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Abstract

A common problem in Machine Learning and
statistics consists in detecting whether the cur-
rent sample in a stream of data belongs to the
same distribution as previous ones, is an isolated
outlier or inaugurates a new distribution of data.
We present a hierarchical Bayesian algorithm that
aims at learning a time-specific approximate pos-
terior distribution of the parameters describing the
distribution of the data observed. We derive the
update equations of the variational parameters of
the approximate posterior at each time step for
models from the exponential family, and show
that these updates find interesting correspondents
in Reinforcement Learning (RL). In this perspec-
tive, our model can be seen as a hierarchical RL
algorithm that learns a posterior distribution ac-
cording to a certain stability confidence that is, in
turn, learned according to its own stability con-
fidence. Finally, we show some applications of
our generic model, first in a RL context, next with
an adaptive Bayesian Autoregressive model, and
finally in the context of Stochastic Gradient De-
scent optimization.

1. Introduction

Learning in a changing environment is a difficult albeit ubig-
uitous task. One key issue for learning in such context is
to discriminate between isolated, unexpected events and
a prolonged contingency change. This discrimination is
challenging with conventional techniques because they rely
on prior assumptions about environment stability. When
assuming fluctuating context, past experience will be for-
gotten immediately when an unexpected event occurs, but
if that event was just noise, this erroneous forgetting might
be very costly. In less variable contexts, model parameters
will tend to change more gradually, thus sometimes missing
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fluctuations when they happen faster than expected. Most
models cover one of the two possibilities, and either gradu-
ally adapt their predictions to the new contingency or do it
abruptly, but not both.

One classical solution to the problem of change detection is
to compare the likelihood of the current observation given
the previous posterior distribution with a default probabil-
ity distribution (Kulhavy & Karny, 1984), representing an
initial, naive state of the learner. Usually, the mixing coeffi-
cient (or forgetting factor) that is used to weight these two
hypotheses is adapted to the current data in order to detect
and account for the possible contingency change. This mix-
ing coefficient can be implemented in a linear or exponential
manner (Kulhavy & Kraus, 1996). We will focus here on
the exponential case.

In the past decade, several Bayesian solutions to this prob-
lem based on the aforementioned strategy have been pro-
posed (Smidl, 2004; Smidl & Gustafsson, 2012; Azizi &
Quinn, 2015). However, they usually suffer from several
drawbacks: many of them put a restrictive prior on the mix-
ing coefficient, e.g. (Smidl, 2004; Masegosa et al., 2017),
and cannot account for the fact that an unexpected event
is unlikely to be caused by a contingency change if the
environment has been stable for a long time.

We propose the Hierarchical Adaptive Forgetting Variational
Filter (HAFVF). The core idea of the model is that the the
mixing coefficient can be learned as a latent variable with
its own mixing coefficient. It is inspired by the observation
that animals tend to decrease their flexibility (i.e. their ca-
pacity to adapt to a new contingency) when they are trained
in a stable environment and that this flexibility is inversely
correlated with the training length (Dickinson, 1985). We
suggest that this strategy may be beneficial in many envi-
ronments, where the stability of the system identified by a
learner is a variable that can be learned as an independent
variable with a certain confidence: in certain environments,
contingency changes are inherently more less than in others.
Although this assumption may not hold in every case, we
show that it helps the algorithm to stabilize and discriminate
contingency changes from accidents.

Accordingly, we frame our algorithm in a RL framework
(Dearden & Russell, 1998). We explore how the forward
learning algorithm can be extended to the forward-backward
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Figure 1. Directed Graph of the HAFVE. Our contribution with
respect to previous works is to consider that the forgetting factor
w has a mixture prior with forgetting factor b which acts on w as
w acts on z.

case. We show three applications of our model: first in the
case of a simple RL task, next to fit an autoregressive model
and finally for gradient learning in a Stochastic Gradient
Descent (SGD) algorithm.

