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Abstract

Robust subspace tracking (RST) can be simply
understood as a dynamic (time-varying) exten-
sion of robust PCA. More precisely, it is the prob-
lem of tracking data lying in a fixed or slowly-
changing low-dimensional subspace while being
robust to sparse outliers. This work develops
a recursive projected compressive sensing algo-
rithm called “Nearly Optimal RST (NORST)”,
and obtains one of the first guarantees for it.
We show that NORST provably solves RST un-
der weakened standard RPCA assumptions, slow
subspace change, and a lower bound on (most)
outlier magnitudes. Our guarantee shows that
(i) NORST is online (after initialization) and
enjoys near-optimal values of tracking delay,
lower bound on required delay between subspace
change times, and of memory complexity; and
(ii) it has a significantly improved worst-case
outlier tolerance compared with all previous ro-
bust PCA or RST methods without requiring any
model on how the outlier support is generated.

1. Introduction
According to its modern definition (Candès et al., 2011),
robust PCA (RPCA) is the problem of decomposing a data
matrix into the sum of a low-rank matrix (true data) and a
sparse matrix (outliers). The column space of the low-rank
matrix then gives the desired principal subspace (PCA so-
lution). A common application is in video analytics in sep-
arating a video into a slow-changing background image se-
quence (modeled as a low-rank matrix) and a foreground
image sequence consisting of moving objects or people
(sparse) (Candès et al., 2011). Many fast and provably
correct RPCA approaches have appeared in recent years:
PCP (Candès et al., 2011; Chandrasekaran et al., 2011; Hsu
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et al., 2011), AltProj (Netrapalli et al., 2014), RPCA-GD
(Yi et al., 2016), NO-RMC (Cherapanamjeri et al., 2016).

Robust Subspace Tracking (RST) can be simply interpreted
as a dynamic (time-varying) extension of RPCA. It as-
sumes that the true data lie in a low-dimensional subspace
that can change with time, albeit slowly. The goal is to
track this changing subspace over time in the presence of
sparse outliers. The offline version of this problem can
be called dynamic (or time-varying) RPCA. RST requires
the tracking delay to be small, while dynamic RPCA does
not. Time-varying subspaces is a more appropriate model
for long data sequences, e.g., long surveillance videos.
The reason is, if one tries to use a single lower dimen-
sional subspace to represent the entire data sequence, the
required dimension may end up being quite large. Short
tracking delays are critical for applications where real-
time or near real-time estimates are needed, e.g., video-
based surveillance/tracking, or detecting dynamic social
network anomalies (Ozdemir et al., 2017). While standard
RPCA has been extensively studied in recent years, there
is much lesser work on provable dynamic RPCA or RST
and only includes original-ReProCS (Qiu et al., 2014; Lois
& Vaswani, 2015; Zhan et al., 2016), modified-PCP (Zhan
& Vaswani, 2015), and simple-ReProCS (Narayanamurthy
& Vaswani, 2018a). Another related approach that comes
with a partial guarantee1 is ORPCA (Feng et al., 2013).

Modeling subspace change. All existing guarantees
for subspace tracking algorithms (except our previous RST
work mentioned above) assume the statistically stationary
setting of data being generated from a single unknown sub-
space; and almost all of them are partial guarantees. All
work on subspace tracking without outliers, and with or
without missing data, e.g, (Yang, 1995; Chi et al., 2013;
Zhang & Balzano, 2016) is in this category.

On the other hand, the most general (nonstationary) model
that allows the subspace to change at each time is not even
identifiable since at least r data points are needed to com-
pute an r-dimensional subspace even in the ideal setting of
no noise or missing entries. When the data is noisy, miss-
ing or outlier corrupted, even more data points are needed.
Since only one data vector comes in at each time t, the only
way to ensure this is to assume that the subspace remains

1Needs assumptions on intermediate algorithm estimates.
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constant for a while and then changes (piecewise constant).
We first introduced this assumption in (Qiu et al., 2014).
Here, we use a weaker version of the same model.

Robust Subspace Tracking (RST) and Dynamic RPCA
Problem. At each time t, we get a yt ∈ Rn that satisfies

yt := `t + xt + vt, for t = 1, 2, . . . , d.

where vt is small unstructured noise, xt is the sparse outlier
vector, and `t is the true data vector that lies in a fixed
or slowly changing low-dimensional subspace of Rn, i.e.,
`t = P(t)at where P(t) is an n × r basis matrix (matrix
with mutually orthonormal columns) with r � n and with
‖(I −P(t−1)P(t−1)

′)P(t)‖ small compared to ‖P(t)‖ = 1.
Here, and elsewhere, ‖.‖ denotes the induced l2 norm and
′ denotes transpose. We use Tt to denote the support set
of xt. Given an initial subspace estimate, P̂0, the goal is
to track span(P(t)) and `t either immediately or within a
short delay. A by-product is that `t, xt, and Tt can also
be tracked on-the-fly. The initial subspace estimate, P̂0,
can be computed by applying any of the solutions for static
RPCA, e.g., PCP or AltProj, for the first roughly r data
points, Y[1,ttrain] with ttrain = Cr. Here and below [a, b]
refers to all integers between a and b, inclusive, [a, b) :=
[a, b − 1], and MT denotes a sub-matrix of M formed by
its columns indexed by entries in the set T .

