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Abstract

We study the problem of generalization guaran-
tees for dropout training. A general framework
is first proposed for learning procedures with ran-
dom perturbation on model parameters. The gen-
eralization error is bounded by sum of two off-
set Rademacher complexities: the main term is
Rademacher complexity of the hypothesis class
with minus offset induced by the perturbation vari-
ance, which characterizes data-dependent regular-
ization by the random perturbation; the auxiliary
term is offset Rademacher complexity for the vari-
ance class, controlling the degree to which this
regularization effect can be weakened. For neural
networks, we estimate upper and lower bounds
for the variance induced by truthful dropout, a
variant of dropout that we propose to ensure un-
biased output and fit into our framework, and the
variance bounds exhibits connection to adaptive
regularization methods. By applying our frame-
work to ReLU networks with one hidden layer,
a generalization upper bound is derived with no
assumptions on the parameter norms or data dis-
tribution, with O(1/n) fast rate and adaptivity
to geometry of data points being achieved at the
same time.

1. Introduction

The past six years witnessed the scintillating success of
dropout training method in deep learning, ever since the
seminal work by (Hinton et al., 2012). It has become a
common technique among deep learning practitioners, to
randomly mask out part of network during training, and use
the entire network for prediction. A series of comprehensive
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experimental studies have shown the regularization effect
incurred by dropout, as the gap between training loss and
testing loss is significantly reduced. This simple technique
has developed into an active research area, with several
variants being proposed, advancing the state-of-the-art test
performances in deep learning (Ma et al., 2016; Huang et al.,
2016; Goodfellow et al., 2013; Wan et al., 2013; Rippel
et al., 2014). Perhaps surprisingly, dropout training usu-
ally achieves the better testing performance in the tradeoff
between capacity and generalization, compared with stan-
dard ¢? regularization. This well-known phenomena was
characterized as ”Altitude Training” (Wager et al., 2014):
analogous to athletes who were trained in a harder situation
than they compete in, the difficulties induced by perturba-
tion during training endow the model with more robustness,
making life easier for it when faced with testing data.

Despite its empirical success, current theoretical understand-
ing into this technique is very vague. In their original paper,
Hinton et al. (2012) describes dropout training as trying to
ensemble exponentially many sub-networks with sharing
parameters. However, the final model is actually taking
average instead of ensemble. Thus their original argument
is weakened by the well-known non-convexity of neural
networks’ loss functions, as averaged parameter can lead
to significantly larger loss. Moreover, as the way in which
dropout helps generalization remaining a myth, practitioners
usually find themselves confused with different situations
where dropout work or not. For example, loffe & Szegedy
(2015) discovered that dropout doesn’t help if ”Batch Nor-
malization (BN)” is used in the network. This was veri-
fied by extensive experiments, and equivocally explained as
”some regularization effect” of BN. The theoretical results
proposed in this paper, on the other hand, is able to address
this issue in a solid and quantitative way.

Wide applications of dropout techniques also motivates a
lot of theoretical studies ranging from statistical to computa-
tional perspectives. Wager et al. (2013) showed the adaptive
regularization effect of dropout training for generalized lin-
ear models. They also established connections to adaptive
gradient methods such as AdaGrad (Duchi et al., 2011).
In (Wager et al., 2014), faster rate convergence was shown
to be achieved using dropout, for a class of topic models.
For the online learning setting, dropout was considered a
kind of perturbation in Follow the Perturbed Leader (FTPL)
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algorithms, and regret bounds free from parameters was
shown in (Van Erven & Kotl, 2014). However, all of above
addresses the problem essentially in linear models. For
deeper models, (Gal & Ghahramani, 2016) gives a Bayesian
interpretation for dropout. Several attempts have also been
made to study the effect of dropout on the generalization
performance of deep neural networks, such as (Gao & Zhou,
2016; Wan et al., 2013). They proved generalization bounds
with dropout based on norm assumptions. If dropout really
helps generalization in a way different from ¢ regulariza-
tion (as is known by practitioners and theorists (Helmbold
& Long, 2015)), sharper bounds need to be developed even
without norm assumptions.

Recently, there are a few research works initiating towards
understanding of dropout in multi-layer models. Helm-
bold & Long (2015) studies inductive bias, i.e., suitable
distributions that can be learned via dropout, from compu-
tational learning theory perspectives. They also discovered
some interesting properties of regularization term induced
by dropout, especially their differences with classical ¢
regularization, in their later work (Helmbold & Long, 2017).
Their examples provides important insights, though uniform
generalization guarantees are not provided. The central
question of how dropout training controls the excess risks
of learning algorithm remains open, which is essential from
both theoretical and practical point of view.

