
WHInter: A Working set algorithm for High-dimensional
sparse second order Interaction models.

Marine Le Morvan 1 2 3 Jean-Philippe Vert 1 2 3 4

Abstract

Learning sparse linear models with two-way inter-
actions is desirable in many application domains
such as genomics. `1-regularised linear models
are popular to estimate sparse models, yet stan-
dard implementations fail to address specifically
the quadratic explosion of candidate two-way in-
teractions in high dimensions, and typically do not
scale to genetic data with hundreds of thousands
of features. Here we present WHInter, a working
set algorithm to solve large `1-regularised prob-
lems with two-way interactions for binary design
matrices. The novelty of WHInter stems from
a new bound to efficiently identify working sets
while avoiding to scan all features, and on fast
computations inspired from solutions to the max-
imum inner product search problem. We apply
WHInter to simulated and real genetic data and
show that it is more scalable and two orders of
magnitude faster than the state of the art.

1. Introduction
In application domains where the number of features ex-
ceeds the number of available samples, sparsity-inducing
regularisers have a long history of success. Genomic pre-
diction of complex phenotypes, biomedical imaging, as-
tronomy or finance are a few examples. In particular the
least squares with `1 regularisation, known as the LASSO
(Tibshirani, 1996), has been extensively studied. It enjoys
desirable statistical properties, since the number of samples
required for exact support recovery of a sparse model scales
as the logarithm of the number of features, under some

1MINES ParisTech, PSL Research University, CBIO-Centre for
Computational Biology, 75006 Paris, France 2Institut Curie, PSL
Research University, 75005 Paris, France 3INSERM, U900, 75005
Paris, France 4Ecole Normale Supérieure, Department of Mathe-
matics and Applications, 75005 Paris, France. Correspondence to:
Jean-Philippe Vert <jean-philippe.vert@mines-paristech.fr>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

assumptions (Wainwright, 2009). It also enjoys practical ad-
vantages, notably the interpretability of the learned models
and the availability of fast solvers.

Indeed, a lot of research effort has been devoted to accel-
erating solvers for sparsity constrained problems in high
dimension. A central idea is to exploit the sparsity of the
solution to develop algorithms that do not spend too much
time on optimising coefficients that will end up being 0. For
example, safe screening rules identify features which are
guaranteed to be inactive at the optimum so that their cor-
responding coefficients can be safely zeroed and set aside
from the pool of coefficients to update (El Ghaoui et al.,
2012; Xiang et al., 2011; Xiang & Ramadge, 2012; Fercoq
et al., 2015; Wang et al., 2013; Raj et al., 2016). Dynamic
screening rules (Bonnefoy et al., 2015) such as the GAP
safe rules (Fercoq et al., 2015) are particularly useful since
more and more coefficients can be safely zeroed while the
solver approaches the optimal solution. In spite of this, safe
rules tend to be conservative, thereby limiting the poten-
tial speed-up. To remedy this drawback, new working set
heuristics have been proposed. Working set algorithms en-
joy great success in practice, as exemplified by the popular
GLMNET package (Friedman et al., 2010). They iteratively
solve subproblems, either problems restricted to a subset
of features in the primal or to a subset of constraints in the
dual, until convergence. Working set methods allow to focus
coefficient updates on a set of features which can be sig-
nificantly smaller than that yielded by safe rules. However
this comes at a cost, that of checking the optimality condi-
tions for all features at each iteration. BLITZ (Johnson &
Guestrin, 2015) is a recently proposed working set algorithm
that has been shown to have state-of-the-art performance
for `1 regularised problems. Interestingly, the choice of the
working sets in BLITZ can be seen as an aggressive use
of the GAP safe rules (as noted in Massias et al., 2017)
where the size of the working set is chosen to maximise
the progress towards convergence. BLITZ can therefore be
combined with the GAP safe rules (or the FLEX constraint
elimination according to Johnson et al. terminology) at no
cost. A direct comparison between BLITZ and the GAP
safe rules by Ndiaye et al. (2017) illustrates the effectiveness
of the working set approach. Further developments have
also focused on coordinate descent (CD) to avoid wasteful

WHInter: A Working set algorithm for High-dimensional sparse second order Interaction models.

coordinate updates, which represent most of the time spent
by the solver (Fujiwara et al., 2016; Johnson & Guestrin,
2017).

The problem of fitting sparse linear models with two-way in-
teractions has also attracted attention during the past decade.
By two-way interactions we mean the entry-wise multi-
plication between two features; this is for example impor-
tant in genomics to detect possible epistasis between genes.
Surprisingly, very few of these works have links with the
aforementioned literature. A majority of them focus on the
design of sparsity-inducing penalties which enforce hered-
ity assumptions and apply to moderate-dimensional settings
(p < 1, 000) (Radchenko & James, 2010; Bien et al., 2013;
Lim & Hastie, 2015; Haris et al., 2016). Heredity assump-
tions state that an interaction can be included in the model
only if one or both of its corresponding main effects are
included. We note however that glinternet (Lim &
Hastie, 2015) was applied to higher dimensional problems
and in particular to a dataset with roughly p = 27, 000
main effects, although the size of the learned model is not
specified and the running time for the experiment is not
reported by the authors. Interestingly, glinternet uses
an active set strategy. Comparatively few works have been
devoted to learning sparse regression models with interac-
tions when the number of interactions is higher. Most of
them are heuristics which start by selecting main effects and
then incorporate interactions generated under the heredity
constraint in a possibly iterative fashion. The simplest form
of such heuristics consists in fitting a sparse linear model
with the main effects only, and then fitting a second sparse
linear model on all previously selected main effects and their
interactions. This has been used in practice for example by
Wu et al. (2009). Iterative refinements have been proposed
where the LASSO is fit several times, and each time the
set of candidate interactions considered is updated either by
subsets, with the interactions between the K most relevant
main effects selected at the previous fit (Bickel et al., 2010),
or in a greedy fashion, where new interactions are included
in the model as soon as a new main effect enters the LASSO
path (Shah, 2016). In a similar vein, Hao & Zhang (2014)
is based on a greedy model selection procedure instead of
several LASSO fits. While these heuristics can deal with
higher-dimensional problems than previous methods and
enjoy some desirable statistical properties, they do not pro-
vide exact solutions and do not enjoy statistical properties
as strong as those of the LASSO estimator.