Dynamic RPCA is the offline version of the above prob-
lem. Define matrices L,X,V ,Y with L = [`1, `2, . . . `d]
and Y ,X,V similarly defined. The goal is to recover the
matrix L and its column space with ε error. We use rL to
denote the rank of L. The maximum fraction of nonzeros
in any row (column) of the outlier matrix X is denoted by
max-outlier-frac-row (max-outlier-frac-col).

For basis matrices P1,P2, we use SE(P1,P2) := ‖(I −
P1P1

′)P2‖ as a measure of Subspace Error (distance) be-
tween their respective column spans. This is the sine of the
largest principal angle between the subspaces.
We reuse the letters C, c to denote different numerical con-
stants in each use with C ≥ 1 and c < 1.

Identifiability. The above problem definition does not
ensure identifiability since either of L or X can be both
low-rank and sparse. Also, if the subspace changes at every
time, it is impossible to correctly estimate all the subspaces.

• One way to ensure identifiability of changing sub-
spaces is to assume that they are piecewise constant,
i.e.,

P(t) = Pj for all t ∈ [tj , tj+1), j = 1, 2, . . . , J.

and to lower bound dj := tj+1 − tj . Let t0 = 1
and tJ+1 = d. With this model, rL = rJ in general
(except if subspace directions are repeated).

• One can ensure that X is not low-rank by im-
posing upper bounds on max-outlier-frac-col and
max-outlier-frac-row. For the RST problem,
max-outlier-frac-col := maxt |Tt|/n. Consider
max-outlier-frac-row. Since RST is a tracking problem,
it involves processing incoming data either one
sample at a time or using a mini-batch of α samples
at a time. The subspace update step of our proposed
algorithm does the latter. Because of this we need to
replace a bound on max-outlier-frac-row by a bound on
max-outlier-frac-rowα defined as follows.

Definition 1.1. Define max-outlier-frac-rowα as the
maximum fraction of outliers (nonzeros) per row
of any sub-matrix of X with α consecutive
columns. For a time interval, J , let γ(J ) :=
maxi=1,2,...,n

1
|J |
∑
t∈J 1{i∈Tt} where 1S is the indi-

cator function for statement S. Thus γ(J ) is the maxi-
mum outlier fraction in any row of the sub-matrix XJ
of X . Let J α denote a time interval of duration α.
Then max-outlier-frac-rowα := maxJα⊆[1,d] γ(J α).

• One way to ensure that L is not sparse is by requiring
that its left and right singular vectors are dense (non-
sparse) or “incoherent” w.r.t. a sparse vector. This is
quantified as follows (Candès et al., 2011).

Definition 1.2. An n× rP basis matrix P is µ-incoherent
if maxi ‖P (i)‖2 ≤ µ rP

n
(P (i) is i-th row of P ).

Using our subspace model, the union of the column
spans of all the Pj’s is equal to the span of the left sin-
gular vectors of L. Thus, for RST, left incoherence is
equivalent to assuming that the Pj’s are µ-incoherent.
We replace right incoherence by statistical assump-
tions on the at’s: assume that at’s are element-wise
bounded, mutually independent, have identical covari-
ances and zero mean. Refer Remark 3.5 of (Narayana-
murthy & Vaswani, 2018b) to see the connection.

Contributions. (1) We develop a novel algorithm for RST
and dynamic RPCA that we call “Nearly Optimal RST”
or NORST for short. NORST relies on the previously in-
troduced recursive projected compressive sensing solution
framework (Qiu et al., 2014), but has a significantly im-
proved, and simpler, subspace update step. Our most im-
portant contribution is the first provable guarantee for RST
that ensures near optimal tracking delay and needs a near
optimal lower bound on how long a subspace needs to re-
main constant. Both equal Cr log n log(1/ε). It also needs
no other model on how the subspace changes, and still tol-
eratesO(1) maximum fraction of outliers in any row and an
O(1/r) fraction in any column. Of course it uses extra as-
sumptions: slow subspace change and lower bound on most
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Video Frame NORST (16.5ms) AltProj(26.0ms) RPCA-GD(29.5ms) GRASTA (2.5ms) PCP (44.6ms)

Video Frame NORST (85.4ms) AltProj(95.7ms) RPCA-GD(122.5ms) GRASTA (22.6ms) PCP (318.3ms)

Figure 1. Background Recovery. NORST is the only technique that works for both sequences. Row 2: only NORST does not contain
the person or even his shadow. NORST is faster than all except GRASTA (which does not work). The GRASTA output slightly lags the
actual frame, and hence, it appears that the person is sitting. Time taken per frame is shown in parentheses.