In this paper, we will focus on generalization error bounds
of dropout training, and in general the training algorithms
with random perturbations that induces data-dependent regu-
larization. To capture the “altitude training” phenomenon in
a distribution-free way, we compare population risk against
expected training loss under random perturbation. Both
general framework and results for deep neural networks are
presented. We summarize our contribution as follows.

1.1. Our Contribution

The contribution made by this paper contains both general
framework and specific analysis of neural networks.

1. In Section 3, we propose a distribution-free frame-
work for generalization performance of learning algorithms
which randomly perturb the model parameter during train-
ing. Assuming the unbiasedness of random perturbation and
squared loss function, the generalization performance can
be controlled by sum of two offset Rademacher complex-
ity terms (see Theorem 2): for the main term, we obtain a
minus quadratic term depending on the variance of random
perturbation, in addition to standard form of Rademacher
complexity; the second one, which comes from a more
technical reason, characterizes how much the regularization
effect of variance can be weakened by overfitting.

2. In Section 4, we begin the analysis for deep non-linear

neural networks. In order to apply our framework, we first
propose a truthful dropout algorithm to make the output
unbiased. The variance of truthful dropout is studied with
upper and lower bounds presented (see Theorem 4 and 5).
An interesting discovery is that, the variance as a regular-
izer exhibits connections to data-dependent regularization
methods such as AdaGrad and batch normalization. We also
carry out experiments to show the effectiveness of truth-
ful dropout algorithm, which performs comparable to the
vanilla version of dropout training (see Section 6).

3. In Section 5, we utilize the framework with the variance
estimates in Section 4, and prove concrete generalization
error bounds for a class of one-hidden-layer ReLU neural
networks. We obtain a bound assuming only boundedness
of output without any norm-based assumptions. The gen-
eralization bounds we obtained achieve the O(1/n) fast
rate without knowing anything about global optimal point,
even though localization arguments are usually unavailable
for neural networks. This is due to the self-modulating
properties of the minus quadratic term induced by variance
offset. The fast rate shows the “altitude training” effect in
non-linear neural network models, without any distribution
assumptions. Furthermore, the generalization bound by this
data-dependent regularization is also adaptive to geometric
properties of data points. It degenerates to number of pa-
rameters in the worst case, but can be much smaller with
structures on the data distribution.

A key observation is the minus quadratic term induced by
the variance, which leads to self-modulating properties with-
out explicit regularization. Technical results, including the
general framework for training with perturbations, upper
and lower bounds on the variance of dropout, and a new
contraction argument for ReL.U units with presence of de-
nominators, are of independent interests.

2. Preliminaries

Notation: Throughout this paper, we use A o B to denote
entry-wise product of two matrices A and B with the same
dimension. A°? denotes entry-wise square of A, i.e., Ao A.
For vector v € RY, we use diag{v} to denote the d x d diag-
onal matrix whose diagonal is v. Unless otherwise specified,
o is used for Rademacher random variables and g is used
for Gaussian random variables. [z]; = max{z,0} denotes
the positive component of z. P denotes underlying distribu-
tion of data, and P,, denotes the empirical distribution. We
slightly abuse the notation for expectation: Ep denotes ex-
pectation under measure P, while E x means taking expec-
tation with respect to the randomness of random variable X.
We use L(-, -) to denote the loss function. For any ¢ € R and
function class F, cF = {c- f : f € F}. For function class
F C R* and offset functional V (f,z) : F x X — R, we
use R, (F, V) to denote the empirical offset Rademacher
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complexity:

o fEF n

K2

Rn(F, V)2 Esup {1 (oif(zs) = V(f, xz))} .

where {o;}?_; are i.i.d. Rademacher random variables. The
offset Rademacher complexity is defined as its expectation:
R (F,V) =ER,(F,V). By replacing i.i.d. Rademacher
random variables with i.i.d. Gaussian random variables,
we also define G, (F,V) and G,(F,V), the offset and
true Gaussian complexities. The standard notion of off-
set Rademacher complexity in (Liang et al., 2015) can be
seen as a special case where V (f, z) = f(x)2.

