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Abstract
Much recent work on visual recognition aims to
scale up learning to massive, noisily-annotated
datasets. We address the problem of scaling-
up the evaluation of such models to large-scale
datasets with noisy labels. Current protocols for
doing so require a human user to either vet (re-
annotate) a small fraction of the test set and ig-
nore the rest, or else correct errors in annotation
as they are found through manual inspection of
results. In this work, we re-formulate the problem
as one of active testing, and examine strategies for
efficiently querying a user so as to obtain an accu-
rate performance estimate with minimal vetting.
We demonstrate the effectiveness of our proposed
active testing framework on estimating two perfor-
mance metrics, Precision@K and mean Average
Precision, for two popular computer vision tasks,
multi-label classification and instance segmenta-
tion. We further show that our approach is able
to save significant human annotation effort and is
more robust than alternative evaluation protocols.

1. Introduction
Visual recognition is undergoing a period of transformative
progress, due in large part to the success of deep architec-
tures trained on massive datasets with supervision. While
visual data is in ready supply, high-quality supervised la-
bels are not. One attractive solution is the exploration of
unsupervised learning. However, regardless how they are
trained, one still needs to evaluate accuracy of the result-
ing systems. Given the importance of rigorous, empirical
benchmarking, it appears impossible to avoid the costs of
assembling high-quality, human-annotated test data for test
evaluation.

Unfortunately, manually annotating ground-truth for large-
scale test datasets is often prohibitively expensive, particu-
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Figure 1. Classic methods for benchmarking algorithm perfor-
mance require a test-set with high-quality labels. While it is often
easy to obtain large-scale data with noisy labels, test evaluation
is typically carried out on only a small fraction of the data that
has been manually cleaned-up (or “vetted”). We show that one
can obtain dramatically more accurate estimates of performance
by using the vetted-set to train a statistical estimator that both (1)
reports improved estimates and (2) actively selects the next batch
of test data to vet. We demonstrate that such an “active-testing”
process can efficiently benchmark performance and and rank visual
recognition algorithms.

larly for rich annotations required to evaluate object detec-
tion and segmentation. Even simple image tag annotations
pose an incredible cost at scale 1. In contrast, obtaining
noisy or partial annotations is often far cheaper or even
free. For example, numerous social media platforms pro-
duce image and video data that are dynamically annotated
with user-provided tags (Flickr, Vine, Snapchat, Facebook,
YouTube). While much work has explored the use of such
massively-large “webly-supervised” data sources for learn-
ing (Wu et al., 2015; Yu et al., 2014; Li et al., 2017; Veit
et al., 2017), we instead focus on them for evaluation.

How can we exploit such partial or noisy labels during
testing? With a limited budget for vetting noisy ground-
truth labels, one may be tempted to simply evaluate perfor-
mance on a small set of clean data, or alternately just trust
the cheap-but-noisy labels on the whole dataset. However,
such approaches can easily give an inaccurate impression
of system performance. We show in our experiments that
these naive approaches can produce alarmingly-incorrect
estimates of comparative model performance. Even with a
significant fraction of vetted data, naive performance esti-

1For example, NUS-WIDE, (Chua et al., 2009) estimated 3000
man-hours to semi-manually annotate a relatively small set of 81
concepts across 270K images
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mates can incorrectly rank two algorithms in 15% of trials,
while our active testing approach significantly reduces this
misranking error to 3%.

The problem of label noise even exists for “expertly” an-
notated datasets, whose construction involves manual se-
lection of a test set which is deemed representative in
combination with crowd-sourced labeling by multiple ex-
perts (Rashtchian et al., 2010; Khattak & Salleb-Aouissi,
2011). Preserving annotation quality is an area of intense
research within the HCI/crowdsourcing community (Kamar
et al., 2012; Sheshadri & Lease, 2013). In practice, an-
notation errors are often corrected incrementally through
multiple rounds of interactive error discovery and visual
inspection of algorithm test results over the lifetime of the
dataset. For example, in evaluating object detectors, the
careful examination of detector errors on the test set (Hoiem
et al., 2012) often reveals missing annotations in widely-
used benchmarks (Lin et al., 2014; Everingham et al., 2015;
Dollar et al., 2012) and may in turn invoke further iterations
of manual corrections (e.g., (Mathias et al., 2014)). In this
work, we formalize such ad-hoc practices in a framework
we term active testing, and show that significantly improved
estimates of accuracy can be made through simple statistical
models and active annotation strategies.