outlier magnitudes. Finally, NORST is provably online (af-
ter initialization), fast (has the same complexity as vanilla
r-SVD), and nearly memory optimal, it has memory com-
plexity of order nr log n log(1/ε). Here the term “online”
means the following: after each subspace change, the al-
gorithm updates the subspace estimate every α = Cr log n
time instants, and the subspace recovery error bound de-
cays exponentially with each such step2. This means one
gets an ε-accurate estimate within C log(1/ε) steps.
(2) Our guarantees hold under weakened standard RPCA
assumptions, slow subspace change, and a lower bound on
(most) outlier magnitudes. We say “weakened” because
we show that that, after initialization, NORST can toler-
ate a constant maximum fraction of outliers per row with-
out needing any assumptions on outlier support. For the
video application, this implies that it tolerates slow mov-
ing and occasionally static foreground objects much bet-
ter than all other existing RPCA approaches. This fact is
also corroborated on real videos, e.g., see Fig 1. All other
existing RPCA approaches (except simple-ReProCS) need
more: AltProj, RPCA-GD, and NO-RMC need this fraction
to be O(1/rL); PCP and mod-PCP need the outlier sup-
port to uniformly random (strong requirement: for video
it implies that objects are very small sized and jumping
around randomly); and original-ReProCS needs it to sat-
isfy a specific moving object model described later (very
restrictive). Moreover, NORST can also detect a subspace
change within a short delay of Cr log n.
(4) Unlike previous dynamic RPCA work, NORST only
needs a coarse subspace initialization which can be com-
puted using at most C log r iterations of any batch RPCA
method such as AltProj applied to Cr initial samples. In
fact, if the outlier magnitudes were very large (or if the out-
liers were absent) for an initial set of O(r log n log r) time
instants, even a random initialization would suffice.

2The reason that just O(r logn) samples suffice for each up-
date is because we assume that the at’s are bounded, vt is very
small and with effective dimension r or smaller (see Theorem
2.1), and both are mutually independent over time. These along
with the specific structure of the PCA problem we encounter
(noise/error seen by the PCA step depends on the `t’s and thus
has “effective dimension” r) is why so few samples suffice.

(3) A direct corollary of our result is a guarantee that a mi-
nor modification of NORST also solves the subspace track-
ing with missing data (ST-missing) and the dynamic matrix
completion problems (dynamic MC); see follow-up work
(?). All existing guarantees for ST-missing hold only for
the case of a single unknown subspace and are partial guar-
antees. Ours is a complete guarantee that provably allows
tracking of changing subspaces. From the MC perspective,
our solution does not assume any model on the observed
entries unlike most others. The disadvantage is that it needs
more observed entries than other MC solutions.

2. The Algorithm and Main Result
Nearly-Optimal RST via ReProCS (ReProCS-NORST).
ReProCS-NORST starts with a “good” estimate of the ini-
tial subspace, which is obtained by C log r iterations of
AltProj on Y[1,ttrain] with ttrain = Cr. It then iterates be-
tween (a) Projected Compressive Sensing (CS) or Robust
Regression in order to estimate the sparse outliers, xt’s,
and hence the `t’s, and (b) Subspace Update to update the
subspace estimate P̂(t). Projected CS is borrowed from
original-ReProCS (Qiu et al., 2014), while the subspace
update step is new and significantly simplified. Projected
CS proceeds as follows. At time t, if the previous sub-
space estimate, P̂(t−1), is accurate enough, because of slow
subspace change, projecting yt onto its orthogonal comple-
ment will nullify most of `t. We compute ỹt := Ψyt where
Ψ := I − P̂(t−1)P̂(t−1)

′. Thus, ỹt = Ψxt + Ψ(`t + vt)
and ‖Ψ(`t + vt)‖ is small due to slow subspace change
and small vt. Recovering xt from ỹt is now a CS / sparse
recovery problem in small noise (Candes, 2008). We com-
pute x̂t,cs using noisy l1 minimization followed by thresh-
olding based support estimation to obtain T̂t. A Least
Squares (LS) based debiasing step on T̂t returns the final
x̂t. We then estimate `t as ˆ̀

t = yt − x̂t.

The ˆ̀
t’s are used for the Subspace Update step which in-

volves (i) detecting subspace change, and (ii) obtaining im-
proved estimates of the new subspace by K steps of r-
SVD, each done with a new set of α samples of ˆ̀

t. While
this step is designed under the piecewise constant subspace
assumption (needed for identifiability), if the goal is only to
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get good estimates of `t or xt, the method works even for
real videos (where this assumption may or may not hold).
For ease of understanding, we present a basic version of
NORST in Algorithm 1. This assumes the change times tj
are known. The actual algorithm that we study and imple-
ment detects these automatically is given as Algorithm 2 in
the long version (Narayanamurthy & Vaswani, 2018b).

Main Result. We use t̂j to denote the time-instant at
which the j-th subspace change time is detected.

Theorem 2.1. Consider NORST (Algorithm 2 of
(Narayanamurthy & Vaswani, 2018b))3. Let Λ :=
E[a1a1

′], λ+ := λmax(Λ), λ− := λmin(Λ), f := λ+/λ−,
α := Cf2r log n, and let xmin := mint mini∈Tt(xt)i
denote the minimum outlier magnitude. Pick an
ε ≤ min(0.01, 0.03 minj SE(Pj−1,Pj)

2/f). Let
K := C log(1/ε). If

1. incoherence: Pj’s are µ-incoherent; and at’s are
zero mean, mutually independent over time t, have
identical covariance matrices, i.e. E[atat

′] = Λ,
are element-wise uncorrelated (Λ is diagonal), are
element-wise bounded (for a numerical constant η,
(at)

2
i ≤ ηλi(Λ)), and are independent of all outlier

supports Tt;

2. vt: ‖vt‖2 ≤ cr‖E[vtvt
′]‖, ‖E[vtvt

′]‖ ≤ cε2λ−, zero
mean, mutually independent, independent of xt, `t;

3. max-outlier-frac-col ≤ c1
µr , max-outlier-frac-rowα ≤ c2

f2 ;