2.1. Neural Networks and Dropout Training

Throughout this paper, the neural network models we
are considering are fully-connected neural networks with
ReLU activation. We define it as a model parametrized
by a series of matrices h = [Wy,Wa, -+ Wp_1,wp]
where W), € R%*-1%d and w;, € R%*-1. The output
of model is h(JJ) = w% [WLfl[WL,Q te [Wlaﬁ]+ e ']+]+.
The dropout perturbation i.i.d. randomly discards entries
of weight matrices in a neural network with probability ¢,
while multiplying other entries by %_q.

3. Framework of Generalization Bounds for
Training with Random Perturbations

In this section, we propose a statistical learning theory
framework for the generalization properties of learning al-
gorithms whose training procedure is accompanied with
random perturbation. We will focus on generalization error
of learning procedure. As opposed to (Wager et al., 2014),
our theoretical results are distribution-free, since it doesn’t
depend upon any parametric assumptions on underlying
distribution families.

In our analysis, the function / during training is perturbed
by a random operator ¢ : H — H, and we consider the
procedure of minimizing expected empirical risks:

. R

h=argmin ¢ = E[L (@), p)] ¢, (1)
heH n i—1 ¥

where H is the hypothesis class and L(-, -) is a loss function.

We will be primarily focused on quadratic loss L(z,y) =

(2 — y)?, while other loss functions will also be discussed.

In the case of dropout training, 1) uniformly and indepen-
dently discards a fixed proportion ¢ of matrix entries, while
multiplying remaining entries with fq The dropout train-
ing algorithm can be conveniently viewed as stochastic gra-
dient descent method for Optimization Problem (1), where
we not only draw a batch of training examples randomly,

but also generate samples from the perturbation operator v,
in each iteration. Though dropout training is randomized,
an algorithm that solves optimization Problem (1) needs not
to be randomized. As the close form of expectation can be
difficult, dropout training serves as an efficient algorithm
for that regularized objective.

Throughout this paper, we refer to generalization error as
the gap between population risk and expected empirical risk
(under random perturbation), i.e.

Egen = EpL(h(LIJ), y) - EPnEwL(wh(x)a y) (2)

It is a common practice to use dropout during training and
full network for testing, where the test error is compared
against averaged training error with dropout. From a theoret-
ical viewpoint, the asymmetry makes it impossible to bound
the gap from both sides. As in (Liang et al., 2015), our
method only considers the useful side of empirical process,
which, fortunately, is the easy direction.

Theorem 1. For L(u,v) = ||u—v|? and unbiased random
perturbation operator satisfying

Vhe H,x € X, Evh(xz)=h(x).
b
Then we have the following upper bound.:
1 1
E (egen) < 2R, | LH, va + Ry | VyH, §Id . 3)

where LH = {(x,y) — (h(z) —y)? : h € H} is the
class of squared loss functions; the offset operators are
Vi (h,x) = var ((¢h)(z)), Id(h, z) = h(z), and the vari-
ance function class is VyH = {Vy(h,-) : h € H}.

Theorem 1 controls the expected generalization error by
sum of two offset Rademacher complexity terms:

e The main term 2R, ([ﬁ’H, %Vd,) has a minus offset
compared to the Rademacher complexity of function
class LH, which comes from the variance of random
perturbation. This characterizes the “randomization-
as-regularization” effect. Even without norm-based
assumptions, this minus quadratic term leads to self-
modulating properties of this complexity term, and
guarantees good generalization.

e The auxiliary term R, (Vd,”;'-l, %Id) comes from a
more subtle reason: since the variance-based reg-
ularization is data-dependent, it is possible that
i, Vip(h, x;) gets small while the model complexity
is still large. The regularization effect can be weakened
in that case. Therefore, for characterizing regulariza-
tion effects of variance, an empirical process control on
Vi is unavoidable, which is measured by the standard
offset Rademacher complexity.
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We can also derive contraction results for the offset
Rademacher complexities under Lipschitz function compo-
sition. This lemma will be repeatedly used in later theories.

Lemma 1. Suppose ¢ : R ~— R is I-Lipschitz. For any
function class F and operator V : F x X — R, we have:

where §(F) = {z — ¢(f(x)) : f € F}.

By applying Lemma 1 to the general result in Theorem 1,
we obtain the following result for uniformly bounded class.