2. Hierarchical Model

Let x = {z1,29,..,o7} be a stream of data
distributed according to a set of N distributions
P = {p1(X1:ny | Z1)s o, PN (Xnun 1 +1:ny | ZN)}, Where the
change trials n := {ny,ng,...ny < T} € Z* are unknown
and unpredictable. We make the following assumptions:

Assumption 1. Let {t1,t2} € T and n, < t; < to, then
p(t2 € n) < p(t; € n).
Corollary 1. If m(xy, py,) is a measure of the relative prob-
ability that x; belongs to p, wrt po, and if xo = x1, then
m(vapn) > m(xlvpn)'

Assumption 1 and Corollary 1 state that the probability of
seeing a contingency change decreases with time in a steady
environment. This might seem counter-intuitive or even mal-
adaptive in many situations, but it is a key assumption we
use to discriminate artifacts from contingency change: after
a long sequence, the amount of evidence needed to switch
from the current belief to the naive belief is greater than
after a short sequence. This assumption will lead us to build
a model where, if the learner is very confident in his belief,
it will take him more time to forget past observations, be-
cause he will need more evidence for a contingency change.
Therefore, in this context, the learner aims not only to learn
the distribution of the data at hand, but also a measure of
the confidence in the volatility of the environment.

Assumption 2. In the set of probability distributions p, all

elements have the same parametric form that belongs to the
exponential family (EF) and have a conjugate prior that is
also from the EF:

Pn €EP = pn(xt| 2n) = h(z) exp {ZZ T(z) — A(zn)}
and py,(z,) = exp {T(z,,)" 0 —B(6)} .

We now focus on the problem of approximating the current
posterior distribution of z,,, given the current and past obser-
vations. For clarity, we will make the n subscripts implicit
in the following. Let us first focus on the problem of esti-
mating the posterior distribution of z in the stationary case.
After ¢ steps, and given some prior distribution p(z | 6y),
the posterior distribution can be formulated recursively as:

p(zt|2)p(z | x<t)
pze]x<t)
p(z:] 2)p(z | 60)
P(wt)

fort > 1

Z|xy, Xet) =
p(zfze,x<t) { otherwise.
Given the restriction imposed by Assumption 2, this poste-
rior probability distribution has a closed-form expression
and can be estimated efficiently.

We enrich this basic model by first formulating the prior
distribution of z at ¢ as a mixture of the previous posterior
distribution and an arbitrary prior:

1z | X Wn(z| 6O 1—w
Pz %<5 00, w) = 2 l(z'@tli(o'of’ W

Following Assumption 2, the conjugate distribution
pi—1(2 | x<¢) is also from the EF and reads

pi—1(Z | X<t) = exp {ZT 05— 9" A(z) — B(G)}

where we have expanded T(z), where @ = {6°,6"}. 0" is
the part of @ that indicates the effective (prior) number of
observations. If pg has the same form as p;_1(z | x<;), then

the log-partition function Z can be computed efficiently
(Mandt et al., 2014):

Z(w,0;-1,60) =exp { —wB(0;_1) — (1 — w)B()+
B(w8;—1+(1—w)6y) }.

Note that this result simplifies when combined with the
numerator of Equation (1):

p(z|01—1,00,w) :exp{T(z)Tﬁ—B(ﬂ)} (2)

where ¥ = w0;_1+(1 — w)Oy. The latent variable
w € [0;1] weights the initial prior with the posterior at
the previous trial. We incorporate this variable in the set of
the latent variables, and, we put a mixture prior on w with
a weight b: following this approach, the previous posterior
probability of w conditions the current one (similarly to z),
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together with a prior that is blind to the stream of data up
to now. Assuming that , z and w each can be generated by
changing distributions, the joint probability now reads:

p(xtvszv b‘ X<ty OOa ¢07ﬁ077) = p(mt ‘ Z)X

pi—1(2z|x<1)p(z | 69)
Z(w,x<t,00)

Pl lxa)plw| 6 O
Z(b,x<t, ¢p)

Pe-1(0|x<t)p(b]By)' 7
Z(77X<t7,60)

where we have assumed that the posterior probability
p(z, w, b| x) factorizes (Mean-Field assumption), and where
{00, ¢y, By} are the parameters of the naive, initial prior
distributions over {z,w, b} respectively. The model pre-
sented in Equation (3) is not conjugate anymore, and the
posterior probability does not generally have an analytical
solution. We therefore introduce a variational posterior to
approximate the posterior probability p(z,w, b| x). In short,
Variational Inference (Jaakkola & Jordan, 2000) works by
replacing the posterior by a proxy of an arbitrary form and
finding the configuration of this approximate posterior that
minimizes the Kullback-Liebler divergence between this
distribution and the true posterior. This is virtually identical
to maximizing the Expected Lower-Bound to the log-model
evidence (ELBO).