4. subspace change: let ∆ := maxj SE(Pj−1,Pj),

(a) tj+1 − tj > (K + 2)α,

(b) ∆ ≤ 0.8 and C1

√
rλ+(∆ + 2ε) ≤ xmin;

5. init4: SE(P̂0,P0) ≤ 0.25, C1

√
rλ+SE(P̂0,P0) ≤ xmin;

and (6) algorithm parameters are appropriately set; then,
with probability (w.p.) ≥ 1− 10dn−10, at all times, t,

• T̂t = Tt, tj ≤ t̂j ≤ tj + 2α, SE(P̂(t),P(t)) ≤
(ε+ ∆) if t ∈ [tj , t̂j + α),
(0.3)k−1(ε+ ∆) if t ∈ [t̂j + (k − 1)α, t̂j + kα),
ε if t ∈ [t̂j +Kα+ α, tj+1),

and ‖x̂t−xt‖ = ‖ ˆ̀t−`t‖ ≤ 1.2(SE(P̂(t),P(t))+ε)‖`t‖.

• Offline-NORST (lines 26-30): SE(P̂ off
(t) ,P(t)) ≤ ε,

‖x̂offt − xt‖ = ‖ ˆ̀off
t − `t‖ ≤ ε‖`t‖ at all t.

• Memory complexity is O(nr log n log(1/ε)) and time
complexity is O(ndr log(1/ε)).

3Algorithm 1 with a subspace change detection step included
4This can be satisfied by applying AltProj (Netrapalli et al.,

2014) on first Cr data samples and assuming that these have out-
lier fractions in any row or column bounded by c/r.

Algorithm 1 Basic-NORST (with tj known). The actual algo-
rithm that detects tj automatically is Algo. 3 in (Narayanamurthy
& Vaswani, 2018b).
Notation: L̂t;α := [ ˆ̀t−α+1, · · · , ˆ̀t] and SV Dr[M ] refers to the
top of r left singular vectors of the matrix M .
Obtain P̂0 by C(log r) iterations of AltProj on Y[1,ttrain] with
ttrain = Cr followed by SVD on the output L̂.

1: Input: yt, Output: x̂t, ˆ̀
t, P̂(t), T̂t

2: Parameters: K ← C log(1/ε), α ← Cf2r log n,
ωsupp ← xmin/2, ξ ← xmin/15, r

3: Initialize: j ← 1, k ← 1 P̂ttrain ← P̂0

4: for t > ttrain do
5: Ψ← I − P̂(t−1)P̂(t−1)

′;
6: ỹt ← Ψyt.
7: x̂t,cs ← arg minx̃ ‖x̃‖1 s.t. ‖ỹt −Ψx̃‖ ≤ ξ.
8: T̂t ← {i : |x̂t,cs| > ωsupp}.
9: x̂t ← IT̂t(ΨT̂t

′ΨT̂t)
−1ΨT̂t

′ỹt.
10: ˆ̀

t ← yt − x̂t.
11: if t = tj + uα for u = 1, 2, · · · ,K then
12: P̂j,k ← SV Dr[L̂t;α], P̂(t) ← P̂j,k, k ← k + 1.
13: else
14: P̂(t) ← P̂(t−1).
15: end if
16: if t = tj +Kα then
17: P̂j ← P̂(t), k ← 1, j ← j + 1
18: end if
19: end for

Remark 2.2 (Bi-level outliers). With minor changes, we
can actually prove the following which relaxes our outlier
magnitudes lower bounded requirement to only requiring
that most outlier magnitudes are lower bounded, while the
others have small enough magnitudes so that their squared
sum is upper bounded. Both bounds decrease as the sub-
space estimate improves.
Assume that the outlier magnitudes are such that the fol-
lowing holds: xt can be split as xt = (xt)small+(xt)large
with the two components having disjoint supports and be-
ing such that, ‖(xt)small‖ ≤ bv,t and the smallest nonzero
entry of (xt)large is greater than 30bv,t with bv,t defined as
follows: bv,t = C(2ε+∆)

√
rλ+ for t ∈ [tj , t̂j+α) (before

the first subspace update), bv,t := 0.3k−1C(2ε+ ∆)
√
rλ+

for t ∈ [t̂j + (k − 1)α, t̂j + kα − 1], k = 2, 2, . . . ,K

(after the k-th subspace update), and bv,t := Cε
√
rλ+ for

t ∈ t̂j +Kα, tj+1).
If the above is true, and if the vectors (xt)small are zero
mean, mutually independent, and independent of `t’s and
of the support of (xt)large, then all conclusions of Theorem
2.1 hold except the exact support recovery conclusion (this
gets replaced by exact recovery of the support of (xt)large).
Discussion. Theorem 2.1 shows that, with high probabil-
ity (whp), when using NORST, the subspace change gets
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detected within a delay of at most 2α = Cf2(r log n) time
instants, and the subspace gets estimated to ε error within
at most (K + 2)α = Cf2(r log n) log(1/ε) time instants.
The same is also true for the recovery error of xt and `t.
If offline processing is allowed, with a delay of at most
Cf2(r log n) log(1/ε) samples, we can guarantee all re-
coveries within normalized error ε.

