 8 — (), from which only the log function need to
be computed _for every sample, as the effective number of observations « is supposedly identical for all the
elements of z7

over b was set to a highly informative value (8 = 20): this had the effect of allowing the
posterior over w to change slowly, and helped stabilizing the algorithm. This configuration
worked well across the few models we tested, regardless of the sample size or the complexity
of the problem. Future theoretical and practical research should, however, be dedicated to
explore in which way these choices impact the performance of the algorithm.

Although the proof of convergence of [Kingma and Welling(2013)] does not hold anymore
with our formulation, we observed that this algorithm was less sensitive to noise in the
gradient than Adam, and performed at least equally well for problems ranging from simple
auto-encoding variational inference to complex neural network training.

References

[Kingma and Ba(2015)] Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for
Stochastic Optimization. International Conference on Learning Representations 2015,
pages 1-15, 2015.

[Kingma and Welling(2013)] Diederik P Kingma and Max Welling. Auto-Encoding Vari-
ational Bayes. dec 2013. URL http://arxiv.org/abs/1312.6114http://www.aanda!
org/10.1051/0004-6361/201527329.

[Knowles and Minka(2011)] David Knowles and Thomas P. Minka. Non-conjugate variational
message passing for multinomial and binary regression. Nips, pages 1-9, 2011. URL
http://eprints.pascal-network.org/archive/00008459/.

http://arxiv.org/abs/1312.6114 http://www.aanda.org/10.1051/0004-6361/201527329
http://arxiv.org/abs/1312.6114 http://www.aanda.org/10.1051/0004-6361/201527329
http://eprints.pascal-network.org/archive/00008459/

	Proof of Proposition 1
	Proof of Lemma 1
	AdaFVF implementation