X

For simplicity, we use a factorized variational posterior
qt(z,w,b) = q:(z|01)qe(w]| @,)q:(b | B;) where each fac-
tor has the same form as the prior distribution of its latent
variable. Assuming that g;_1(-) =~ p;—1(-) Equation (3)
conveniently simplifies to:

p(zt,2,w, b x<t; 00, P, By, 7) = pat|2)x
p(z|w(@i—1 —00) + )%
p(w [ b(ey_1 — Pg) + ) X
p(b[v(Bi—1 = Bo) + Bo)-

This model is shown in Figure 1. In what follows, we
will restrict our analysis to the case where w and b are
Beta distributed, meaning that the approximate posterior
we will optimize for these two variables will also be a Beta
distribution.

“4)

2.1. Update equations

Notation We first define the following notation: dg :=
6,1 — 0, is the difference between the previous approx-
imate posterior and the initial prior. We use ¥ :=
w61 +(1 — w) By as the weighted prior parameters, and
9 as the expectation of ¥ under q(w). Similarly, ¢ and @
are the weighted prior over w and its expectation under g,
respectively. Also, we will often abbreviate the summary

statistics of z as T(z) := [ _j(z) } .

We now focus on the problem of finding the approximate
posterior configuration that maximizes the ELBO. Vari-
ous techniques have been developed to solve this problem:
whereas Stochastic Gradient Variational Bayes (Kingma &
Welling, 2013) and Stochastic Variational Bayes (Hoffman
et al., 2012) work well for large datasets, more traditional
conjugate (Winn et al., 2005) or non-conjugate (Knowles
& Minka, 2011) Variational Message Passing (VMP) algo-
rithms are better suited for our problem. This technique
indeed allows us to derive closed-form update equations
that can be sequentially applied to each of the nodes of the
factorized posterior distribution until a certain convergence
criterion is met. We interpret these results in a Hierarchi-
cal Reinforcement Learning framework, where each level
adapts its learning rate (LR) as a function of expected log-
likelihood of the current observation given the past.

Fortunately, under the form of the approximate posterior we
chose and using Conjugate VMP, the variational parameters
of the posterior over the latent parameters z have a simple
form given the current value of ¢, and 3,. For a number of
J observations observed at time ¢, we have:

0; =9 + > T(xi) )
j=1
67 =9 +.J (6)

Equation (5) finds an interesting correspondent in the RL
literature (Dearden & Russell, 1998). Consider the limit
case where 8y = 0 and J = 1 (which is still analytically
tractable following Equation (2)). As the expectation of a
distribution of the EF has the general form E,,, | ,) [T (z)] =
dA(z)/d z, one can derive a similar posterior expectation
of z (Diaconis & Ylvisaker, 1979):

¢
Egaw)2] = —7——
9 +1

Now, replacing ﬁ by «, the above expression becomes
(Mathys, 2016)

Eqgzwlz] = Q + a(T(z:) - Q) (7)
¢

where @ := z%’l is the average z at the time of the previous
t—1

observation and « is the LR, whose value is inversely pro-
portional to the effective memory Hf_l and to the current
expected value of the forgetting factor Ey(,,)[w]'. Equa-

tion (7) is a classical incremental update rule in single-stage

'One can easily see that E(,, [w] dictates the memory of the
learner. If J = 1 and assuming that E,,[w] is stationary, we

have: lim;_, . 87 = 6] +m
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RL (Sutton & Barto, 1998), and our algorithm can be viewed
as a special case of such algorithms where the LR is adapted
online to the data at hand.

