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6. Appendix
6.1. Notation
wy is the weights after the seed round.

A_; is the matrix without the first row and column. A; _; is the vector from the first row and all columns except the first
column.

Generally, the O(f(n)) notation hides constants that only depend on the dataset, such as ||w*||, s, B, etc.
For the order of things going to zero, we first choose « to be small, then r to be small, then n to be large.

wy is weight vector after seed round

€active (n) = I[“EfNaxctive,npoints [E"””(f)}

€passive (n) = Eprassive,npoims [E’/’T(f)}

max{n . 6passive(n) 2 6} o npassive (6)

max{n : Eactive(n) > 5} B nactive(e)

DE(e) =
Without loss of generality, assume w* = ||w*||e1, w§ = 0, and E[zo.] = 0.
With an abuse of notation, let 0 = o(w* - z) = o(||w*||z1).
6.2. Losses

Define O'(flf) = 1+%}(p(m)

The loss (negative log-likelihood) for a single data point under logistic regression is

ly(z,y) =log(1 4 exp(—w - yx))

and so the gradient is

yzexp(—w - yz)

lw ) = = - —wr
Vie(z,y) = —7 T exp(—w - y2) yro(—w - yz)
and the Hessian is
1 y) — @2 000y
(1 +exp(w - yz))
T

(1 +exp(w - yz))(1 + exp(—w - yx))

=o(w-yz)o(—w - yx)zz’
Note that o(—z) = 1 — o(x).

6.3. Decision Boundary

Lemma 6.1. For sufficiently small r, if |w' — w*||s < 2r, then

| w’-x=0 p(x) B /u;*.a::O p(aj)H - O(r>
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Proof. Without loss of generality (rotation and translation), let w§ = 0, w* = ||w*||le; and let w’ = wie; + whes.

’ ’
We sample from places where w(, + w{z; + whrs = 0 which occurs when y = =2x3 + =% = axa + b. From the
1 1

theorem assumption, we know that |wgl, |wh| < 7 and |w}| > [Jw*|| — r > §[|w*| (for sufficiently small ) so we know
that |al, || < O(r)

Note that

[ v [ @l=1 [ pler = ar+ban =) = pler = 0)

(Note that the Jacobian of the change of variables has the following matrix which has determinant 1)

)
[ we= [ p@l< [ Ipler = az+bes = a)ptas = o) =l = Ofaz = 2)p(ea = )

With the assumption that the conditional probabilities are Lipschitz,

< /L|a$ + b|p(ze = x)
<aLB+bL
=0(r)
O

Lemma 6.2. For sufficiently small r, if |wg — w*||2 < 7, then with probability going to 1 exponentially fast, all points
Sfrom two-stage uncertainty sampling are from some hyperplane w' such that ||w' — w*| < 2r.

Proof. For small enough r, then [ , . p(z) > po/2 from the above lemma if [Jwy — w*||2 < 2r. Thus, the probability
of an unlabeled point within the parallel plane with bias less than r different from wq such that ||w’ — wg|2 < 7 is at least
2o (Po /2) > % = O(r) (for sufficiently small 7).

Recall that 7001 = w(n) and ngeeq = 0(n).

For sufficiently large n, the probability of at least n points from the 7p001 — 7seea Unlabeled points falling in this range is

Pr[Binomial(npool — Nseed, probability of falling) > n] >
Pr[Binomial(npoel /2, Cir)) > n|

for some constant C .

We can use a Chernoff bound (standard with § = 1/2) since npe01 = w(n) to bound by exp(—w(n)). Thus the probability
that the planes we choose from are farther than r away from wy goes to 0 with rate faster than exp(—n). O
6.4. Convergence

Lemma 4.2. Both two-stage uncertainty sampling and random sampling converge to w*.