Theorem 2. Under settings in Theorem 1, if we further
assume supycq, |hllcoc < a, we have the following with
probability 1 — 6:

]

1 1 1 1
Egen < 2R, (2aH, sz)—FRn(Vd,’H, iId)—i—O < - log ) .

For loss functions other than quadratic loss, a minus
quadratic term analogous to Theorem 1 and Theorem 2
can also be derived via local geometric structure of the loss
function. We are particularly interested in classification
problem, a general theoretical framework for which is stated
in Theorem 3.

Theorem 3. For the case of y € {—1,1} and loss function
L(h(z),y) = g(yh(x)) where g(-) is an l-Lipschitz, uni-
formly bounded convex function on some compact set. We
have the following with probability 1 — §:

1 1 log £
Sgen < 2R (1H, 7 A0)+ R By H, F1d)+0 \/% ,

where Ay (h, z) = Eyg(y - ¥h(z)) — g(y - h(z)) > 0 for
z = (x,y), and AyH = {Ay(h,-),h € H}.

The non-negative quantity A, (h, z;) characterizes the addi-
tional gain on generalization risk we can obtain by dropout
with data point z;. From a high level point of view, there is
an interesting difference between the role of random pertur-
bation in squared loss and the loss in Theorem 3: the random
perturbation under squared loss induces a data-dependent
regularization only based on the variance var(ih(x)), treat-
ing all data points with equal weights; the random pertur-
bation under classification loss, on the other hand, assign
unequal weights on the variances induced by each data point,
by its closeness to decision boundary. This phenomenon
can be clearly illustrated by the following proposition.
Proposition 1. Let L(h(z),y) = log(1 + exp(yh(x)) be
the logistic loss function. Perturbation operator ) satisfies
that: Yh(x;) is symmetric around its expectation h(x;) for
any h and x;. Let vary, (h(x;)) = v;(h)? assuming that

var (wh(xl)

() = ha:)| < 20(h)) 2 cvi(h)?,

we have:

cv;(h)? exp(h(x))
(1 + eh(fbi)+4vi(h))(1 + eh(xi)*4”i(h))

Ay(hya:) > 5)

Furthermore, taking the limit v;(h) — 0, we have

2 h(z;
Bu(hz) = (ki)
Proposition 1 conveys some interesting information for
dropout training under logistic loss: on the one hand, the ad-
ditional offset term also essentially depends on the variance
of model output induced by dropout, at least in low-variance
regime; on the other hand, the offset term is putting a weight

. h(x;) . .
approximately m on the contribution from output
variance at each data points x;. A data point closer to deci-

sion boundary will induce a larger regularization term.

4. Dropout Training and Adaptive
Regularization

According to Theorem 2, the generalization error of training
under random perturbation is fundamentally controlled by
the variance induced by random perturbation. In this sec-
tion, we will study the variance of dropout in deep neural
networks. First, a truthful dropout algorithm is proposed,
to make the output unbiased with respect to perturbation
operator. Variance induced by this algorithm is also stud-
ied, and connection to adaptive regularization and batch
normalization methods are established.

4.1. Truthful Dropout and Variance Bounds

The unbiasedness assumption Eyh(z) = h(z) in The-
orem 2 is a fundamental and reasonable requirement, as
we always want the predictor to be at least truthful”: the
overall behavior of perturbed model used for training has
to be close to the complete model for prediction. Due to
the non-linear nature of activation function, however, the
traditional dropout perturbation used in neural network is
inherently biased. The common practice of multiplying re-
maining weights by ﬁ can be viewed as a heuristic way
of reducing this bias. But the bias still exists, since expecta-
tions are not preserved under nonlinear ReLU functions. We
propose a truthful dropout algorithm (Algorithm 1) which
yields unbiased output. The idea of this algorithm is very
simple and the unbiasedness is obvious: we just compute
the original feed-forwarding without dropout, and randomly
reflect the value computed with dropout with the original
one at each layer, so that the distribution is symmetric and
unbiased. Later we will illustrate through experiments that
this algorithm achieves good performance comparable to
traditional dropout.