The update equations of ¢, is, however, not as simple to
derive as 0;, because p(z|0;_1, 0, w) is not conjugate to
its Beta prior p(w | ¢,_1, ¢y, b). To solve this problem, we
used a Non-Conjugate VMP approach (Knowles & Minka,
2011). Brieflyy, NCVMP minimizes an approximate KL
divergence in order to find the value of the approximate
posterior parameters that maximizes the ELBO. In order to
use NCVMP, the first step is to derive the expected log-joint
probability of the model, which we will need to differen-
tiate wrt ¢, (or, in the case of the approximate posterior
update rule for b, 3,). It quickly appears that part of this
expression does not always have an analytical form for com-
mon exponential distributions: indeed, the expected value of
Eq(w)[B(19)] is, in general, intractable and needs to be ap-
proximated. Expanding the Taylor series of this expression
around @ = K, [w] up to the second order and taking the
expectation, we have:

Eq(u)[BO@)] = B@) + LBy [(w — 0] 3B@) )

Notice that the second term of the sum in Equation (8) can
be expressed as § Varg(,)[w] de” (T(z)|1A9) dg, where
C(T(z )|19) is the prior covariance of T(z). Hence, this
penalty term becomes important when the product of the
following factors increase: the distance between the pre-
vious posterior and initial prior dg, the posterior variance
of w and the prior covariance of T(z). This has the effect
of favoring values of ¢, and w that have a low variance,
especially when the two proposed distributions, ¢;—; and
Do, are very distant from each other.

We now derive the update equation for the approximate
posterior of w. Let us first define

d ~
§L = %Eq(z) [logp(z | 19)}

1
(50 = 75 Varq(w) [w] X
d
= do" C(T(2)|9) do ®
Sy = —% do” C(T(z)|9) dg x

C(logw | @)™V Vary () [w].
We obtain the following result:

Proposition 1. Using Algorithm 1 of (Knowles & Minka,
2011), the update equation for ¢, has the form:

o = 3% + K (o7, ¢)) or +K (¢, 67) 6c + v ™
o) =3 ~K(¢],68) 01— (¢f’¢?)5c+éff/ (10)

w1 u2 us

Mz + L(y)y
(L(z)L(y) — M?)(z +y)?
L(z) :=¢1(x)+ M

M = —1 (6] + ¢})

where K (z,y) = >0

and 1, (+) is the n™ order polygamma function.

Proof. Follows directly from Algorithm 1 in (Knowles &
Minka, 2011)2. O

The update equation in Equation (10) can be easily trans-
posed for 3,.

In Proposition 1, we show that the update of ¢; can be
decomposed in four terms: the first is the (weighted) prior
¢, which acts as a reference for the update.

The second term, u1, depends upon &y, the derivative wrt
w of the expectation of the log probability p(z | ) over z,
times a constant K (-, ). o, has a simple form:

Lemma 1. The derivative of the first order Taylor expan-
sion of the expected log probability log p(z) := log p(z | 19)
around W has the form

5y = ( (By(a) [T(2)] = Epy[T(2)]) " do )

The proof is given in the supplementary materials. The
expression of Jy, is easily understood as a measure of simi-
larity between the current update of the variational posterior
g:(z) and the previous posterior dependent prior p(z). Note
that a rather straightforward result of Equation (11) is that
limgn o, 01, = 0: as the posterior becomes stronger, the
relative change that one can expect tends to zero, and the
impact of d1, on the update of ¢ can be expected to decrease.
This is the behaviour we aimed at: a very strong posterior
probability becomes more and more difficult to change as
the training time increases.

Note also the opposite sign of the ¢y, related increment in
Equation (10) for ¢§* and gbf . This implies that if d1, > 0,
then u§ > 0, and the update of ¢f will tend to increase.
The opposite is true for ¢f , showing that the posterior of
w effectively deals with the similarity between the current
observation and the previous ones.

The third and fourth term of Equation (10), us and us, are
conditioned by the posterior variance of w and the prior
variance of T(z). In brief, they push the update of ¢ in a
direction that lowers the variance of both 8, and ¢. We will
show in the next section a simple example of the relative
contribution that each of these terms has in the update.