Proof. For passive learning, the Hessian of the population loss is positive definite because the data covariance is non-

singular (Assumption 8). Thus, the population loss has a unique optimum. By the definition of w*, w* is the minimizer.
Since the sample loss converges to the population loss, the result of passive learning converges to w*.
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By a similar argument, the weight vector wy after the seed round converges to w* since ngeeq is super-constant (Assumption
2). Thus, for any r > 0, with probability converging to 1 as n — oo, [[wg — w*|| < r < /2. By Lemma 6.2, with
probability going to 1, all points selected are from hyperplanes w where ||w — w*|| < 2r < A. Thus, by Assumption
5, Ew.z=0[Viw(x,y)] = 0. In the second stage, because of the « proportion of randomly selected points, the loss from
the new uncertainty sampling population has a unique optimum. And because the expectation of the gradient of the loss
is O for the points near the decision boundary (with probability going to 1), the result of two-stage uncertainty sampling
converges in probability to w*. O

6.5. Rates

Lemma. If X exists, and for any € > 0, nPr[||A,, — A|| > €] = 0 and n Pr[||w, — w*|| > €] — 0, then there exist vectors
¢ # 0 that depend only on the data distribution such that,

n(e(n) — Err) — Zcfi)_lck
k
Proof. The zero-one error is

Z(wy) = Prlyz - w, < 0]

Since Z is twice differentiable at w*, by Taylor’s theorem,

Z(wy) = Z(w*) +(VZ(w )T (w, —w*) + (wy, — w*)T(%V2Z(w*))(wn —w*) + (wy, —w*) T R(wy, —w*)(wy, —w*)T

where R(w) — 0as w — 0.

Since Z has a local optimum at w*, VZ(w*) = 0. Also Z(w*) = Err. Additionally, denote H = V27 (w*),

Z(wy) = Err + (w, — w7 (H + R(w, — w*))(w, — w*)

Choose any € > 0. Since R(w) — 0 as w — 0, there is 0. such that |w|| < J. = ||R(w)| < e. Define near(n) to be
the event that ||A,, — A|| > ¢ A ||w, — w*|| > Jc. Note that from the theorem assumption, n Pr[-near(n)] — 0.

e(n) = E[Z(wy,)] = Pr[-near(n)|E[Z(w,)|—near(n)] + Prlnear(n)|E[Z (w, ) |near(n))

[ne(n) — nE[Z(wy,)|near(n)]| < nPr[-near(n)]|E[Z (w,)|-near(n)] — E[Z(w,)|near(n)]|

< nPr[-near(n)] -0

Thus,

n(e(n) — Err) = n(E[Z(w,)|near(n)] — Err)

So we need to just worry about the convergence of the right side,

E[Z(wy)|near(n)] = Err + %]E[(A;lbn)T(H + R(w, —w*))(A;,'by,)|near(n)]

n(E[Z (wy,)|near(n)] — Err) = EbL A (H + R(w, — w*)) A, b, |near(n)]
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Because we conditioned on near(n), |4, — A|| < € and ||w, — w*|| < 0. and therefore ||R(w, — w*)|| < e. So

AN (H 4 R(w, — w*))A; 1 — AYHAY|| = O(e). Using this, we get,

In(E[Z (w,)|near(n)] — Err) — E[bZAleAflbnmear(n)}H < ||E[b£0(e)bn|near(n)]||
< O(e)|[E[[|bn|*|near(n)] |
O()|[E[bnby, [near(n)] |

Note that,
E[b,bL] = E[b,bl |near(n)] Pr[near(n)] + E[b,bL |-near(n)] Pr[-near(n)]

and the later two expectations exist since the left exists and the matrices are positive semidefinite. Passing through the

limit, we see that E[b,,b% |near(n)] — B.