An interesting link between the literature on interactions and
that of solver acceleration with sparsity inducing norms has
been made recently by Nakagawa et al. (2016). In the case
where variables are binary or with values in [0, 1], they pro-
pose an approach called Safe Pattern Pruning (SPP) which
is able to provide the optimal solution of the LASSO with
two-way interactions (or possibly higher-order interactions)

for fairly high-dimensional problems, with no heredity con-
straint. Typically, for a problem with 1,000 samples and
10,000 main effects where two-way interactions are con-
sidered, SPP can provide solutions for a grid of regularisa-
tion parameters within one or two hours on a laptop with
one core. SPP relies on the recently developed GAP safe
screening rules. More precisely, the authors propose a safe
pattern pruning criterion that can safely discard subsets of
interactions from the model to speed up convergence. The
performance of SPP is however hindered by several factors.
One of them is that safe screening rules can be quite con-
servative even in the sequential setting. This property is
inherited and amplified by the SPP criterion which can lead
to heavy computations.

Inspired by SPP and the acceleration of solvers for spar-
sity constrained problems we propose a scalable algorithm,
WHInter, to compute the optimal solution of `1-regularised
linear problems with two-way interactions. WHInter is a
working set method that efficiently delineates working sets
among all interactions and main effects thanks to two con-
tributions. First, we introduce a cheap and effective bound
to rule out subsets of interactions that are guaranteed to be
outside of the working set. Second, the identification of
the working set among the remaining features is cast as a
variant of the Maximum Inner Product Search (MIPS) prob-
lem to alleviate the corresponding computational load. We
find that WHInter is up to two orders of magnitude faster
than SPP. For example, a problem with roughly 700 sam-
ples and 100,000 main effects can be solved for a grid of
regularisation parameters in half an hour on a laptop with
one core compared to more than 30 hours with SPP. This
improvement in the scalability opens up new horizons in
several application fields. The rest of the paper is organised
as follows. In Section 2, we present useful knowledge and
notations used throughout the paper. In Section 3 we de-
scribe in details our algorithm and our main contributions.
In Section 4, we evaluate WHInter on simulated datasets and
finally in Section 5, we report results on a toxicogenomics
prediction task.

2. Preliminaries
2.1. Setting and notations

For any integer d ∈ N, we note JdK = {1, . . . , d} and
1d ∈ Rd the d-dimensional vector of 1’s. For any vector
u = (u1, . . . ,ud) ∈ Rd, we note ‖u ‖1 =

∑d
i=1 |ui |,

‖u ‖2 =
(∑d

i=1 u2
i

)1/2

, supp(u) = {i ∈ JdK : ui 6= 0}
and ‖u ‖0 = | supp(u) |. For any two vectors u,v ∈ Rd,
u� v is the vector of entry-wise products, i.e., (u� v)i :=
uivi for i = 1, . . . , d. For any matrix M, we denote by
Mi,j its (i, j)-th entry, Mj its j-th column and by mi its
i-th row. For any u ∈ Rd and I ⊂ JdK, uI = (ui)i∈I ,

WHInter: A Working set algorithm for High-dimensional sparse second order Interaction models.

and similarly, if M is a matrix with d columns, MI is the
sub-matrix with | I | columns MI = (Mi)i∈I .

Throughout the text we consider a design matrix
X ∈ {0, 1}n×p corresponding to n samples and p binary
features, together with a response vector y ∈ Rn. We
define an expanded design matrix Z ∈ {0, 1}n×D, with
D = p(p + 1)/2, which contains all p features from
X plus the p(p − 1)/2 interaction features. For clarity
purposes, we define a symmetric indexing function
τ : JpK2 7→ JDK that uniquely assigns to every main
effect and interaction an index in the expanded matrix Z
such that Zτ(j,k) = Zτ(k,j) := Xj � Xk. In particular
Zτ(i,i) = Xi � Xi = Xi represents the ith main effect.
Since X is a binary matrix, the interaction feature Xj �Xk

corresponds to a logical AND between features Xi and Xj .
We organise the main effects and interactions in a simple
tree as depicted in Figure 1 so as to reflect the property
that ∀(j, k) ∈ JpK2

,Zτ(j,k) ≤ Xj and Zτ(j,k) ≤ Xk.
In the sequel, the set composed of a main effect and its
interactions with all other main effects will be referred
to as a branch and for any j ∈ JpK, we note branch(j) =
{τ(j, k) : k ∈ JpK}.

We consider the convex optimisation problem:

min
(w,b)∈RD×R

PZ,λ(w, b) , (1)

with

PZ,λ(w, b) = F (Zw + b1n) + λ ‖w‖1

=

n∑
i=1

fi (ziw + b) + λ ‖w‖1 ,

where λ > 0 is a regularisation parameter and, for any i ∈
JnK, fi : R 7→ [−∞,+∞] is a loss function parametrised by
yi and assumed to be convex and differentiable. Table 1 pro-
vides examples of classical loss functions in classification
and regression. A dual formulation of (1) reads:

max
θ∈∆Z,λ

D(θ) := −
n∑
i=1

f∗i (−θi) , (2)

where

∆Z,λ =
{
θ ∈ Rn :

∣∣Z>θ∣∣ ≤ λ1D ,1
>
n θ = 0

}
, (3)

and where f∗i is the Fenchel-Legendre transform of the
loss fi, i.e., the function f∗i : R 7→ [−∞,+∞] defined
by f∗i (u) = supv∈R uv − fi(v). For the derivation of the
dual problem, we refer the reader to Johnson & Guestrin
(2015, Appendix E). The constraint 1>n θ = 0 comes from
the bias term b1n in the primal problem (1). We denote by
(w∗, b∗) and θ∗ a set of primal and dual optimal solutions to

problems (1) and (2) respectively. Strong duality holds and
therefore (w∗, b∗) and θ∗ satisfy Fermat’s rules (Ndiaye
et al., 2017):