2. Related Work
Benchmarking: Empirical benchmarking is now widely
considered to be an integral tool in the development of vi-
sion and learning algorithms. Rigorous evaluation, often in
terms of challenge competitions (Russakovsky et al., 2015;
Everingham et al., 2010) on held-out data, serves to for-
mally codify proxies for scientific or application goals and
provides quantitative ways to characterize progress towards
them. The importance and difficulties of test dataset con-
struction and annotation are now readily appreciated (Ponce
et al., 2006; Torralba & Efros, 2011).

Benchmark evaluation can be framed in terms of the
well-known empirical risk minimization approach to learn-
ing (Vapnik, 1992). Benchmarking seeks to estimate the risk,
defined as the expected loss of an algorithm under the true
data distribution. Since the true distribution is unknown,
the expected risk is estimated by computing loss a finite
sized sample test set. Traditional losses (such as 0-1 error)
decompose over test examples, but we are often interested in
multivariate ranking-based metrics that do not decompose
(such as Precision@K and Average Precision (Joachims,
2005)). Defining and estimating expected risk for such met-
rics is more involved (e.g., Precision@K should be replaced
by precision at a specified quantile (Boyd et al., 2012)) but
generalization bounds are known (Agarwal et al., 2005;
Hill et al., 2002). For simplicity, we focus on the problem
of estimating the empirical risk on a fixed, large but finite
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Figure 2. Vetting Procedure. The figure shows the vetting pro-
cedures for the multi-label classification (top) and instance seg-
mentation (bottom) tasks. The annotations on the left are often
incomplete and noisy, but significantly easier to obtain. These
initial noisy annotations are “vetted” and corrected if necessary
by a human. We quantify human effort in units of the number of
image-label pairs corrected or object segment masks specified.

test set.

Semi-supervised testing: To our knowledge, there have
only been a handful of works specifically studying the prob-
lem of estimating recognition performance on partially la-
beled test data. Anirudh et al. (Anirudh & Turaga, 2014)
study the problem of ’test-driving’ a detector to allow the
users to get a quick sense of the generalizability of the sys-
tem. Closer to our approach is that of Welinder et al. (Welin-
der et al., 2013), who estimate the performance curves using
a generative model for the classifier’s confidence scores.
Their approach leverages ideas from the semi-supervised
learning literature while our approach builds on active learn-
ing.

The problem of estimating benchmark performance from
sampled relevance labels has been explored more exten-
sively in the information retrieval literature where complete
annotation was acknowledged as infeasible. Initial work
focused on deriving labeling strategies that produce low-
variance and unbiased estimates (Yilmaz & Aslam, 2006;
Aslam et al., 2006) and identifying performant retrieval sys-
tems (Moffat et al., 2007). (Sabharwal & Sedghi, 2017) give
error bounds for estimating PR and ROC curves by choosing
samples to label based on the system output ranking. (Gao
et al., 2014) estimate performance using an EM algorithm
to integrate relevance judgements. (Li & Kanoulas, 2017)
and (Rahman et al., 2018) take a strategy similar to ours in
actively selecting test items to label as well as estimating
performance on remaining unlabeled data.

Active learning: Our proposed formulation of active test-
ing is closely related to active learning. From a theoretical
perspective, active learning can provide strong guarantees
of efficiency under certain restrictions (Balcan & Urner,
2016). Human-in-the-loop active learning approaches have
been well explored for addressing training data collection
in visual recognition systems (Branson et al., 2010; Wah
et al., 2011; Vijayanarasimhan & Grauman, 2014). One
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can view active testing as a form of active learning where
the actively-trained model is a statistical predictor of per-
formance on a test set. Active learning is typically cast
within the standard machine-learning paradigm, where the
goal is to (interactively) learn a model that makes accurate
per-example predictions on held-out i.i.d data. In this case,
generalization is of paramount importance. On the other
hand, active-testing interactively learns a model that makes
aggregate statistical predictions over a fixed dataset. This
means that models learned for active-testing (that say, pre-
dict average precision) need not generalize beyond the test
set of interest. This suggests that one can be much more
aggressive in overfitting to the statistics of the data at hand.