Thus, noting that we can drive ¢ — 0,

n(E[Z(wy,)|near(n)] — Err) — EbL A~ HA b, |near(n)]

— Z ATTHATY, jE[b,bE [near(n)];

—>Z A'HA™Y, ;B

Thus, putting this together, we see that

n(e(n) — Err) — Z AT'HA™Y, B,
Doing manipulations on the indices, we find,
dATtHAT ZH” “1BATY),
1,3
= Hij%i
(%]

Therefore,

n(e(n) — ET‘T) — ZH@]'Z%J'
,J
and we are most of the way there, just need to use some properties to show the final form.
Since w* is a local optimum, H = 0 (and symmetric) and since the Hessian is not identically zero at w*, H # 0.

Without loss of generality, let w* = ||w*|le; and w§ = 0 as assumed before. Note that Z(w* + ae;) = Z(
a € (—|Jw*||/2, 00). Since it is constant along this line, (V2Z(w*));1 = 0,and so Hy 1 =0

So H = 0, H is symmetric, H # 0, and H;; = 0. Since H > 0 and H; ; =0, H;; = 0 for all ¢.
Since H > 0 and H # 0,
H =3, cpci

for some vectors ¢, (where there is at least one). And further, (c); = 0.

w*) for
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Z H; ;3 5 = Z(Z Ckc;‘cp)i,jzi-j
i, k

.7
= g cF ey,
k

We can remove the first elements of ¢; and the first row and column of ¥ without changing anything, so

T
> HijSij=) ciSoick
ij k

And thus the theorem is proved.

Lemma. If we have two algorithms a and b that satisfy the conditions of Lemma 2, and

Ya,—1 = CBp, 1
then there exists €y such that for Err < € < €,
ng(€) > eng(e)

Proof.
Za,fl - aZb’,l

g c{an_lck >« E czzh_lck
k k

so, for n > ng,n’ > no,

n(eq(n) — Err) > an/(e(n') — Err)
setting n’ = n/« and for n > max(ng, ng/),

n(eq(n) — Err) > n(ey(n/a) — Err)
So for sufficiently large n,

ea(n) > ep(n/a)
For any e > Err such that n, (e) is sufficiently large, (we know this exists since n,(¢) = O(—=—))
€q(n) < eforn > ngy(e)
ep(n/a) < eforn > ny(e)
1
ep(n') < eforn’ > —ngy(e)
a

np(e) < éna(e)

ng(€) > any(e)
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Lemma 4.1. If we have two algorithms with ¥, and ¥y, and for any € > 0 and both estimators, n Pr[||A, — A|| > €] — 0
and n Pr[|w, — w*|| > ¢] = 0, then

Ya,—1 = CBp, 1

implies that for some €y and any Err < € < €,

ng(€) > cny(e)
Proof. This is a straightforward application of the above lemmas, Lemma 2 and Lemma 3. O

6.6. Conditions satisfied

Lemma 4.3. For our active and passive learning algorithms, for any € > 0, nPr[||A, — A|| > €] — 0 and nPr[||w,, —
w*|| > € — 0

Proof. Recall that
A, =— g V2 (24, v5)
n n - w 2y I

1
b= = Z Vi (i, yi)

where ||w' — w*|| < ||w, — w*|.

e—©(n)
NG

We also need this fact to bound w’. Then, with a Hoeffding bound on the sum of A,,, we can get that Pr[||4,, — A|| > €] =

O(efj%n)) and thus n Pr[||4,, — A|| > ¢ — 0.

For active learning, we need to be careful because if |jwy — w*|| > A/2, we are not even guaranteed that the final result
converges (see Lemma 6.2). However, by the CLT, we find that Pr[||wy — w*|| > A/2] = O(fe(nmd)

V/Miseed )
Ngeed = $2(n”) (see Assumption 2), this converges exponentially fast and n Pr[||wy — w*|| > A/2] — 0.

For passive learning, by CLT, for any €, Pr[||w,, — w*|| > €] = O( ). Thus, we find that n Pr[|w, — w*|| > €] — 0.

Because

Because of the o random sampling, and conditioned on the probability that ||wg — w*|| < A/2, we can get the same
results for active learning as for passive learning. Note that from Lemma 6.2, there is exponentially small probability of
not sampling all points from w’ where ||w’ — w*|| < .