The full development can be found in the supplementary ma-
terials.
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Figure 2. Binary learning with a single level of forgetting. Incre-
mental (Left) and fixed-decay (Right) posterior learning of w. A.
First level learning. The learner looses its capacity to forget as data
are observed, because the expected effective memory (B.) tend
to grow indefinitely when no decay was assumed. C. Trial-wise
increment caused by w1, u2 and uz. The effects of contingency
changes decreased when no decay over w was considered.

An important consideration to make is that the value of ¢
must be > 0, which implies that u; + us + us > — ¢,
a restriction that may be violated in practice, especially
for low values of ¢. In such cases, we reset the value
of ¢, to some arbitrary value (typically ¢ > 0) where
the above inequality holds, and resume the update loop
until convergence or until a certain amount of iterations is
reached. Note that NCVMP is not guaranteed to converge,
but, as suggested by (Knowles & Minka, 2011), exponential
damping can improve the convergence of the algorithm.

2.2. Example: Binary distribution learning

In order to understand better the relative contribution of
u1, Uz and ug to the variational update scheme, we gener-
ated a sequence of 200 binary data distributed according to
a binomial distribution, whose probability was switching
between 0.8 and 0.2 every 40 trials. This distribution can
be modelled as a hierarchy of beta distributions, where the
first level is a Bernoulli distribution with a conjugate, Beta
approximate posterior, and the one or two levels above are
both Beta distributions measuring the stability of the level
below. We simulated the learning process in three cases:

e A two-layer HAFVF model, where only the posterior
over z could be forgotten (incremental).

e A two-layer HAFVF model, where the posterior of w
was being forgotten at a fixed rate (i.e. b fixed to 0.75).

e A three-layer HAFVF model, where the posterior of 3
was being forgotten at a rate of v = 0.999.

In each of these examples, we used the following implemen-
tation: the beta prior of the first level was set to 8y = 1.
The value of ¢, was set to {0.9,0.1}, which showed to
be a good compromise between informativeness and free-
dom to fit the data. If applicable, the top-level was set to
B ={0.75,0.25}.

In the first case, the fitting rapidly degenerated, as the mem-
ory grew at each trial. Figure 2, left column, gives a hint
about the reason of this behaviour: each observation de-
creases the prior covariance C'(T(z) | 9), which results in
a positive increment for both ¢¢* and ¢f through us. This
can be viewed as a form of confirmation bias: because the
posterior over w and z are confident about the distribution
of the data, they tend to reinforce each other and loose flexi-
bility. Consequently, the impact of the contingency changes
decreases as learning goes on. This might seem undesirable
(and, in this pathological case, it is indeed the case), but in
the case of datasets with outliers it can be very beneficial: a
longer training in a stable environment will require a longer
and/or stronger sequence of outliers to reset the parameters.

Adding a forgetting factor to the posterior of w can moderate
the effect of overtraining. In the case of a fixed-forgetting
for the posterior probability of w Figure 2, right column,
the fitting is much more stable: the model is able to learn
and forget the current distribution efficiently with a memory
bounded at approximately 5 trials (i.e. Eq(,)[w] ~ 0.8).
This shows that adding a forgetting over the posterior of
w effectively provides the flexibility we aim at: the contin-
gency changes are efficiently detected, and the drop of dy,
(through u;) triggers a resetting of the parameters in the
following trials.

In the last case (Figure 3), the first level of the model ac-
quires a higher memory than in the second example, due
to the ability of the model to adapt the forgetting factor of
w, which relaxes its bound. It is, however, more flexible
than the first example. Long-term and flexible learning of
the posterior probability of w therefore requires at least two
more levels of forgetting (b and ).

2.3. Forward-Backward algorithm

Let us consider the conjugate posterior of the distribution
p(z|z) from the EF p(z) when the whole dataset has been
observed. Fora givent € 1 : T, one can derive the posterior
probability of z given z; as:

p(z4 | 2)p(2 | X<, X515 00)
P(xt |X<t7 X>t)

(1)

p(Z |$t,Xﬁt;90) =
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Figure 3. Binary learning with two levels of adaptive forgetting (w
and b) and a third fixed level . D. is similar to C. for the third
level updates ¢(b).