Theorem 2.1 allows a constant maximum fraction of out-
liers per row (after initialization), without making any as-
sumption on how the outliers are generated. As noted ear-
lier, this is better than what all other RPCA solutions al-
low. The same is true for the NORST memory complex-
ity which is almost d/r times better. The time complexity
is worse than that of only NO-RMC, but NO-RMC needs
d ≥ cn (unreasonable requirement for videos which often
have much fewer frames d than the image size n). NO-
RMC is so fast because it is actually a robust matrix com-
pletion solution and it deliberately undersamples the en-
tire data matrix Y to get a faster RPCA algorithm. But
this also means that it cannot recover X . Finally, NORST
also needs the best outlier fraction per column bound of
O(1/r) instead of O(1/rL). Notice that if J is large, e.g.
if J = d/(r log n), it is possible that rL � r.

We should clarify that NORST allows the maximum frac-
tion of outliers per row to be O(1) but this does not neces-
sarily imply that the number of outliers in each row can
be this high. The reason is it only allows the fraction
per column to only be O(1/r). Thus, for a matrix of
size n × α, it allows the total number of outliers to be
O(min(nα, nα/r)) = O(nα/r). Thus the average frac-
tion allowed is only O(1/r).

NORST has the above advantages only if a few extra as-
sumptions hold. The first is element-wise boundedness of
the at’s. This, along with mutual independence and iden-
tical covariances, of at’s is similar to the right incoherence
assumption needed by all static RPCA methods, see Re-
mark 3.5 in longer version. The zero-mean assumption on
at’s is a minor one. The assumption that Λ be diagonal
is also minor5. The main extra requirement is that xmin

be lower bounded as given in the last two assumptions
of Theorem 2.1, or that most outliers are lower bounded
(more relaxed requirement) as given in the long version.
The required lower bound is reasonable as long as the ini-
tial subspace estimate is accurate enough and the subspace
changes slowly enough so that both ∆ and SE(P̂0,P0)
are O(1/

√
r). This requirement may seem restrictive on

first glance but actually is not. The reason is that SE(.)

5It only implies that Pj is the matrix of principal components
of E[LjL′j ] where Lj := [`tj , `tj+1, . . . , `tj+1−1]. If Λ is not
diagonal, it is easy to right multiply Pj by an orthonormal matrix
R that is such that R′ΛR is diagonal and to use `t = (PjR)ãt
with ãt := R′at. (PjR) has the same incoherence as Pj .

is only measuring the largest principal angle. This bound
on SE still allows the chordal distance6 between the two
subspaces to be O(1). This also matches what s-ReProCS
requires.

Why NORST is better than RPCA-every-α. RPCA-
every-α refers to using any batch RPCA solution on α =
Cr log n samples at a time. (a) NORST is significantly
better than RPCA-every-α for settings in which the num-
ber of outliers in some rows is very large: our guarantee
shows that NORST can tolerate a constant maximum frac-
tion of outliers per row because it exploits “slow subspace
change” and one other mild assumption (lower bound on
most outlier magnitudes). On the other hand, all RPCA
methods require this fraction to be only O(1/r), which is
much smaller. (b) Moreover, NORST provides guarantees
for subspace recovery (and recovery of `t, xt and Tt) at
each time t, including during the “dwell time” (the first
α = Cr log n time instants after a subspace change). This
is possible because NORST assumes slow subspace change
and the algorithm is recursive (uses the previous subspace
estimate at the current time). As shown in Theorem 2.1,
during the dwell time, the subspace recovery error is essen-
tially bounded by the amount of subspace change. How-
ever, RPCA-every-α will not provide any estimates dur-
ing the dwell time; it will require a delay of this much
time before it provides any estimates. (c) NORST can de-
tect subspace changes automatically and quickly (with just
one projection-SVD step), while RPCA-every-α will take
much more computation time to do this. Finally, in practi-
cal comparisons for videos involving slow moving objects
(large number of outliers in some rows), NORST is both
significantly better than, and faster than, all RPCA meth-
ods. This is true both when RPCA methods are applied to
the entire dataset, as well as when they are applied to α
pieces of the dataset. We do not report these results due to
lack of space and since applying RPCA to the whole matrix
resulted in better performance out of the two options.

Outlier v/s Subspace Assumptions. When there are
fewer outliers in the data or when outliers are easy to de-
tect, one would expect to need weaker assumptions on
the true data’s subspace and/or on its rate of change.
This is indeed true. The max-outlier-frac-col bound relates
max-outlier-frac-col to µ (not-denseness parameter) and r
(subspace dimension). The upper bound on ∆ implies
that, if xmin is larger (outliers are easier to detect), a larger
amount of subspace change ∆ can be tolerated. The rela-
tion of max-outlier-frac-row to rate of subspace change is not
evident from the way the guarantee is stated above because
we have assumed max-outlier-frac-row ≤ b0 := c/f2 with
c being a numerical constant, and used this to get a sim-

6l2 norm of the vector containing the sine of all principal an-
gles.
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Table 1. Comparing all RPCA or RST solutions. All algorithms also require left and right incoherence or left incoherence and at’s
bounded (which is similar to right incoherence), and hence these are not compared. The incoherence parameter µ and the condition
numbers are treated as constants. In general rL = rJ . Strong or unrealistic assumptions are shown in red.