We then obtain the upper and lower bounds for variance
induced by truthful dropout, using induction among layers.
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Algorithm 1 Truthful dropout feed-forwarding
Input: ReLU network h = {Wy, Wa,--- , Wp_q,wr}, in-
put vector x € R%, dropout probability q.
Qutput: Vectors in each layers {z(l), 2@ ... ,Z(L)}.
Let {u®, u® ... w)} = feedforward(h, z).
Let 2(0) = 7.
fork € {1,2,--- ,L—1} do
Sample W, = 1—; - dropout(W}).
s(k) — [W,@Z(k—ﬂ
+
Sample r ~ U{—1, 1}
end for
Let z(F) = fq - dropout(wy,)

T, (L-1)

Z(

(k) _

i

Theorem 4. Given a fixed input point x; € R™, let v
dy

(Var(zgk))) ,

=1

dropout on k-th layer, we have the following for k > 1:
1 -~ 1— . 02

1P we? (vi(k by-—14 (ugk ”) ) (6)
q q

} ,’UEO) =0, ul® = ;.

(k) _

g

be the variance vector induced by truthful

k) _ g
where I,”’ = diag {1u§k)(j)>0
Theorem 5. Given a fixed input point x; € R%, let v

dy,

(var(=1))

=1

dropout on k-th layer, we have the following for k > 1:

1 _ 1— _ 02
vz(k) < W2 <qv§k Dy v a (ugk 1)> ) @)

be the variance vector induced by truthful

The gap between upper and lower bounds lies in a constant
factor increasing with layers, as well as the contribution by
units zeroed-out by ReLU activation. In the next subsection,
we will interpret the role of the estimated variances as data-
dependent regularization.

4.2. Connections to Adaptive Regularization

For single-layer models, Wager et al., (Wager et al.,
2013) has shown connection with dropout training with
adaptive regularizers and subgradient methods for online
convex optimization (Duchi et al., 2011). In the world of
deep learning, neither of methods admit nice theoretical
properties: dropout can be significantly different from ¢
regularization (Helmbold & Long, 2017), while no theo-
retical results have been provided about why adaptive reg-
ularization works. However, the apparent difficulties in
the analysis have never daunted deep learning practitioners:
both methods are widely used for neural networks.

In this section, we will slightly deviate from the main theme
of generalization error bounds, and establish a similar con-
nection for arbitrarily deep ReLU networks. In the most

general setup, though neither of the methods is known to
imply good generalization error directly, this connection
still provides important theoretical insights.

Following the convention of (Wager et al., 2013),
we can explicitly write a data-dependent regular-
ization method as online gradient method A+ =
argming {—n(VL(B;2),0) + ||3 — 0la,}. The key is-
sue is about the structure of matrix A; that defines the
data-dependent norm.

According to Theorem 4 and Theorem 5, the adaptive regu-
larization is based on || - || 4, norm, where

; o2 L
Az o1y g { o o2 0) ()
k=1

i=1

®)

where C}, is a constant depending solely on k, and index
k =1,2,--- L denotes layers of the network.

The adaptive regularization || - || 7, induced by AdaGrad, on
the other hand, is based on sum of gradients, which can be
easily calculated using back propagation:

1
t 02 L 2
H, = 0I+ (Z diag { (Hf:k(Wzlfl))uEkfl)) } ) :
i=1 k=1

(€))
Both A; and H, are written in the form of adaptive regular-
ization, making them capable of adapting to non-isotropic
geometric shape of data points’ distribution. Similar to sin-
gle layer case (Wager et al., 2013), AdaGrad takes square
root of aggregated adaptive regularization matrix, while
dropout doesn’t. Moreover, dropout uses square of parame-
ters along any connecting path in the network, while Ada-
Grad first calculates the gradient along path and then takes
square. From this viewpoint, the adaptive regularization
induced by dropout training can be seen as a data-dependent
version of PathSGD (Neyshabur et al., 2015a), or a variant
of the algorithm in (Neyshabur et al., 2015b).

Another widely-used technique in deep learning, batch nor-
malization, is also closely related to adaptive regularization.
In BN, data points in each layer are normalized to zero
mean and identity covariance. We will briefly discuss its
interaction with dropout.

On the one hand, if dropout is applied to a batch normalized
network, where the point set {ugk)}?zl has zero mean and
identity covariance for each k, the data-dependent ¢? norm
induced by this set of points degenerates to the standard data-
independent norm. On the other hand, batch normalization
accompanied with standard /5 penalty will become a form
of data-dependent regularization. Though different from
dropout in many aspects, the heuristics about adaptivity to
geometric shape are the same. This partially explains why
BN can be seen as an alternative regularization method to
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dropout, and why two methods are not used at the same
time (Ioffe & Szegedy, 2015).