θ∗ = −∇F (Zw∗ + b∗1n) , (4)

and

∀i ∈ JDK , Z>i θ
∗ ∈

{
{−λ, λ} if w∗i 6= 0 ,

[−λ, λ] if w∗i = 0 .
(5)

2.2. Basic working set algorithm

A general strategy to solve (1) is to follow a working set
approach, as summarised in Algorithm 1. At each iteration,
it solves (1) restricted to a small subset of featuresW called
the working set. W is typically chosen as the set of fea-
tures that violate the optimality condition (5) at the current
iteration. In the sequel, we will call such features violating
features. The algorithm converges when no violating fea-
ture remains, which occurs in a finite number of iterations
as shown in Kowalski et al. (2011). When the number of
interaction features runs into the billions, Algorithm 1 is not
tractable since the delineation of the working set (line 3 in
Alg. 1) requires O(p2n) operations at each iteration.

Algorithm 1 Working set algorithm

Input: Z ∈ {0, 1}n×D,y ∈ Rn, λ > 0
Output: w∗, b∗

1: Set θ ← −∇F (0n),W = ∅.
2: while true do
3: W ′ =

{
i ∈ JDK :

∣∣Z>i θ∣∣ ≥ λ}
4: if maxi∈W′

∣∣Z>i θ ∣∣ ≤ λ then Break elseW ←W ′
5: w∗W , b

∗ ← argmin
wW ,b

PZW ,λ(wW , b)

6: θ ← −∇F (ZWw∗W + b∗1n).
7: end while

3. The WHInter algorithm
3.1. Overview

WHInter is a working set algorithm that follows the general
scheme of Algorithm 1 but implements an efficient strategy
to delineate the working set among all main effects and in-
teractions. It is described in Algorithm 2. The identification
of the working set (line 3 in Algorithm 1) corresponds to
lines 11-18 in Algorithm 2. Instead of scanning through
all features to build the working set, WHInter first identi-
fies branches that are guaranteed to contain no violating
feature. These branches are identified via the evaluation
of a branch bound η(Xj ,Θ

ref
j ,θ,mref

j) (line 13), which
is presented in Section 3.2 together with the parameters it
takes as input. The branch bound is cheap to evaluate since
it solely depends on main effects and not on their numerous

WHInter: A Working set algorithm for High-dimensional sparse second order Interaction models.

∅

X1

X1X2 X1X3 X1X4

X2

X2X1 X2X3 X2X4

X3

X3X1 X3X2 X3X4

X4

X4X1 X4X2 X4X3

Branch 1

Figure 1 – Organisation of the main effects and interactions in a tree, depicted for 4 main effects.

Table 1 – Summary of useful functions for the LASSO and logistic regression: loss function fi, its derivative f ′i , its Fenchel-
Legendre transform f∗i .

fi(u) f ′i(u) f∗i (u)

LASSO 1
2 (yi − u)

2
u− yi

1
2 (yi + u)

2 − 1
2y2

i

Logistic regr. log(1 + exp(−yiu)) − u
yi

log(− u
yi

) + (1 + u
yi

) log(1 + u
yi

) −yi
1+exp(yiu)

interactions. Moreover, it is designed to efficiently rule out
branches thanks to the exploitation of the shared structure
among features in a branch, as well as the correlation among
dual variables for two sufficiently close points in the opti-
misation path. In cases where a branch cannot be ruled out,
features in the branch are considered one by one to build the
working set, which is very computationally expensive. In
order to reduce this cost, we cast the problem as a variant
of the Maximum Inner Product Search (MIPS) problem,
which is described in Section 3.3. If no violating feature is
identified then the algorithm has converged. Otherwise, a
new candidate solution is obtained by solving problem (1)
restricted to the features in the working set (line 20), and
the process is repeated until no violating feature remains.
While any solver can be used to solve the restricted problem,
we implemented in WHInter a coordinate descent approach
with safe pruning.

3.2. The Branch bound η

As WHInter iterates, it produces candidate solutions
(w∗, b∗) and corresponding dual variables θ (lines 20 and
21 of Algorithm 2). For two sufficiently close iterations,
or for two problems with sufficiently close regularisation
parameters, the candidate solutions are likely to be close
to one another, as well as the corresponding dual variables
provided that the function F does not vary too quickly.
WHInter exploits this intuition to speed up the identifica-
tion of the working set from an iteration to another or from
one problem to another. The following results relate the
criteria used to identify the working set for two distinct dual
variables (line 3 of Algorithm 1).
Lemma 3.1. For any X ∈ {0, 1}n×p, v ∈ Rn+, θ1,θ2 ∈
Rn, j ∈ JpK, I ⊂ JpK and α ∈ R, the following holds:

max
k∈I

∣∣θ>2 (v �Xk)
∣∣

≤ |α |max
k∈I

∣∣θ>1 (v �Xk)
∣∣+ ζ(θ2 − αθ1,v) ,

(6)

where ∀(u,v) ∈ Rn × Rn+ ,

ζ(u,v) = max

(∑
i:ui>0

uivi,−
∑
i:ui<0

uivi

)
.