O

6.7. COV calculation for passive

Lemma 6.3. For passive learning, E[V 1« (x,y)(Viy(z,y))T] = Elo(1 — o)zzT].

Proof. Since the mean of the derivative of the loss is 0 at w*,

E[Viw-(2,9) (Vi (2,9)) " ij = Elzizjo(—|w*|lyz1)?]

= Eq, [E[ziz;|a1]Elo(w* lya:)?|21]]
= Eq, [E[zsz;]a1][P(y = La1)o (= |lw||lz1)* + Py = z1)o(w*||lz1)?]

from the calibrated assumption,
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= Eq, [E[zizjla][o(Jw*||lz1)o (= w*]|21)? + o (= [[w* | 21)o (Jw*||lz1)?]
= o, [Elziz;|z1]o([w*||lz1)o(=[w*|z1)[o(lw*{l21) + o([[w”|[z1)]
= Eq, [Elzizj|m1]o([w||z1)o (= [[w|z1)]
= E[zizjo([w*{lz1)o(=[lw||z1)]

= E[J(l — U)l'l'T]iyj

O
Lemma 4.4.
2]oassive = [E[U(l - U)xxT]]71
Proof. For passive learning, by the convergence of w™ — w* and by the law of large numbers,
A, = A=Elo(1 —o)zz’]
Further, by independence of draws,
Elbnby] = E[Vie- (2,y)(Vie- (z,3))"]
so by Lemma 6.3,
E[b,bL] = E[o(1 — o)zaT]
B =E[o(1—o)zzT]
B=A
Thus,
Epassive = AilBAil
=A"!
= [Ele(1 - o)za’]] 7
O

6.8. COV calculation for active

Lemma 6.4. For sufficiently small r (small with respect to dataset-only dependent constants), if |w' — w*||a < 2r, then

IEwr.zol[o(1 = 0)z2T] = By peoo(1 — o)zzT]|| = O(r)

and

[ o=olor(=y1 |w*[[)*227] = Eur omolor(—ya1 w*||)*227]|| = O(r)

Proof. Without loss of generality (rotation and translation), let w§ = 0, w* = ||w*||e1 and let @ = cje; + coes.

A /
We sample from places where w(, + wjz1 + whrs = 0 which occurs when 21 = “#x5 + =% = axy + b. From the
1 1

theorem assumption, we know that |wf|, |w}| < r and |w}| > [Jw*|| — r > %||w*|| (for sufficiently small r) so we know
that |al, || < O(r)
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Define Q(z1) = o(||w*||z1)o(—|w*||x1) or Q(x1) = o(—yz1||w*||)? (abuse of notation). Both these functions are
Lipschitz around z; = 0, and bounded (since support bounded by B).

First, we compute the joint (not the conditionals) and then we can divide by the marginals from the previous lemma,

Let 1,49, ..., i be indicators for the indices 7, j that are non-zero. Thus, 41 + 72 + ... +iq < 2,

Ew/.l.:o[()'(l — U)Z.I‘T]i,j =

= Euro=o[Q(z1)(21)" (22) " (23)"...] =

(As before, the Jacobian of the change of variables has determinant 1)

/p(acl = ax + b, x5 = 2)Q(ax + b)(ax + b)" ()2 B[z ...|x; = ax + b, 29 = 7] =
T

= /p(x2 =z)(2)?F(ax + b, x)

where F(z1,22) = p(x1|22)(Q(21)xt ymathbb B[z ...|x1, o]

All three components of F' are bounded, since support bounded, Assumption 3. Further, all three components are Lipschitz,
because of Assumption 4 and bounded support as well. Therefore, F' is Lipschitz.

|/p(z2 =2)(z)2F(ax + b,x) — /p(xg =2)(x)2F(0,x)

= / p(zs = o)|w[ Liaz + b

< aLB"”*! + bLB*
=0(r)