Algorithm Outlier tolerance Other Assumptions Memory, Time, # params
PCP(C) max-outlier-frac-row ∈ O(1) outlier support: unif. random, Memory: O(nd) zero
mod-PCP max-outlier-frac-col ∈ O(1) rL ≤ cmin(n, d)/log2 n Time: O(nd2 1

ε )

AltProj max-outlier-frac-row ∈ O (1/rL) d ≥ crL Memory: O(nd) 2
max-outlier-frac-col ∈ O (1/rL) Time: O(ndr2

L log 1
ε )

RPCA-GD max-outlier-frac-row ∈ O(1/r1.5
L ) d ≥ crL Memory: O(nd) 5

max-outlier-frac-col ∈ O(1/r1.5
L ) Time: O(ndrL log 1

ε )

NO-RMC max-outlier-frac-row ∈ O (1/rL) c2n ≥ d ≥ cn Memory: O(nd) 4
max-outlier-frac-col ∈ O(1/rL) Time: O(nr3

L log2 n log2 1
ε )

orig-ReProCS max-outlier-frac-row ∈ O(1) outlier support: moving object model, Memory: O(nr2/ε2) 5
dynamic RPCA, max-outlier-frac-col ∈ O(1/rL) unrealistic subspace change model, Time: O(ndr log 1

ε )
tracking delay changed eigenvalues small for some time,
too large outlier mag. lower bounded,

init data: AltProj assu’s,
at’s independent, d ≥ cr2/ε2

s-ReProCS: max-outlier-frac-row ∈ O(1) subspace change: only 1 direc at a time, Memory: O(nr log n log 1
ε ) 4

solves d-RPCA max-outlier-frac-col ∈ O(1/r) outlier mag. lower bounded, Time: O(ndr log 1
ε )

& RST w/ at’s independent, d ≥ cr log n log 1
ε .

sub-optimal delay init data: AltProj assumptions
NORST max-outlier-frac-row ∈ O(1) subspace change: none, Memory: O(nr log n log 1

ε ) 4
(this work): solves max-outlier-frac-col ∈ O(1/r) outlier mag. lower bounded, Time: O(ndr log 1

ε )
d-RPCA & RST w/ at’s independent, d ≥ cr log n log 1

ε ,
near-optimal delay first Cr samples: AltProj assumptions

ple expression for K. If we did not do this, we would get
K = Cd 1

− log(
√
b0f)

log( c∆0.8ε )e, see Remark A.1 of long
version. Since we need tj+1 − tj ≥ (K + 2)α, a smaller
b0 means a larger ∆ can be tolerated for the same delay, or
vice versa.

Algorithm Parameters. Algorithm 1 (and Algorithm 2 of
(Narayanamurthy & Vaswani, 2018b)) assumes knowledge
of 4 model parameters: r, λ+, λ− and xmin to set the algo-
rithm parameters. The initial dataset used for estimating P̂0

(using AltProj) can be used to get an accurate estimate of r,
λ− and λ+ using standard techniques. Thus one really only
needs to set xmin. If continuity over time is assumed, we
can let it be time-varying and set it as mini∈T̂t−1

|(x̂t−1)i|
at t.

Related Work. For a summary of comparisons, see Ta-
ble 1. The earliest dynamic RPCA result was a partial
guarantee (a guarantee that depended on intermediate al-
gorithm estimates satisfying certain assumptions) for the
original ReProCS approach (original-ReProCS) (Qiu et al.,
2014). This was followed up by two complete guarantees
for ReProCS-based approaches with minor modifications
(Lois & Vaswani, 2015; Zhan et al., 2016). For simplicity
we will still call these “original-ReProCS”. Parallel work
also included a guarantee for modified-PCP which is a so-
lution for RPCA with partial subspace knowledge (Zhan &
Vaswani, 2015). This provides a piecewise batch solution
to dynamic RPCA. More recent work developed and ana-
lyzed simple-ReProCS (s-ReProCS) which removed most

of the disadvantages of previous works.

S-ReProCS has the same tracking delay and memory com-
plexity as NORST and needs the same outlier assumptions;
however, it assumes that only one subspace direction can
change at each change time. This is a much more restric-
tive model than what NORST needs (allows all r direc-
tions to change) and it implies that the tracking delay of
s-ReProCS is r-times sub-optimal. Moreover, s-ReProCS
required a complicated projection-SVD step for subspace
update (as opposed to SVD in NORST). These two facts
imply that s-ReProCS needs an ε-accurate subspace initial-
ization in order to ensure that the later changed subspaces
can be tracked with ε-accuracy; and it does not provide a
useful solution for ST-missing or dynamic MC. The advan-
tage of s-ReProCS over NORST is that it is a little faster
(needs 1-SVD instead of r-SVD most of the time), and its
required bound on outlier fractions and delay between sub-
space change times have a weaker dependence on the con-
dition number of the true data covariance.

The original-ReProCS guarantees needed very strong as-
sumptions and their tracking delay was O(nr2/ε2). Since
ε can be very small, this factor can be quite large, and
hence one cannot claim that original-ReProCS solves RST.
Our work is a very significant improvement over all these
works. (i) The guaranteed memory complexity, tracking
delay, and required delay between subspace change times
of NORST are all r/ε2 times lower than that of original-
ReProCS. (ii) The original-ReProCS guarantees needed a
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very specific assumption on how the outlier support could
change: they required an outlier support model inspired by
a video moving object that moves in one direction for a
long time; and whenever it moves, it must move by a frac-
tion of s := maxt |Tt|. This is very specific model with the
requirement of moving by a fraction of s being the most
restrictive. Our result replaces this with just a bound on
max-outlier-frac-row. We explain in Sec. 3 why this is possi-
ble. (ii) Their subspace change model required one or more
new directions orthogonal to Pj−1 to be added at each tj .
This is an unrealistic model for slow subspace change, e.g.,
in 3D, it implies that the subspace needs to change from the
x-y plane to the y-z plane. Moreover because of this model,
their results needed the “energy” (eigenvalues) along the
newly added directions to be small for a period of time af-
ter each subspace change. This is a strong (and hard to
interpret) requirement. We replace all these requirements
with a bound on SE(Pj−1,Pj) which is much more real-
istic. Thus, in 3D, we allow the x-y plane to change to its
slightly tilted version.