The proof of Lemma 3.1 is provided in Appendix A. It is
based on the decomposition θ2 = αθ1 + (θ2 − αθ1), and
exploits the tree structure among features in a branch. To
exploit Lemma 3.1 in WHInter, we define for α ∈ R and for
all (v,θ1,θ2,m) ∈ Rn+ × Rn × Rn × R the function:

ηα (v,θ1,θ2,m) = |α |m+ ζ (θ2 − αθ1,v) , (7)

and we maintain an active setW ⊂ JDK, a matrix Θref ∈
Rn×p that contains reference dual variables Θref

j ∈ Rn for
each branch j ∈ JpK, and the vector mref ∈ Rp defined by:

∀j ∈ JpK , mref
j = max

k∈JpK:τ(j,k)/∈W

∣∣∣Z>τ(j,k)Θ
ref
j

∣∣∣ . (8)

We now state our main theorem which allows to identify
branches that are guaranteed to not contain any violating
feature (line 13 of Algorithm 2):

Theorem 3.1 (Branch pruning). For any Θref ∈ Rn×p,
W ⊂ JpK, j ∈ JpK, let mref

j ∈ R+ be given by (8). Then
for any θ ∈ Rn, α ∈ R and λ > 0, if

ηα

(
Xj ,Θ

ref
j ,θ,mref

j

)
< λ , (9)

then any feature from branch j that belongs to the working
set
{
i ∈ JDK :

∣∣Z>i θ∣∣ ≥ λ} is already inW . This holds in
particular if

ηmin := min
α∈R

ηα

(
Xj ,Θ

ref
j ,θ,mref

j

)
< λ . (10)

WHInter: A Working set algorithm for High-dimensional sparse second order Interaction models.

Algorithm 2 WHInter

Input: X ∈ {0, 1}n×p, y ∈ Rn, λ1 > · · · > λT .
Output: (W,w∗W , b

∗)t for each λt
Initialisation

1: θ ← −∇F (0n)
2: for j in JpK do
3: Θref

j ← θ
4: end for
5: W,mref ← update W(X,θ, JpK , λ1, ∅)
6: for t = 1 to T do

Pre-Solve
7: w∗W , b

∗ ← argmin
wW ,b

PZW ,λt(wW , b)

8: θ ← −∇F (ZWw∗W + b∗1n).
9: W,mref ← clean W(W, λt,θ,Θ

ref ,mref)
10: while true do

Branch pruning
11: V ← ∅
12: for j in JpK do
13: if η(Xj ,Θ

ref
j ,θ,mref

j) ≥ λt then
14: V ← V ∪ {j}
15: Θref

j ← θ
16: end if
17: end for

Identify the working set
18: W ′,mref

V ← update W(X,θ,V, λt,W)
19: if maxi∈W′

∣∣Z>i θ ∣∣ ≤ λ then
20: Break
21: else
22: W ←W ′
23: end if

Solve subproblem
24: w∗W , b

∗ ← argmin
wW ,b

PZW ,λt(wW , b)

25: θ ← −∇F (ZWw∗W + b∗1n).
26: W,mref ← clean W(W, λt,θ,Θ

ref ,mref)
27: end while
28: (W,w∗W , b

∗)k ← (W,w∗W , b
∗)

29: end for

30: function clean W(W, λ,θ,Θref ,mref)
31: for i inW do
32: if

∣∣Z>i θ∣∣ < λ then
33: Remove {i} fromW
34: for b in branch(i) do
35: if mref

b <
∣∣∣Z>i Θref

b

∣∣∣ then

36: mref
b ←

∣∣∣Z>i Θref
b

∣∣∣
37: returnW ,mref

Proof. Take I = {k ∈ JpK : τ(j, k) /∈ W}, v = Xj , θ1 =

Θref
j and θ2 = θ in Lemma 3.1. Then if (9) holds, we

deduce from (6) that

max
k∈JpK:τ(j,k)/∈W

∣∣∣Z>τ(j,k)θ
∣∣∣ < λ .

This shows that there is no feature i in branch j such that∣∣Z>i θ∣∣ ≥ λ and i is not already inW . The fact that for fixed
arguments, the function α→ ηα has a minimum α∗ ∈ R is
shown in Appendix B, along with an algorithm to compute
it in O (‖Xj ‖0 ln ‖Xj ‖0) operations . Since the statement
is true for any α, it is a fortiori true for α∗.

Theorem 3.1 provides criteria (9) and (10) that can be com-
puted for each branch j, and which if satisfied allow to
skip the search for violating variables in the branch. Im-
portantly, the features that are already in the working set
W are not taken into account to compute the criterion for
a given branch. This subtlety allows to rule out branches
even if they already contain features that were previously
incorporated in the working set. Note that the reference dual
variable for branch j, i.e, Θref

j , is kept unchanged as long
as branch j is pruned, and is otherwise updated to the latest
dual variable (line 15 of Algorithm 2). As mref

j depends
on the reference dual variable instead of the current one,
it is solely reevaluated each time the reference residual is
updated (line 18 of Algorithm 2) or when a feature from
branch j leaves the working set (line 22 of Algorithm 2) .

Criterion (10) is the most stringent one, and therefore
the most efficient one to prune branches, but it takes
O (‖Xj ‖0 ln ‖Xj ‖0) operations to compute. In order to
balance computational complexity of the bound with its
efficacy to prune branches, criterion (9) can be used as an
alternative for a specific value of α. One simple choice is to
just take α = 1, which leads to the criterion

η1

(
Xj ,Θ

ref
j ,θ,mref

j

)
= mref

j +ζ
(
θ −Θref

j ,Xj

)
< λ .

(11)
Alternatively, a simple heuristic to expect a more efficient
pruning is to choose an α that minimises ‖

(
θ − αΘref

j

)
�

Xj ‖2, i.e,

α`2 =
θ>
(
Θref
j �Xj

)
‖Θref

j �Xj ‖22
. (12)

ηα`2 is expected to be more effective than η1 since it is

reasonable to expect that ζ
(
θ − α`2Θ

ref
j ,Xj

)
is smaller

than ζ
(
θ −Θref

j ,Xj

)
. Overall, computing α = α`2

as in (12) is an O(‖Xj ‖0) operation. Since computing
ζ(θ − αΘref

j ,Xj) for a fixed α is also a O(‖Xj ‖0) com-
putation, the total cost of identifying branch j as violated
is O(‖Xj ‖0) for criterion (9) with α = 1 or α = α`2 ,

WHInter: A Working set algorithm for High-dimensional sparse second order Interaction models.

compared to O (‖Xj ‖0 ln ‖Xj ‖0) for criterion (10). In
Algorithm 2, the notation η refers to a user-defined function
among η1, ηα`2 or ηmin.