Thus, for any ¢, j,

Ewr.a=0[Qea" ] j — Bur.a=o[Qua™]i 4l = O(r)

‘We can use this to bound the matrix norm,

[Eewr-z=0 [QfxT] —Eur2=0 [meT] | =0O(r)
Since the probabilities (see Lemma 6.1) and conditionals are both off by only O(r) (from above) and since the probabilities

are bounded away from 0 (see Lemma 6.1 and Assumption 8), the conditional distribution is off by O(r). We can plug in
both functions of () to get the statement of the theorem. O

Lemma 4.5.
Yactive = [(1 — @)Ey, —o[o(1 — J)$$T] + aE[o(1 — J)x:rT]]_l

Proof. Because w,, — w*, and by the law of large numbers,

An = (1= )y [Euromo[o(—ya1 |w”])*za”]] + aBlo(—ya:[lw”|)?za”]

From Lemma 6.4,
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Ew-oolo(l — 0)zz?] — Eyeomolo(l — o)zaT]|| = O(r)

and ||w’ — w*|| < 2r with probability going to 1,

An = %[(1 — @)Eye z=o[o(1 = 0)za”] + O(r) + oE[o(1 - 0)za"]]

Since wy — w*, r — 0, and since Ngeeq = 0(n) (see Assumption 2) so
Ay = A= (1= a)Byrao[o(l —0)zzT] + aB[o(1 — 0)zzT]
The same line of argument with using Lemma 6.4 and Lemma 6.3 yields
B=A
So

Eactwe—‘A 1BA ! A !

=[(1 = @)Ey,—o[o(1 — 0)zz’] + aE[o(1 — o)z’

6.9. Inverses Without First Coordinate

Lemma 6.5.
a al _1_ b b7
a Al ~|b B
Where
1
b= -
a—alA-lq
b=—bA"'d

Proof. Matrix algebra.

Lemma 6.6.
(A= )1A—11)((A )AL )T

1
A1 —A (A 1) A1

(A=) +

Proof. Use the above theorem and note that b > 0 so
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6.10. Relating Err to expectation of sigmoid

Lemma 6.7.

E
A Elo(1—0)] < Err

Proof.
Err = P(yz1||Jw*|| < 0)

=P(r1 <0Ay=1)+Plx; >0ANy=—-1)

From Assumption 7,

[ pteoteuin + / " pan e )o(wi)

_ / T per (~21) + Py (20w

Additionally,

E[o(1 - 0)] = Elo(ya:1[Jw|)o(—yz:[lw|)]

= Elo(lw|z1)o(—]lw*||lz1)]

0 oo
/ Par (@) (Ju* |21 )o (— o™ 1) + / Par (@) (| 1)or (— | 1)

— 00

o0
:/0 o, (=21) + pay (21)]o (W [|l21) o (= [[w"[|21)
Note that for z; > 0, 3 < o(—||w*||z1) < 1. Comparing equations, we get,

BT Blo(1- o) < Err

6.11. Main DE bound

Theorem 4.1. For sufficiently small constant o (that depends on the dataset) and for Err < ¢ < €,

s
4FErr

DE(e) >
Proof. For convenience, define

Q=F,, —olo(1 —o)zzT]
R=CE[o(1 —0)zzT] = COVpassive
S =aR + (1 — CY)Q = COVactive
By the definition of s,

Elo(1 —o)r_121]
Elo(1 — 0)]

By —o[z—12T] = s
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By Lemma 6.7,

4Q71 - i_R,1

Err
For small enough o,
s/(4Err) — «
0., /( 1 ) R
—«
s
R_ 1-— _ —R
R+ ( a)Q1>4Err !
s
S_ ——R_
L 4Err Tt
S -1 —1 —1
_ < _
1 51 = (Ba) S (R

The last step comes from noting that the right hand side of Lemma 6.6 positive semidefinite for A positive semidefinite.
Additionally, note that the first row and column of @ is 0,
SO 571’1 = OZR,Ll and 5171 = O[Rl,l.