5. Generalization Error Bounds

In this section, we apply the framework in Section 3 to
truthful dropout methods in neural networks, and derive
concrete generalization error guarantees based on the vari-
ance estimates in Section 4. We restrict our attention to
neural networks with one hidden layer and ReLU activation,
though the techniques are also potentially useful to deeper
networks. Upper bounds for both terms in Theorem 2 will
be derived under very mild assumptions. We will also dis-
cuss the practical implication of this bound and comparison
with existing works.

Consider the ReLU network model class:

MW= {h ‘R R, h(z) 2 wT[Wx]+} ., (10)

parametrized with W € RP*4 w € R?. Note that we do
not make any norm-based assumptions on the parameter
space at all, which illustrate the self-modulating properties
of variance induced by dropout. We need to assume output
of this model on support of data distribution is bounded by
a constant, i.e., supy, ,, |h(z)| < a, which is naturally true
in deep learning practice.

The lower bound on dropout variance in Theorem 4 has
some entries zeroed out by ReLU through I;(k), while the
upper bound in Theorem 5 doesn’t. This gap brings about
additional difficulties to our analysis, and it’s hard to obtain
a more accurate estimate. However, as our primary goal is
to understand the class of variance-induced data-dependent
regularization, there is no need to stick to the original form
of dropout. Indeed, dropout can be seen as a computation-
ally efficient way of approximately achieving an idealized
variance-induced regularizer. Therefore, we will take the
offset operator Vi, (h,z) = (w°2, (Wz)°% + W°2z°?). It
is also easy to construct a random perturbation operator
to satisfy this, by artificially injecting Gaussian noises on
the units zeroed out by dropout. Though V;(h, ) is not the
actual variance, we will still be assuming 0 < Vi, (h, z) <
a®,Vh, , as is naturally satisfied in deep learning practice.

By making above assumptions and simplifications, we have
reached a clear setup where concrete bounds with reason-
able practical implication can be shown. According to Theo-
rem 2, it remains to derive upper bounds on R, (2aH, 1 V)
and R, (VyH, $1d). In the following few subsections, we
will prove these bounds for the one-hidden-layer model, and
discuss possible approaches towards deeper networks.

We need the following technical lemma that relates offset
versions of Rademacher and Gaussian complexities:

Lemma 2. For any function class F and operator V

F x X = R, we have:

Rn(F, V) <Gy <\/§}" V) . (11)

5.1. Bounding the Offset Complexity for 7

First of all, we have R,,(2aH, $Vy) < Gy (av21H, 1Vy)
by Lemma 2. So we only need to derive upper bounds

on Gn(H, ¢coVy) for absolute constant ¢y = é \/ % Our

proof strategy is to directly solve for the value of w that
achieves supremum for the second layer, and then use
contraction-type arguments to overcome the non-linearity in
the first layer. Unlike Lemma 1, this step requires the power-
ful Gaussian Comparison Theorems, so the offset Gaussian
complexity is used instead of Rademacher counterpart.

The last layer of the network is a linear model, and the
supremum with respect to w in the form of offset Gaussian
complexity can be directly solved out as following:

Lemma 3. For the neural network class H and offset term
Viy(h, x) defined above, we have:

1N\ 1RT..1 \2
gn(H,Con,) < £]E sup (n Zi:l gl[ﬂ :Cz]—i-)

€0 BeRd %Z?zl ((BTxZ)Z + (BOQ)T 12’2)
(12)

It remains to bound RHS of Eq. (12) from above, which
is the complexity control of first layer with nonlinear ac-
tivation. The key difficulties come from the nonlinear
ReLU unit in neural networks. Existing works on norm-
based generalization guarantees in neural networks, such
as (Neyshabur et al., 2015¢) use Ledoux-Talagrand Contrac-
tion Lemma to deal with that. However, the denominator
in Eq. (12) is not adaptable to standard contraction lemmas.
To tackle this issue, we turn to use Gaussian Comparison
Theorem, which can be found, for example, in (Ledoux &
Talagrand, 2013). Actually, the contraction doesn’t hold
for arbitrary Lipschitz activation function. Fortunately, for
ReLU units an inequality can be directly proven, leading
to the following contraction result, for which the proof is
postponed to the Appendix.