Given Equation (2) and Equation (5), if p(z | 8) is the con-
jugate prior of p(x | x) and is from the EF, we can substitute
the prior p(z | x<t,X>t;00) by p(z | X<t,X>t; 09), where
X<, and X, are the effective samples retrieved from the
forward and the backward application of the AFVF on the
dataset, respectively. Formally, we have:

J

0; =707 +°0; — > T(zs;) — 65 (12)
j=1

07 =70] +%0) —J — 0]

where the f and b superscripts index the forward and back-
ward pass, respectively. In offline learning, this technique
can increase the effective memory of the approximate poste-
rior distribution just before and after the change trials.

3. Related work

Change detection is a broad field of research, where no opti-
mal and general solution exists (KULHAVY & ZARROP,
1993). Consequently, assumptions about the structure of the
system can lead to very different algorithms and results.

The Kalman Filter (KF) (Zarchan & Musoff, 2015) is a spe-
cial case of Bayesian Filtering (BF) (Doucet et al., 2001)
that has had a large success in the Signal Processing litera-
ture due to its sparsity and efficiency. It is, however, highly
restrictive and its assumptions need to be relaxed in many
instances. Specifically, we are here interested in cases where
the evolution of the environment is unpredictable, in con-
trast with Hidden Markov Models and KF which explicitly
give a structure to these changes (Bishop, 2006; Azizi &
Quinn, 2015). One can discriminate two main approaches in
order to deal with this problem: the first approach is to use
a global approximation of BF such as Particle Filtering (PF)

(Smidl & Quinn, 2008; Smidl & Gustafsson, 2012; Ozkan
et al., 2013), which enjoys a bounded error but suffers from
a lower accuracy than other local approximations. The sec-
ond class of algorithms comprises the Stabilized Forgetting
(SF) family of algorithms (KULHAVY & ZARROP, 1993;
Azizi & Quinn, 2015; Laar et al., 2017), from which our
model is a special case. SF suffers from an unbounded error,
but it usually has a greater accuracy for a given amount of
resources (Smidl & Quinn, 2008). Note that SF has been
shown to be essential to reduce the divergence between the
true posterior and its approximation in recursive Bayesian
estimation (Kérny, 2014). As we apply the SF operator to es-
timate the posterior of z and the mixture weight w (through
the b weighted mixture prior), we ensure that the divergence
is reduced for both of these latent variables.

Even though our model is described as a Stabilized Expo-
nential Forgetting (Kulhavy & Kraus, 1996) algorithm and
is well suited for signal processing, it can be generalized
to models where there is no prediction of future states (e.g.
smoothing of a signal, temporal difference learning etc.)
Also, it overcomes other methods in several following ways:

First, it uses a Beta prior on the mixing coefficient. This is
unusual (but not unique (Dedecius & Hofman, 2012)), as
most of previous approaches used a truncated exponential
prior (Smidl & Quinn, 2005; Masegosa et al., 2017) or a
fixed, linear mixture prior that account for the stability of
the process (Smidl & Gustafsson, 2012). In Linear SF, a
Bernoulli prior with a Beta hyperprior has been proposed
for the mixture weight (Laar et al., 2017). Our approach is
designed to learn the posterior probability of the forgetting
factor in a flexible manner. We show that this posterior
probability depends upon its own (and possibly a mixture
of) prior distribution and upon the prior covariance of the
model parameters C(T(z) \5) This makes the change
detection more subtle than an all-or-none process, as one
might observe with a Bernoulli distribution. It also enables
us to accumulate evidence for a change of distribution across
trials, which can help to discriminate outliers from real,
prolonged contingency changes. This is, to our knowledge,
an entirely novel feature in the adaptive forgetting literature.

The second important novelty of our model lies in its hi-
erarchical learning of the environment stability. This is
somehow similar to the Hierarchical Gaussian Filter (HGF)
(Mathys, 2011; Mathys et al., 2014). The present model
is, however, much more general, as the generic form we
provide can be applied to several members of the EF. Also,
although the KL divergence (error term) of our model is not
bounded in the long run, it can be efficiently applied to a
large subset of datasets and models, whereas the HGF often
fails to fit processes that are highly stationary, with many
datapoints and/or with abrupt contingency changes.
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4. Experiments

The HAFVF was coded in the Julia language (Bezanson
et al., 2017) using a Forward automatic differentiation algo-
rithm (Revels et al., 2016) for the NCVMP for the RL and
AR parts of this section, and using an analytical gradient for
the SGD part.

