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1. Expected Precision and Average Precision
Let Precision and Recall at K be defined as

Pk =
1

k

∑
i≤k

zi (1)

and,
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Np

∑
i≤k

zi (2)

where Np is the number of positive instances in the whole
set. The average precision is given by integrating precision
with respect to recall:
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k
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We would like to compute expectations when some zi are
unobserved. For notational convenience, let pi = P (zi =
1|O) when zi is unobserved and z̃i be the observed value
when the ground-truth associated with example i is vetted.
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We can then compute expected Prec@K as:

E[Prec@K] =
1

K

∑
i≤K

E[zi]

=
1

K

 ∑
i≤K,i∈V

z̃i +
∑

i≤K,i∈U

pi

 (4)

And the expected change for this metric is given by:

Ep(zi|V ) [∆i(zi)] = pi
1

K
|1− pi|+ (1− pi)

1

K
|0− pi|

=
2

K
pi(1− pi) (5)

where we write pi = p(zi = 1|O).

Expected AP is more interesting because it includes prod-
ucts of of the zi.

E[AP ] =
1

Np

∑
k

1

k
E[zk

∑
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=
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∑
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k
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E[zkzi]

We note that in our application of evaluating instance seg-
mentation, the quantity Np is known prior to vetting. In
other settings, it may also be a random variable that de-
pends on the vetting outcomes. In the following derivation,
we temporarily drop the constant 1

Np
to reduce notational

clutter.

Assuming independence of zi and zk, we have:

E[zi] = pi

E[zizk] = pipk

Expanding the vetted and unvetted terms we can compute:
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which can be written a bit more compactly as:

E[AP ] =
(∑

k∈V

(
zk
k
E[Prec@k]) +

∑
k∈U

(
pk
k
E[Prec@k])

)

We would like to compute the change in E[AP ] when we
vet some example. Before vetting sample j, we have:

E[AP ] =
∑
k∈V
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After vetting the example j, we have:

E[AP |zj ] =
∑
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The difference between these estimates is,

∆(zj) = E[AP |zj ]− E[AP ]

=
∑
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1

k
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The expected reduction given our estimator for zj is

E[∆] = pj∆(zj = 1) + (1− pj)∆(zj = 0)

where:

∆(zj = 0) =
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1

k
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Let’s just look at the first pair of corresponding terms of
E[∆],
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k
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It is clear to see that the above summation equals 0. This is
also true for the second and third terms,

(1− pj)
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Only the last pair of terms remains, and simplifies as:

E[∆] = −1

j

∑
i≤j,i∈U\j

p3j − pj + p2j (1− pj)

= −1

j

∑
i≤j,i∈U\j
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Let rj be the proportion of unvetted examples scoring higher
than example j:

rj =
|{i ∈ U : i ≤ j}|
|{i ∈ U ∪ V : i ≤ j}|

=
1

j

∑
i<j

δ(i ∈ U)

Putting back in the constant scaling yields the expression
given in the paper:

E[∆] =
1

Np

1

j

∑
i≤j,i∈U\j

pj(1− pj)

=
1

Np
rjpj(1− pj)

The term is largest when pj is 0.5 and decrease as it ap-
proaches 0 or 1. The term also decreases when there are
many unvetted examples that score higher than j since they
have relatively more impact on the AP.

2. Estimator for multilabel classification
Here we derive the basis for Equation 4 in the main paper.

p(zi|yi, si) =
p(zi, yi, si)∑

v∈{0,1} p(zi = v, yi, si)

=
p(yi|zi, si)p(zi|si)∑

v∈{0,1} p(yi|zi, si)p(zi|si)

We assume that given the true label, zi, the observed label
yi is conditionally independent of the classifier score, si.
With p(yi|zi, si) = p(yi|zi), the expression simplifies to,

p(zi|yi, si) =
p(yi|zi)p(zi|si)∑

v∈{0,1} p(yi|zi)p(zi|si)

3. Additional Results
Figure 1 shows the results of estimating absolute preci-
sion@48 for the multilabel classification tasks on both NUS-
WIDE and Microvideos datasets. In contrast, plots in the
main paper show the total absolute error from the true value.
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Figure 1. Results for multi-label classification task. The figures show the mean and standard deviation of the estimated Precision@K at
different amount of annotation efforts. Using a fairly simple estimator and vetting strategy, the proposed framework can estimate the
performance very closely to the true values.