Lemma 4. For any function class F and non-negative func-
tion S(f,{x;}_), we have:

“ (22 gilf@a)ls)’
(230 gif(@) } 6

_’_7

<4E sup { T
n

rer | w2y f(@)? + S(f {zi}isy)

It is worth noticing that the lemma holds for arbitrary func-
tion class H and non-negative function S. This makes
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Lemma 4 potentially useful for dropout training in deeper
ReLU networks. In the case of RHS of Eq. (12), we use
the function class F = {z — BTz : 8 € R?} and

S(fAzidpy) = L (5°2) " a2

Putting them together, we can control the first term in Theo-
rem 2 for our model:

Theorem 6. For neural network model H and offset term
Vi defined above, for any constant co > 0, we have:

Ro(H.coVu) <O (Lt ((Sa+Da) " 80))  (13)

where D,, = Ldiag (Z?:l x?)), Sp=1%"  wual

Though still depending on the dimension of hidden layer,
Theorem 6 achieves O(1/n) fast rate with neither localiza-
tion conditions nor norm-based constraints. We will discuss
its implications in later subsections.

5.2. Bounding the Offset Complexity for V, H

We now proceed to derive upper bounds on the second term
R(VyH, 31d). In our setup, Vi (h, z) = (w°2)T (Wx)°2+
(w°2)T W©°22°2 has two terms. Let function classes
Vi = {z — (w2)" (Wz)°2} and Vy = {z —
(w°? T W°22°?} be parametrized by w € R? and W €
RP*“ ‘We slightly abuse the notation by still using Vy; (h, x)
to denote the original offset terms, though the actual func-
tion h € V; is different from those in 4. Our strategy
is to bound the two terms R, (V1, 1Vy) and Rn(Va, Vo)
individually, which directly leads to the upper bound on
R (VyH, 11d). To estimate Rn(Vi, 1Vy), we notice that
these Rademacher processes are actually coordinate-wise
separable. We can make a very crude estimate by using
the uniform upper bound on the sum as the Lipscthiz con-
stant for quadratic functions at each coordinate, and use
Lemma 1 for the contraction arguments. Despite the loose-
ness, our bounds for R (V;,H, £1d) is usually no larger than
Theorem 6, as shown in Theorem 7. The proof details are
postponed to the Appendix.

Theorem 7. For function class H and offset term V defined
above, we have:

X 1 P _ — -1 = d
Z < £ et
R (VyH, 51d) < O (ntr((anan) Sa) + n)
B ) (14)
where S, and D,, are defined in the same way as Theorem 6.

5.3. Discussion about the Bounds
Putting everything together, we can derive the main general-
ization bound for two-layer neural networks:

Theorem 8. Under the boundedness assumption and defi-
nition of idealized V;, as above, we have the following with

probability 1 — §:

p G N d log1/6
Egen <0 (Tltr (E (Sn + Dn) Sn) + ﬁ + \/T>

15)

Note that tr ((gn + D,) -1 Sn) < tr(I) = d in the worst
case. So the generalization bound in Theorem 8 is at most

O(%d + 4/ %), which has a linear dependence on the
number of parameters, and roughly corresponds to bounds
based on VC dimension (Harvey et al., 2017). Even in the
worst case, however, the regularization effect of dropout
still has important impact on the generalization error. More
importantly, in many interesting scenarios, the bound can be
adaptive to geometry of data and give much better results.
In the following we will discuss these advantages.

Fast O(1/n) rate: Classical empirical process theories
without the offset term usually yield bounds in the form

of O(4/ M) for parametric classes. (For example, the
complexity term can be VC dimension, metric entropy, or
chaining-based estimates, etc.). This is fundamentally due
to the Massart’s finite class lemma for Rademacher complex-
ities which gives O(1/+/n) rate. Localization techniques,
such as (Bartlett et al., 2005), are able to control the gen-
eralization error by considering a subclass H N Ba(h*, 0,,)
around h* and achieve fast rate of convergence. (Though
we still get O(1/+/n) concentration term, this term involves
no complexity measures.) Deep neural network model, as is
well known, has extremely non-convex objective function,
which makes it particularly hard even to talk about proxim-
ity to global optimum or star-shaped structure. However, if
we are comparing test loss with expected training loss under
the perturbation, such an O(1/n) rate can be achieved from
the offset term induced by the variance. This illustrates a
similar type of self-modulating properties as in (Liang et al.,
2015), but makes no assumptions about ~*. This initiates an
attempt for fast rates in non-convex neural network models.