3.3. Updating the working set

When some branches V ⊂ JpK cannot be pruned, the simul-
taneous updates of the working setW and of mref

V requires
scanning through all features in the branches V (lines 5 and
18 in Algorithm 2). In what follows we discuss strategies to
make these updates efficient. For that purpose, let us first
notice that:

∀j, k ∈ JpK ,
∣∣∣Z>τ(j,k)θ

∣∣∣ =
∣∣∣(Xj �Xk)

>
θ
∣∣∣

=
∣∣∣(Xj � θ)

>
Xk

∣∣∣
=
∣∣Q>j Xk

∣∣ ,
where for any j ∈ JpK ,Qj = Xj � θ. This allows us to
write the updates ofW andmref

V as:W
′ =W ∪

{
τ(j, k) : j ∈ V, k ∈ JpK ,

∣∣Q>j Xk

∣∣ ≥ λ} ,
mref
j = max

k: |Q>
j Xk|<λ

∣∣Q>j Xk

∣∣ , ∀j ∈ V .
(13)

This highlights the fact that the updates of the working set
W and of mref

V can be cast as particular variants of the
Maximum Inner Product Search (MIPS) problem. MIPS
aims at finding a vector in a database of probes which max-
imises the inner product with a given query vector. If we
consider X as a set of probes, andQj as a query, then (13)
is a variant of MIPS where (i) the set of probe vectors sat-
isfies some constraints and is not known upfront and (ii)
the problem is a maximum absolute inner product search.
The update of W involves what is sometimes referred to
as above-λ-MIPS problems where again, maximum abso-
lute inner products are considered. The interest of casting
these updates as variants of MIPS problems is to exploit the
ideas developed in the literature for solving these problems
efficiently. Teflioudi & Gemulla (2016) and Fontoura et al.
(2011) give good overviews of MIPS solvers developed
for recommender systems and information retrieval appli-
cations respectively. In both cases, the proposed methods
rely on two main ideas: (i) adequate indexing techniques
or data structures and (ii) pruning criteria which allow to
not compute all inner products entirely. Since none of these
methods can directly be applied to problem (13) because of
its specificities, we propose an appropriate algorithm based
on a simple inverted index approach, which we will refer
to as IL (standing for Inverted Lists), and which exploits
the sparsity of the problem. Another option would be to
leverage pruning techniques. We detail such an attempt in
Appendix C. However, since our preliminary results with
the pruning technique were not conclusive compared to IL

on the simulated and real data, we only focus on the in-
verted index approach below. IL is detailed in Algorithm 3.

Algorithm 3 update W

Input: X ∈ {0, 1}n×p, θ ∈ Rn, V ⊂ JpK , λ ∈ R, W ⊂
JDK

Output: W, mref

1: for j ∈ V do
2: mref

j = 0
3: Set ak = 0 for all k ∈ JpK
4: for each i in supp(Xj) do
5: for each k in supp(xi) do
6: ak = ak + θi
7: end for
8: end for
9: for each k s.t. ak 6= 0 do

10: if mref
j < |ak | < λ then set mref

j = |ak |
11: if |ak | ≥ λ and τ(j, k) /∈ W then add τ(j, k) to
W

12: end for
13: end for
14: returnW,mref

The inverted lists consist of n lists, one for each dimension,
where each list supp(xi) records the indices of the features
in X which have a non-zero element for the ith dimension.
These inverted lists can be computed once for all when
WHInter starts and be reused for all MIPS problems, and
therefore building the inverted lists requires a negligible ad-
ditional computational cost. Algorithm (3) computes inner
product following a term-at-a-time (TAAT) scheme (Fon-
toura et al., 2011), i.e, the inner products are accumulated
simultaneously across probes and the contribution of the ith

dimension to the inner products is entirely processed before
moving to the next one.

4. Simulation study
We first test the performances of WHInter on synthetic
LASSO datasets. We assess the performances of the differ-
ent branch pruning bounds presented in 3.2, i.e, ηmin, η1

and ηα`2 , and further compare WHInter to a working set
method that uses the bound ζ(θ,Xj) instead of ηα, but is
otherwise equivalent to WHInter. We refer to this method as
ζ + IL. It is expected to prune less branches than WHInter
but does not require to maintain mref . We also compare
WHInter to SPP (Nakagawa et al., 2016) and BLITZ (John-
son & Guestrin, 2015). In our experiments, we use a slightly
modified, more efficient version of the code provided by the
authors of SPP (cf Appendix D). As for BLITZ, since the
method is not tailored for interaction problems, we first com-
pute the matrix Z which is fed as input to BLITZ. For this
reason we could not solve problems when p is too large (e.g.,

WHInter: A Working set algorithm for High-dimensional sparse second order Interaction models.

a

●

●

●

1000 2000 5000 10000

2
5

20
10

0
50

0
50

00

p (log scale)

tim
e

(s
)

(lo
g

sc
al

e)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

WHINter − ηαl2

WHINter − ηmin
WHINter − η1
ζ+IL
SPP
BLITZ

b

●

●

●

500 1000 2000 5000

5e
−

01
5e

+
00

5e
+

01
5e

+
02

n (log scale)
tim

e
(s

)
(lo

g
sc

al
e)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

WHINter − ηαl2

WHINter − ηmin
WHINter − η1
ζ+IL
SPP
BLITZ

c

●●●●●●●●●

●●●●
●●

●●
●●

●●●
●●

●●
●●

●
●

●●●
●

●●●
●●

●

●
●

0 10 20 30 40

0
20

0
40

0
60

0
80

0
10

00

lambda index

vi

ol
at

in
g

br
an

ch
es

 a
t t

he
 fi

rs
t i

te
ra

tio
n

●●●●●●●●●
●●●●

●●
●●

●
●

●●●
●●●●

●●
●

●
●●●

●

●
●

●●

●
●

●●

●●●●●●●●
●

●●●
●

●●●
●●

●●
●●

●●
●●

●
●

●●
●

●●●
●●●

●
●●

●●

●
●

●
●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●
●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