4.1. Smoothing

We first look at the behaviour of the model in the simple case
of estimating the current distribution of a random variable
sampled from a moving distribution. We simulated two se-
quences of 2x200 datapoints where each pair of points was
generated according to the same multivariate normal distri-
bution with mean 11 = {—2, 42} and po = {42, —2}. We
then added an independent random walk to these means.

We applied the Forward-Backward (FB) version of the
HAFVF to these datasets. We used the same Normal Inverse
Wishart prior for both of these results (g = 0, ko = 0.1,
No = 3, Ap = I). The prior over w was manipulated to
include a high confidence (¢ = 9, qbf = 1) or a low confi-
dence (¢f = 0.9, gbf = 0.1) about the average value of w.
Note that both of these priors had the same expected value.
To avoid overfitting of early trials (which may happen using
weak priors) while keeping the distribution flexible, we used
a flat prior over b: B, = 1. The top level forgetting was
ignored (7 = 1). Results are shown in Figure 4.

As the first setting had a weak prior over w, it had more
freedom to adapt the posterior distribution to the current
data. The effective memory trace (measured with the param-
eter k;) was greater when the environment was stable, and
changed faster after the contingency change than when the
prior was more confident, where the adaptation was slow
and the effective memory did not increase much above the
prior-defined threshold 10 (or 20 for the FB algorithm).

The behaviour of both models after the contingency change
is informative about the effect that the prior had on the infer-
ence process: the weak-prior forgetting factor dropped im-
mediately after an unexpected observation was made, which
can be advantageous when sudden changes are expected,
but maladaptive in the presence of outliers. The strong-prior
model behaved in the opposite way, and handled the change
more slowly than its weak-prior counterpart.

It is interesting to note that the posterior probability distri-
bution of b (not shown in the figure) was also more flexible
in the first model fit than in the second, because the observa-
tions in the level below were also more variable, due to less
confident prior over w: this had the effect of increasing the
gain in precision over w, which increased the strength of
the posterior over b (through us and ug in Equation (10)).

4.2. Autoregressive model

We fitted the HAFVF to a simulated a non-stationary sinu-
soidal signal of 400 datapoints issued from two separate
systems with a low and high frequency. These signals were
randomly generated as the sum of five sinusoidal waves,
with the scope of observing whether the algorithm was able
to adapt to the abrupt contingency change.

Because we also aimed at a more informative view on the
performance of the algorithm in the presence of artifacts,
we altered this signal by adding two impulses of 2 a.u. at
t = 100 and ¢t = 300.

We studied a single implementation of the model, with a
relatively strong prior over w (¢p = {4.5,0.5}) and a flat
prior over b, (3 = {1.0,1.0}). The Forward-backward
version of the algorithm was applied. We arbitrarily chose
a forward and a backward order of 10 samples. Figure 5
shows the results of this experiment.

4.3. Stochastic Gradient Descent

SGD is a popular technique to find the minimum of (of-
ten computationally expensive) loss-functions over large
datasets (Tran et al., 2015) or involving intractable integrals
(Kingma & Welling, 2013) that can be sampled from. How-
ever, SGD can be unstable, especially with recurrent neural
networks (Fabius & van Amersfoort, 2014) where an iso-
lated, highly noisy sample in the sequence can lead to a
degenerate sample of the gradient over the whole sequence.
This effect is further magnified when the sample size is low.