Since the modified-PCP guarantee adapted the PCP proof
techniques from (Candès et al., 2011), its pros and cons are
similar to those of PCP, e.g., it also needs a uniformly ran-
domly generated outlier support, and it also cannot detect
subspace change. Also see Table 1.

We also provide a comparison with provably correct stan-
dard RPCA approaches in Table 1. In summary, NORST
has significantly better memory complexity than all of
them, all of which are batch; it has the best outlier tolerance
(after initialization), and the second-best time complexity,
as long as its extra assumptions hold. It can also detect
subspace change quickly, which can be a useful feature.

3. Proof Outline with vt = 0

Remark 3.1. When stating Theorem 2.1, we just used nu-
merical constants c1, c2, C1 for simplicity. The result holds
with c1 = 0.01, c2 = 0.01, and C1 = 15

√
η.

For simplicity, we outline the proof for the vt = 0 case.
The changes with vt 6= 0 are minor, see (Narayanamurthy
& Vaswani, 2018b).

First consider the simpler case when tj’s are known, i.e.,
consider Algorithm 1. In this case, t̂j = tj . Define

1. bound on max-outlier-frac-row: b0 := 0.01/f2.

2. q0 := 1.2(ε+ SE(Pj−1,Pj)), qk = (0.3)kq0

3. et := x̂t − xt. Since vt = 0, et = `t − ˆ̀
t

4. Events: Γ0,0 := {assumed bound on SE(P̂0,P0)},
Γ0,k := Γ0,k−1∩{SE(P̂0,k,P0) ≤ 0.3kSE(P̂0,P0)},
Γj,0 := Γj−1,K , Γj,k := Γj,k−1 ∩ {SE(P̂j,k,Pj) ≤
qk−1/4} for j = 1, 2, . . . , J and k = 1, 2, . . . ,K.

5. Using the expression for K given in the theorem, it
follows that Γj,K implies SE(P̂j,K ,Pj) ≤ ε.

Observe that if we can show that Pr(ΓJ,K |Γ0,0) ≥ 1 −
dn−10 we will have obtained all the subspace recovery
bounds of Theorem 2.1. The next two lemmas applied se-
quentially help show that this is true for Algorithm 1 (tj
known). The correctness of the actual algorithm follows
using these and Lemma 3.6.

Lemma 3.2 (first subspace update interval). Under the
conditions of Theorem 2.1, conditioned on Γj,0,

1. for all t ∈ [t̂j , t̂j + α), ‖Ψ`t‖ ≤ (ε + ∆)
√
ηrλ+ <

xmin/15, ‖x̂t,cs − xt‖ ≤ 7xmin/15 < xmin/2, T̂t =

Tt, and the error et := x̂t − xt = `t − ˆ̀
t satisfies

et = ITt (ΨTt
′ΨTt)

−1
ITt
′Ψ`t, (1)

and ‖et‖ ≤ 1.2(ε+ ∆)
√
ηrλ+.

2. w.p. at least 1 − 10n−10, the first subspace estimate
P̂j,1 satisfies SE(P̂j,1,Pj) ≤ (q0/4), i.e., Γj,1 holds.

Lemma 3.3 (k-th subspace update interval). Under the
conditions of Theorem 2.1, conditioned on Γj,k−1,

1. for all t ∈ [t̂j+(k−1)α, t̂j+kα−1), all claims of the
first part of Lemma 3.2 holds, ‖Ψ`t‖ ≤ 0.3k−1(ε +
∆)
√
ηrλ+, and ‖et‖ ≤ (0.3)k−1·1.2(ε+∆)

√
ηrλ+.

2. w.p. at least 1 − 10n−10 the subspace estimate P̂j,k
satisfies SE(P̂j,k,Pj) ≤ (qk−1/4), i.e., Γj,k holds.

Remark 3.4. For the case of j = 0, in both the lemmas
above, ∆ gets replaced with SE(P̂0,P0) and ε by zero.

We prove these lemmas in the long version. The projected
CS proof (part one of both lemmas) uses the following
lemma from (Qiu et al., 2014) that relates the s-Restricted
Isometry Constant (RIC) (Candes, 2008) of a projection
matrix to the incoherence of its orthogonal complement.

Lemma 3.5. For an n×r basis matrix P , δs(I−PP ′) =
max|T |≤s ‖IT ′P ‖2 ≤ smaxi=1,2,...,n ‖Ii′P ‖2 ≤ sµr/n.

The last bound follows using Definition 1.2. We apply
this lemma with s = max-outlier-frac-col · n. The sub-
space update step proof uses a guarantee for PCA in sparse
data-dependent noise, Corollary 4.17, due to (Vaswani &
Narayanamurthy, 2017). Notice that et = `t − ˆ̀

t is the
noise/error seen by the subspace update step. By (1), this
is sparse and depends on the true data `t.