Adaptivity to Geometry of Data Points: In many scenar-
ios, the term tr ((S’n + D) -1 S'n) can be much smaller

than the worst case upper bound. This is an important
feature of data-dependent regularization: the induced gen-
eralization error is adaptive to the geometry of data points.
This is in contrast with the ordinary /5 regularization. To
illustrate the adaptivity effect, we give an upper bound for
this quantity in the special case where all data points are
lying in a low-dimensional subspace.

Proposition 2. If zy,25,---,z, € U C R? with
dim(U) = r. Assume that S,, + D,, is invertible, we have:

tr (S0 +Da) " 50) <1, (16)
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Table 1. Comparison of test error using different networks on MNIST and CIFAR-10

Data set Networks Truthful Dropout ‘ Traditional Dropout | No Dropout
MNIST Fully-Connected 1.60 1.53 1.78
MNIST Shallow Convolutional | 0.99 0.81 1.16
CIFAR-10 | Deep Convolutional 8.20 8.39 9.86
22 MNIST-FC 3.0 MNIST-Conv CIFAR-Conv
21| — standard dropout
2.5 — no dropout
E2.0 £, g — Truthfuldropf]ut |
£ PN
o :;:y 'N‘nw M uvv\wﬁa’ "o memmw o

i i L
50 60 70 80 90 100 110 120 130 140 0 20 40 60
Epoch

Epoch

i H L
80 100 120 140 60 80 100 120 140 160 180 200
Epoch

Figure 1. Comparison of test error along optimization trajectory

and therefore, with probability 1 — § we have:

d logl/é
sgms0<”’n+ +1/ Ogn/ ) (17

If the data matrix is approximately low-rank, this geometric
quantity will still be controlled at a low scale, as tr((S, +
D,,)~1S,) is continuous. Other geometric structures also

lead to small value of this quantity potentially.

From a high-level point of view, Theorem 8 illustrates two
aspects of the effect of dropout: on the one hand, the “alti-
tude training” phenomenon really works in nonlinear neural
networks in an assumption-free way, which achieves fast
rate by the self-modulating term; on the other hand, the data-
dependent regularization led by its variance helps adaptivity
to the geometry of underlying distribution.

6. Experiments

In this section, we conduct experiments to verify the effec-
tiveness of Algorithm 1, the truthful dropout, demonstrating
the comparable generalization improvement in terms of clas-
sification error when comparing with standard Dropout.

We use MNIST (LeCun et al.,, 1998) and CIFAR-
10 (Krizhevsky & Hinton, 2009) datasets to test our algo-
rithm, with both convolutional and fully-connected neural
networks. The details about experimental setup are post-
poned to the Appendix.

The classification error on test set is shown in the Table 1.
We also plot the curve for classification error during op-
timization in the Figure 1. We can see that the error gap
between traditional dropout and truthful dropout is relatively
smaller than that between traditional dropout and no dropout
(0.07% v.s 0.25% and 0.18% v.s 0.35%) on MNIST data set.

On CIFAR-10 data set, truthful dropout even outperforms
traditional dropout and gains 0.19% more accuracy.

7. Conclusion

The learning procedure with random perturbation during
training is comprehensively studied in this paper, with
dropout training as a prominent example. A distribution-free
theory is first proposed, to characterize the role of perturba-
tion’s variance, from a statistical learning theory perspective.
In particular, the generalization error is upper bounded by
sum of two offset Rademacher complexity terms. The first
one appends minus quadratic terms depending on variance
of perturbation compared to the standard Rademacher com-
plexity, which illustrate the self-modulating properties of
data-dependent regularization led by this variance. The
second term is the offset Rademacher complexity of vari-
ance, characterizing how the change in variance weaken the
regularization effect.

For dropout training in neural networks, we first propose
a truthful dropout algorithm that has unbiased output, the
variance of which is analyzed with upper and lower bounds.
Our bound has a clear relationship to adaptive regulariza-
tion methods such as AdaGrad, and the estimated variance
also explains the relationship between dropout training and
batch normalization. Using our framework, we prove an up-
per bound for the generalization error for one-hidden-layer
ReLU neural networks with truthful dropout. This bound
achieves O(1/n) fast rate and is adaptive to geometric struc-
ture of input data points. It is the first one that captures
the altitude training” and data-dependent regularization
effect of dropout in non-linear neural network models. An
important future work is to extend our analysis to deeper
neural networks and get concrete generalization bounds.
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