WHINter − ηαl2

WHINter − ηmin
WHINter − η1
ζ+IL
SPP

Figure 2 – Performance comparison on simulated data for an entire regularisation path. Comparison of WHInter with three
branch pruning criteria η ∈ {ηα2 , ηmin, η1} to ζ + IL, SPP and BLITZ. (a) Time in seconds for n = 1, 000 fixed and p varied. (b) Time
in seconds for p = 1, 000 fixed and n varied. (c) Number of branches that could not pruned at the first iteration, as a function of λ, for
n = p = 1, 000.

p = 10, 000 in the simulations) since, even in sparse for-
mat, storing Z requires too much memory. Importantly, the
performances reported for BLITZ do not include the time
required to compute Z fromX , which clearly advantages
BLITZ compared to the other methods.

We simulate five datasets X ∈ {0, 1}n×p with varying num-
ber of features and samples: three datasets with p = 1, 000
fixed and n ∈ {300, 1, 000, 10, 000}, and two more with
n = 1, 000 fixed and p ∈ {3, 000, 10, 000}. The fea-
tures are drawn from a Bernoulli distribution with param-
eter q ∈ [0.1, 0.5] itself drawn from a uniform distribu-
tion U[0.1,0.5]. We then randomly pick a set S of 100 fea-
tures among the main effects and interactions and compute
the response as y = ZSw

∗
S where w∗S ∼ N (0|S|, I|S|).

In all experiments, the LASSO is solved for a sequence
(λt)t∈JT K, T = 100, logarithmically spaced between λmax
and max(0.01λmax, λ

′) where λmax is the largest value
of λ for which at least one feature is selected, and λ′ is
the first λi for which 150 features or more are selected in
the model. For all methods, the time to compute λmax is
included in the total time required to solve the regularisation
path. In WHInter, λmax can easily be deduced from the
initialisation of mref since λmax = maxj∈JpKm

ref
j . All

algorithms are implemented in C++ and compiled with the
-O3 optimisation flag. The experiments are run on a 64-bit
machine with Intel Core i7 Processor 2.5 GHz, 16GB of
memory and 6MB of cache.

Results are shown in Figure 2. For n = 1, 000 (Figure 2a),
LASSO solutions are computed for 42, 32 and 28 values
of λ for p = 1, 000, p = 3, 000 and p = 10, 000 respec-
tively. In these cases smaller values of λ result in model
sizes exceeding 150 features. For the remaining settings
where p = 1, 000 and n = 300 or n = 10, 000 (Figure 2b),

LASSO solutions are computed for 34 and all 100 values of
λ between λmax and 0.01λmax, respectively. All methods
returned the exact same support for all values of λ.

In all settings, WHInter is the fastest method. Its better per-
formance compared to ζ+IL highlights the benefit of using
reference dual variables even if it implies to maintainmref .
The results also show the importance of α, since WHInter
with η`2 is always better (×1.2 to ×1.8) than WHInter with
η1 for example. Figure 2c confirms that the choice of α has
an impact on the pruning efficiency and consequently on
the performance. It shows, however, that on this experiment
ηmin does not allow to prune many more branches than η`2 .
This explains why η`2 tends to outperform ηmin, notably
for large n, since the higher computational complexity of
ηmin does not sufficiently enhance the pruning. We also
notice that SPP is the slowest algorithm, and in particular
ζ + IL is ×17 faster than SPP on average. This speed-up is
mostly explained by the fact that ζ + IL relies on inverted
lists to update the working set while SPP identifies the safe
set naively. Overall, WHInter offers a signifiant speed-up
of two orders of magnitude or more compared to its safe
screening counterpart.

5. Results on real world data
We now illustrate the performance of the different algo-
rithms on a real-world problem, where we want to predict
the cytotoxic response of 884 lymphoblastoid cell lines split
into a train (n = 620) and a test (n = 264) set, and charac-
terized by about 1.2×106 single nucleotide polymorphisms
(SNP) that represent their genotypes. The data was released
as part of the Dialogue on Reverse Engineering Assessment
and Methods 8 (DREAM 8) toxicogenetics challenge (Ed-

WHInter: A Working set algorithm for High-dimensional sparse second order Interaction models.

0 50 100 150

features selected

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

P
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n
 (

te
st

 s
e
t)

 -
ch

r.
 2

2

WHInter

LASSO

0 50 100 150

features selected

P
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n
 (

te
st

 s
e
t)

 -
 c

h
r.

 1

0 50 100 150 200 250

features selected

P
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n
 (

te
st

 s
e
t)

 -
 w

h
o
le

 g
e
n
o
m

e

Figure 3 – Predictive performance on the test set. The y-axis reports the pearson correlation between the true and predicted response.
The x-axis reports the number of selected features for the sequence of regularisation parameters tested.

uati et al., 2015). We encode the SNP data as a binary
matrix were 1 stand for the presence of a minor allele on
one or both copies of the chromosomes. As preprocessing
we removed SNP with less than 5% of 1’s and corrected the
data for population structure as in Price et al. (2006). To
focus on problems of increasing scales, we first considered
the SNPs of the smallest chromosome only (chr. 22), then
of the largest only (chr. 1) and finally of all chromosomes
together. This leads to train matrices with n = 620 and
p = 18, 168 SNPs for chromosome 22, p = 89, 027 SNPs
for chromosome 1 and p = 1, 166, 836 SNPs for the whole
genome.We consider a sequence of regularisation parame-
ter λ logarithmically spaced between λmax and 0.01λmax,
and by default stop computations as soon as 150 features
or more are selected. This occurs after the 12th, the 11th

and the 9th value of λ for chromosome 22, chromosome
1 and all chromosomes respectively. The time required to
compute the regularisation paths are shown in Fig. 4. The
relative performances of the methods are the same as for
the simulations. ηα`2 provides a ×1.4 (resp. ×1.8) speed
up compared to using η1 for chromosome 22 (resp. chr. 1).
and compared to SPP, there is a ×81 (resp. ×73) speed up
for chromosome 22 (resp chr. 1). In the case of the whole
genome, we only ran WHInter with ηα`2 which takes two
days and a half. While this can seem a lot, we recall that this
corresponds to a problem with roughly 680 billion features.
We did not run other methods on the whole genome since
most of them are expected to take too long.