A careful application of the (Vaswani & Narayanamurthy,
2017) result is the reason why we are able to re-
move the moving object model assumption on the out-
lier support needed by the earlier dynamic RPCA guar-
antees (or orig-ReProCS). Applied to our problem, this



Nearly Optimal Robust Subspace Tracking

result requires ‖
∑
t∈Jα ITtITt

′/α‖ to be bounded by
a constant less than one. It is not hard to see that
maxJα∈[1,d] ‖

∑
t∈Jα ITtITt

′/α‖ = max-outlier-frac-row.
This is also why a constant bound on max-outlier-frac-row
suffices for our setting.

The key to our overall proof is to show that the sub-
space recovery error after each PCA step is sufficiently
smaller (e.g. 0.3 times smaller) than the instantaneous
noise/error level, ‖E[etet

′]‖, seen by the ˆ̀
t’s used for

this step. The reason we can show this is because the
PCA step error is proportional to the ratio between the
time-averaged noise level (plus time-averaged signal-noise
correlatin) and the minimum signal space eigenvalue, λ−

(Vaswani & Narayanamurthy, 2017). Using the sparsity
of et with support Tt and the max-outlier-frac-row bound
one can show that the time-averaged noise plus signal-
noise correlation, (‖

∑
t E[etet

′]‖ + ‖
∑
t E[`tet

′‖)/α, is
at least

√
max-outlier-frac-row times its instantaneous value,

‖E[etet
′]‖+ ‖E[`tet

′]‖.

The above, in turn, implies that both the instantaneous and
time-averaged error/noise level in the next interval is 0.3
times smaller. Put together, one can show exponential de-
cay of both SE(P̂j,k,Pj) and the error/noise level.

Consider the actual tj unknown case. The following lemma
is used to show that, whp, we can detect subspace change
within 2α time instants. This lemmas assumes detection
threshold ωevals = 2ε2λ+ (see the long version).

Lemma 3.6 (Subspace Change Detection). Consider an α-
length time interval J α ⊂ [tj , tj+1] (so that `t = Pjat).

1. If Φ := I − P̂j−1P̂j−1
′ and SE(P̂j−1,Pj−1) ≤ ε,

with probability at least 1− 10n−10,

λmax

(
1

α

∑
t∈Jα

Φ ˆ̀
t
ˆ̀
t
′Φ

)
≥ 0.8λ−SE2(Pj−1,Pj)

> ωevals

2. If Φ := I − P̂jP̂j
′ and SE(P̂j ,Pj) ≤ ε, with proba-

bility at least 1− 10n−10,

λmax

(
1

α

∑
t∈Jα

Φ ˆ̀
t
ˆ̀
t
′Φ

)
≤ 1.37ε2λ+ < ωevals

We prove these lemmas in the long version. Theorem 2.1
is an easy consequence of these.

4. Empirical Evaluation
The complete details for all experiments are pro-
vided in (Narayanamurthy & Vaswani, 2018b). All
codes can be found at https://github.com/
praneethmurthy/NORST..
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Figure 2. The plot of subspace error versus time for the online
RST algorithms, plotted every α = 300 time instants. Time taken
per sample (milliseconds) is shown in legend parentheses.

Outlier Model RPCA-GD AltProj Offline-NORST
(92.2ms) (70.8ms) (1.7ms)

Mov. Obj. 4.283 4.363 3.5 × 10−4

Bernoulli 0.158 0.269 3.4 × 10−4

Table 2. Comparison of ‖L̂−L‖F /‖L‖F for offline RPCA meth-
ods including offline NORST. Average time given in parentheses.

Synthetic Data. We generated the subspaces using
Pj = eδ̃jBjPj−1 (as done in (He et al., 2012)) where δ̃j
controls the subspace change and Bj’s are skew-symmetric
matrices. In our experiments we use n = 1000, d = 12000,
r = 30, J = 2, t1 = 3000, t2 = 8000, r = 30,
δ̃1 = δ̃2 = 0.001. P0 is generated by ortho-normalizing
columns of an n× r i.i.d standard normal matrix. The sub-
space coefficients at ∈ Rr are generated as independent
zero-mean, bounded (uniform) random variables with con-
dition number of their covariance f = 50. We generated
the support Tt of sparse outliers using the Moving Object
Model of (Narayanamurthy & Vaswani, 2018a). We used
the first ttrain = 3.3r = 100 frames as the training data
with fewer outliers: for this period we used b0 = 0.01,
and for t > ttrain, we used s/n = 0.05 and b0 = 0.3.
The non-zero magnitudes of xt are generated as i.i.d as
uniform[10, 20]. The algorithm parameters are set as
K = 8, α = 300. As shown in Fig. 2, NORST is sig-
nificantly better than all the RST methods - s-ReProCS,
and two popular heuristics from literature - ORPCA and
GRASTA. We provide a comparison of offline-NORST
with the batch RPCA techniques in Table 2. As can be seen,
offline-NORST outperforms all the batch RPCA methods,
both for the moving object outlier support model and for
the commonly used random Bernoulli support model. All
results in this table are averaged over 10 independent runs.

Video. We also evaluated NORST for background sub-
traction; see Figure 1. The NORST parameters were set as
α = 60, K = 3, r = 40 and ξt = ‖Ψ ˆ̀

t−1‖.
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