We implemented a slightly modified version of the HAFVF
in a SGD framework, intended to be similar to the Adam
optimizer® (Kingma & Ba, 2015). In short, we used two
specific decays w; and w, for the posterior of the means
and variances of the gradients, respectively, while ensuring

3More details can be found in the supplementary materials



HAFVF: A HRL algorithm for change detection

signal
Mixed

2! —— Forward
—— Backward
of “\/VV
_2/

Effective, Mixed
—— Effective, Forward
—— Effective, Backward
Expected, forward
---- Expected, backward

A. Signal Trace and predictions

signal

4D‘B‘ Effective and Expected memory

number of
observations

C. Parameter values

AR parameter

Symmetric log scale
cCowhhluo

Time

Figure 5. Experiment 2: Autoregressive model with a weak prior
over w. A. Observations and simulated response of the models.
The zoomed windows show the effect of the artifacts on the esti-
mated mean value. B. Effective memory (the “effective number
of observations” parameter of the posterior 8;: namely ;) of
the three parts of the algorithm (plain lines), and corresponding
expected effective memory: 1/(1 + Eq(,)[w] (dashed lines). Out-
liers had a limited impact on learning in both cases. C. Value of
the AR mean weights through time. The model dealt adequately
with the outliers (as the value of the parameters did not change
substantially) and with the contingency change (as the values were
adapted to the two different signals).

that w; < wy. We modelled these posteriors as a set of
Normal-Inverse-Gamma distributions. Each set of weights
and biases of the multilayer perceptron was provided with
its own hierarchical decay, to take advantage of the fact that
some groups of partial derivatives might be more noisy than
others. We used this algorithm with a strong prior over w;
and wq (¢p; ={9, 1} and ¢, =1{9.5,0.5}), to limit the effect
of degenerated gradients on the approximate posteriors.

This algorithm was tested with a variational recurrent auto-
encoding regression model inspired by (Moens & Zenon,
2018), where the output probability density was a first pas-
sage density of a Wiener process (Ratcliff, 1978). The simu-
lated dataset was composed of 64 subjects performing a 500
trials long two alternative forced choice task (Britten et al.,
1992), where choices and reaction times were the model
was aiming to predict. At each step of the SGD process, 5
subjects were sampled, for a total of 2500 trials.

Figure 6 compares the results of the AdaFVF SGD opti-
mizer with the Adam optimizer, executed with the default
parameters (o = 0.001, 81 = 0.9, B2 = 0.999). The
AdaFVF showed to be less affected by degenerate samples
than Adam, as can be seen from the ELBO trace and from
the heat plots of the expected memories, for an estimated
average negative ELBO of 1.08 for Adam and 0.85 for
AdaFVF at the iteration 10000.
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Figure 6. Experiment 3: SGD with the HAFVF. A. ELBO for the
Adam optimizer and for the AdaFVF SGD. After an outlier was
sampled, the AdaFVF forgot the gradient history, and reset its be-
lief to the naive prior, thereby decreasing the relative contribution
of this sample. B. Expected memory of the variance posteriors.
The impact of outliers is highlighted by the zoomed windows.

5. Limitations, perspective and conclusion

Our algorithm has the following limitations: first, the ex-
ponential form we have given to the mixture distributions
restricts the mixture prior to have a single mode. A linear
form, similar to (Laar et al., 2017) could however also be
implemented, at specific levels of the hierarchy of the whole
model. It may also be difficult to choose adequate level-
specific priors. A generic feature in adaptive forgetting is
that the naive prior of the lower level py(z) is usually cru-
cial but hard to specify. For the two top levels, we propose
as a rule of thumb to use a weak prior in situations where
abrupt contingency changes are expected. Such configura-
tions will usually provide a higher memory to the model
but are, however, more affected by outliers than stronger
priors. Performing updates using mini-batches of datapoints
should mitigate this effect. If the environment is meta-stable
(i.e. change points occur at a given frequency), derivation
of an online type II maximum likelihood optimization algo-
rithm of the prior parameters could improve the algorithm
efficiency.

The HAFVF and variants could lead to many promising
developments in RL related fields, where they might help
to prevent unnecessary forgetting of past events during ex-
ploration, in signal processing and more distant fields such
as deep learning, where they could be used to prevent the
occurrence of catastrophic forgetting.

In conclusion, we present a new generic model aimed at cop-
ing with abrupt or slow signal changes and presence of arti-
facts. This model flexibly adapts its memory to the volatility
of the environment, and reduces the risk of abruptly for-
getting its learned belief when isolated, unexpected events
occur. The HAFVF constitutes a promising tool for decay
adaptation in RL, system identification and SGD.
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