Out of curiosity, we also obtained preliminary results con-
cerning the predictive performance of WHInter compared
to a LASSO with no interactions on such high-dimensional
problems. The results, presented in Figure 3 , suggest that
interactions are relevant predictors for this data. For the
chromosomes 1 and 22 taken independently, the predic-
tive accuracy of WHInter is better than that of the simple
LASSO for almost every value of λ. By contrast, for the
whole genome, the LASSO clearly performs better, which
may underline statistical issues due to the huge number of
variables in this case (Donoho & Tanner, 2009).

●

●

●

2e+04 1e+05 5e+05

2
5

20
50

20
0

10
00

p (log scale)

tim
e

(m
in

)
(lo

g
sc

al
e)

●

●

●

●

●

●

●

●

●

●

●

●

●

WHINter − ηαl2

WHINter − ηmin
WHINter − η1
ζ+IL
SPP

Figure 4 – Performance comparison on SNPs data for an en-
tire regularisation path. The y-axis reports the total time (in
minutes) required to compute the LASSO path for chromosome
22 (around 20,000 SNPs), chromosome 1 (around 90,000 SNPs)
and the whole genome (around 1.2 million SNPs).

6. Discussion
We presented WHInter, a working set algorithm designed
to solve large scale `1-penalised linear problems with inter-
action terms. WHInter implements a new branch pruning
bound to efficiently delineate the working set among the
many possible interaction variables, and a variant of MIPS
solver that provides a further speed up. We showed that
WHInter is up to two orders of magnitudes faster than com-
peting approaches. While we presented WHInter for binary
data, it could also be used for data rescaled in [0, 1], pro-
vided that an appropriate solver is picked for the MIPS
problems. As for future work, one could exploit the re-
cent works on approximate MIPS (Shrivastava & Li, 2014;
Teflioudi & Gemulla, 2016) to obtain an additional speed
up for the computationally intensive updates, and possibly
rely on recent post selection-inference (Suzumura et al.,
2017) frameworks to characterise the approximate solution
obtained.

WHInter: A Working set algorithm for High-dimensional sparse second order Interaction models.

Acknowledgements
We thank our anonymous reviewers for their useful com-
ments as well as Nino Shervashidze for thoughtful discus-
sions.

References
Bickel, P. J., Ritov, Y., and Tsybakov, A. B. hierarchical se-

lection of variables in sparse high-dimensional regression.
In Borrow. strength theory powering Appl. Festschrift
Lawrence D. Brown, pp. 56–69. Institute of Mathematical
Statistics, 2010.

Bien, J., Taylor, J., and Tibshirani, R. A lasso for hierarchi-
cal interactions. Ann. Stat., 41(3):1111–1141, 2013.

Bonnefoy, A., Emiya, V., Ralaivola, L., and Gribonval,
R. Dynamic Screening: Accelerating First-Order Al-
gorithms for the Lasso and Group-Lasso. IEEE Trans.
Signal Process., 63(19):5121–5132, 2015.

Donoho, D. L. and Tanner, J. Observed universality of
phase transition in high-dimenisonal geometry, with ap-
plications for modern data analysis and signal processing.
Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci.,
367(1906):4273–4293, 2009.

Eduati, F., Mangravite, L. M., Wang, T., Tang, H., Bare,
J. C., Huang, R., Norman, T., Kellen, M., Menden, M. P.,
Yang, J., Zhan, X., Zhong, R., Xiao, G., Xia, M., Abdo,
N., Kosyk, O., Friend, S., Dearry, A., Simeonov, A., Tice,
R. R., Rusyn, I., Wright, F. A., Stolovitzky, G., Xie, Y.,
Saez-Rodriguez, J., Aittokallio, T., Alaimo, S., Amadoz,
A., Ammad-ud din, M., Azencott, C. A., Bacardit, J.,
Barron, P., Bernard, E., Beyer, A., Bin, S., van Bömmel,
A., Borgwardt, K., Brys, A. M., Caffrey, B., Chang, J.,
Chang, J., Chheda, H., Christodoulou, E. G., Clément-
Ziza, M., Cohen, T., Cowherd, M., Demeyer, S., Dopazo,
J., Elhard, J. D., Falcao, A. O., Ferro, A., Friedenberg,
D. A., Giugno, R., Gong, Y., Gorospe, J. W., Granville,
C. A., Grimm, D., Heinig, M., Hernansaiz, R. D., Hintsa-
nen, P., Hochreiter, S., Huang, L. C., Huska, M., Jaiswal,
A., Jiao, Y., Kaski, S., Kaur, I., Ali Khan, S., Klambauer,
G., Krasnogor, N., Kuhn, M., Bartosz Kursa, M., Kutum,
R., Lazzarini, N., Lee, I., Leung, M. K., Khong Lim,
W., Liu, C., Llinares López, F., Mammana, A., Mayr,
A., Michoel, T., Mongiovı̀, M., Moore, J. D., Mpindi,
J. P., Narasimhan, R., Opiyo, S. O., Pandey, G., Peabody,
A. L., Perner, J., Poso, A., Pulvirenti, A., Rawlik, K.,
Reinhardt, S., Riffle, C. G., Ruderfer, D., Sander, A. J.,
Savage, R. S., Scornet, E., Sebastian-Leon, P., Sharan,
R., Johann Simon-Gabriel, C., Stoven, V., Sun, J., Tang,
J., Teixeira, A. L., Tenesa, A., Vert, J. P., Vingron, M.,
Walter, T., Wennerberg, K., Whalen, S., Wisniewska, Z.,
Wu, Y., Xu, H., Zhang, S., Zhao, J., Jim Zheng, W., and

Ziwei, D. Prediction of human population responses to
toxic compounds by a collaborative competition. Nat.
Biotechnol., 33(9):933–940, 2015.