An examination yields,

(S—1)71S_1)(S—1) 7S )T
Sl,l - SZ1,1(5_1)715_171

= O(a)

Using Lemma 6.6, we find that we can make « small enough so that

S _ _
4Err(s D1 < (B
S
4ET7’COVactive,71 < COVZBassive,fl

so by Lemma 4.1, for Err < € < €,

DE(e) >

4FErr

6.12. DE Bound Given Decomposition

We actually get a slightly more general result from the following lemma.

Lemma 6.8. If p(x) = p(x1)p(x_1), then for sufficiently small constant o (that depends on the dataset), and for Err <
€ < €,

1 1 E[X]
DE 1 =
4FErr < (e) < 2Err + Var(X)

where

p(X =) o< o(||w*[l2)(1 = (| [2))p(ar = @)
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Proof. With the decomposition, in the Theorem 4.1, s = 1. So we get for free that for Err < € < €,

1
4FErr

DE(e) >
As before, for convenience, define

Q=E; —oloc(1 - U)mxT]
R=E[o(1—0)za"] = COVpassive
S=aR+ (1 - OZ)Q = COVactive

Because of the decomposition,

Err
—E[arngT]

Ry. 0. =E[o(1 — 0)|E[zo.2l] = 5

1
Q2. 2. = ZE[@‘TQT]

1
. o. ——Ro. 5.
Q2: . < SFyy 122

For sufficiently small o,

1/(2Err) — «
QQ:,Z: < /(17)1%2:,2:
-«
Roo + (1= a)Qsio: < ——R
aRs. o. —@)Q2.2. < —— Ro. .
2:,2: 2,2 = g H2e:
Sa:,0: < ! R
2:,2: 2B 2:,2:
Because of the decomposition, and because E[xo.] = 0 (without loss of generality by translation),
Ro.10. =0
Qo1,2. =0
! (A" D200 = (R )22
2Err o o

Now, let us examine the upper left corners,

_[Ele(1-0)] E[lo(1-0)z1]

Ro.1,01 = |:E[U(1 _ U):E1] E[g(l — O’)ZC%]:|
[1—a)/4+aE[o(1 —0)] oE[o(1 — o)y
S0:1,0:1 = { aElo(1 — o)y aElo(1 - a)aﬁﬂ]

Denote

D =E[o(1 — 0)|E[o(1 — 0)2?] — E[o(1 — 0)z1]?

Then,
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(1) = Bl =]
= B aE[o(1 — o)z?)
(57 )00 = a(1 = a)(1/9E[o(1 — al)x%] +a2D
(Ril)O,O/(Sil)O,O _ 4E[01-(I f U)] (1 4 E[U(l ;)O')Il] ) +a
For small enough o,
1 Elo(1 — 0)x1]?

-1 -1
(R )0,0/(5 )0’0<2Err

Combining the bounds on the two blocks of the matrices, we get that

1 Elo(1 —o)z1)?,, ., 4 1
1 _ _
2Err( * D JE™) = (B
1 Elo(1 — o)z1]?
2E7‘7’(1 + [ ( D ) 1] )COVactive,—l -~ CO‘/passi'ue,—l
So for € < ¢q,
1 Elo(1 — o)x1]?
DE(e) < 51+ D )
if we define X such that p(z) o< o(1 — o)p,, (z),
Y12
DE(e) < ! 1 E[X]

2Err Vafr(j(:)
O

Theorem 4.2. If p(x) = p(z1)p(x_1) and p(x1) = p(—x1), then for sufficiently small constant « (that depends on the
dataset), and for Err < e < €,

1
2Err

< DE(e) <

4Err

Proof. If p(x1) = p(—x1), then p(X) = p(—X) and so E[X] = 0.

Using Lemma 6.8, we arrive at the conclusion. O