El Ghaoui, L., Viallon, V., and Rabbani, T. Safe feature elim-
ination in sparse supervised learning. Pacific J. Optim., 8
(4):667–698, 2012.

Fercoq, O., Gramfort, A., and Salmon, J. Mind the Duality
Gap: Safer Rules for the Lasso. In Proc. 32nd Int. Conf.
Mach. Learn., pp. 333–342, 2015.

Fontoura, M., Josifovski, V., Liu, J., Venkatesan, S., Zhu, X.,
and Zien, J. Y. Evaluation Strategies for Top-k Queries
over Memory-Resident Inverted Indexes. Proc. VLDB
Endow., 4(12):1213–1224, 2011.

Friedman, J., Hastie, T., and Tibshirani, R. Regulariza-
tion Paths for Generalized Linear Models via Coordinate
Descent. J. Stat. Softw., 33(1):1–22, 2010.

Fujiwara, Y., Ida, Y., Shiokawa, H., and Iwamura, S. Fast
Lasso Algorithm via Selective Coordinate Descent. In
Proc. 30th Conf. Artif. Intell., pp. 1561–1567, 2016.

Hao, N. and Zhang, H. H. Interaction Screening for Ultra-
High Dimensional Data. J. Am. Stat. Assoc., 109(507):
1285–1301, 2014.

Haris, A., Witten, D., and Simon, N. Convex Modeling of
Interactions With Strong Heredity. J. Comput. Graph.
Stat., 25(4):981–1004, 2016.

Johnson, T. and Guestrin, C. Blitz: A Principled Meta-
Algorithm for Scaling Sparse Optimization. In Proc.
32nd Int. Conf. Mach. Learn., pp. 1171–1179, 2015.

Johnson, T. B. and Guestrin, C. StingyCD: Safely Avoiding
Wasteful Updates in Coordinate Descent. In Proc. 34th
Int. Conf. Mach. Learn., pp. 1752–1760, 2017.

Kowalski, M., Weiss, P., Gramfort, A., and Anthoine, S.
Accelerating ISTA with an active set strategy. In OPT
2011 4th Int. Work. Optim. Mach. Learn., pp. 7, 2011.

Lim, M. and Hastie, T. Learning Interactions via Hierarchi-
cal Group-Lasso Regularization. J. Comput. Graph. Stat.,
24(3):627–654, 2015.

Massias, M., Gramfort, A., and Salmon, J. From safe screen-
ing rules to working sets for faster Lasso-type solvers.
ArXiv e-prints, 2017.

Nakagawa, K., Suzumura, S., Karasuyama, M., Tsuda, K.,
and Takeuchi, I. Safe Pattern Pruning: An Efficient Ap-
proach for Predictive Pattern Mining. In Proc. 22nd ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 1785–
1794, 2016.

WHInter: A Working set algorithm for High-dimensional sparse second order Interaction models.

Ndiaye, E., Fercoq, O., Gramfort, A., and Salmon, J. Gap
Safe screening rules for sparsity enforcing penalties. J.
Mach. Learn. Res., 18(128):1–33, 2017.

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt,
M. E., Shadick, N. A., and Reich, D. Principal compo-
nents analysis corrects for stratification in genome-wide
association studies. Nat. Genet., 38(8):904–909, 2006.

Radchenko, P. and James, G. Variable selection using Adap-
tive Nonlinear Interaction Structures in High dimensions.
J. Am. Stat. Assoc., 105(492):1541–1553, 2010.

Raj, A., Olbrich, J., Gärtner, B., Schölkopf, B., and Jaggi,
M. Screening Rules for Convex Problems. ArXiv e-prints,
2016.

Shah, R. D. Modelling interactions in high-dimensional
data with backtracking. J. Mach. Learn. Res., 17(207):
1–31, 2016.

Shrivastava, A. and Li, P. Asymmetric LSH (ALSH) for
sublinear time maximum inner product search (MIPS).
In Adv. Neural Inf. Process. Syst., pp. 2321–2329, 2014.

Suzumura, S., Nakagawa, K., Umezu, Y., Tsuda, K., and
Takeuchi, I. Selective Inference for Sparse High-Order
Interaction Models. In Proc. 34th Int. Conf. Mach. Learn.,
volume 70, pp. 3338–3347, 2017.

Teflioudi, C. and Gemulla, R. Exact and Approximate
Maximum Inner Product Search with LEMP. ACM Trans.
Database Syst., 42(1):5:1—-5:49, 2016.

Tibshirani, R. Regression Selection and Shrinkage via the
Lasso. J. R. Stat. Soc. Ser. B (Statistical Methodol., 58(1):
267–288, 1996.

Wainwright, M. J. Sharp thresholds for high-dimensional
and noisy sparsity recovery using l1-constrained
quadratic programming (Lasso). IEEE Trans. Inf. Theory,
55(5):2183–2202, 2009.

Wang, J., Zhou, J., Wonka, P., and Ye, J. Lasso screening
rules via dual polytope projection. In Adv. Neural Inf.
Process. Syst., pp. 1070–1078, 2013.

Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E., and Lange,
K. Genome-wide association analysis by lasso penalized
logistic regression. Bioinformatics, 25(6):714–721, 2009.

Xiang, Z., Xu, H., and Ramadge, P. Learning sparse repre-
sentations of high dimensional data on large scale dictio-
naries. In Adv. Neural Inf. Process. Syst., pp. 900–908,
2011.

Xiang, Z. J. and Ramadge, P. J. Fast lasso screening tests
based on correlations. In IEEE Int. Conf. Acoust. Speech
Signal Process., pp. 2137–2140, 2012.