3. Framework for Active Testing
In this section, we introduce the general framework for
active testing. Figure 1 depicts the overall flow of our
approach. Our evaluation database initially contains test
examples with inaccurate (noisy) annotations. We select a
batch of data items whose labels will be manually vetted by
an oracle (e.g., in-house annotators or a crowd-sourced plat-
form such as Mechanical Turk). Figure 2 shows examples
of such noisy labels and queries to Oracle. The evaluation
database is then updated with these vetted labels to improve
estimates of test performance. Active testing consists of two
key components: a metric estimator that estimates model
performance from test data with a mix of noisy and vetted
labels, and a vetting strategy which selects the subset of
test data to be labeled in order to achieve the best possible
estimate of the true performance.

3.1. Performance Metric Estimators

We first consider active testing for a simple binary predic-
tion problem and then extend this idea to more complex
benchmarking tasks such as multi-label tag prediction and
instance segmentation. As a running example, assume that
we are evaluating an system that classifies an image (e.g., as
containing a cat or not). The system returns of confidence
score si ∈ R for each test example i ∈ {1 . . . N}. Let yi de-
note a “noisy” binary label for example i (specifying if a cat
is present), where the noise could arise from labeling the test
set using some weak-but-cheap annotation technique (e.g.,
user-provided tags, search engine results, or approximate
annotations). Finally, let zi be the true latent binary label
whose value can be obtained by rigorous human inspection
of the test data item.

Typical benchmark performance metrics can be written as
a function of the true ground-truth labels and system confi-
dences. We focus on metrics that only depend on the rank
ordering of the confidence scores and denote such a metric
generically as Q({zi}) where for simplicity we hide the
dependence on s by assuming that the indices are always

sorted according to si so that s1 ≥ · · · ≥ sN . For ex-
ample, commonly-used metrics for binary labeling include
precision@K and average precision (AP):

Prec@K({z1, . . . , zN}) =
1

K

∑
i≤K

zi (1)

AP ({z1, . . . , zN}) =
1

Np

∑
k

zk
k

∑
i≤k

zi (2)

whereNp is the number of positives. We include derivations
in supplmental material.

Estimation with partially vetted data: In practice, not all
the data in our test set will be vetted. Let us divide the test
set into two components, the unvetted set U for which we
only know the approximate noisy labels yi and the vetted set
V , for which we know the ground-truth label. With a slight
abuse of notation, we henceforth treat the true label zi as
a random variable, and denote its observed realization (on
the vetted set) as z̃i. The simplest strategy for estimating
the true performance is to ignore unvetted data and only
measure performance Q on the vetted subset:

Q({z̃i : i ∈ V }) [Vetted Only] (3)

This represents the traditional approach to empirical eval-
uation in which we collect a single, vetted test dataset and
ignore other available test data. This has the advantage that
it is unbiased and converges to the true empirical perfor-
mance as the whole dataset is vetted. The limitation is that
it makes use of only fully-vetted data and the variance in
the estimate can be quite large when the vetting budget is
limited.

A natural alternative is to incorporate the unvetted examples
by simply substituting yi as a “best guess” of the true zi.
We specify this naive assumption in terms of a distribution
over all labels z = {z1, . . . , zN}:

pnaive(z) =
∏
i∈U

δ(zi = yi)
∏
i∈V

δ(zi = z̃i) (4)

where z̃i is the label assigned during vetting. Under this
assumption we can then compute an expected benchmark
performance:

Epnaive(z)

[
Q(z)

]
[Naive Estimator] (5)

which amounts to simply substituting z̃i for vetted examples
and yi for unvetted examples.

Unfortunately, the above performance estimate may be
greatly affected by noise in the nosiy labels yi. For example,
if there are systematic biases in the yi, the performance
estimate will similarly be biased. We also consider more
general scenarios where side information such as features
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Algorithm 1 Active Testing Algorithm
Input: unvetted set U , vetted set V , total budget T , vetting
strategy V S, system scores S = {si}, estimator pest(z)
while T ≥ 0 do

Select a batch B ⊆ U according to vetting strategy V S.
Query oracle to vet B and obtain true annotations z̃.
U = U \B, V = V ∪B
T = T − |B|
Fit estimator pest using U, V, S.

end while
Estimate performance using pest(z)
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Figure 3. Standard instance segmentation benchmarks ignore un-
vetted data (top pathway) when computing Average Precision. Our
proposed estimator for this task computes an expected probabil-
ity of a match for coarse bounding box annotations when vetted
instance masks aren’t available.

of the test items and distribution of scores of the classifier
under test may also be informative. We thus propose com-
puting the expected performance under a more sophisticated
estimator:

pest(z) =
∏
i∈U

p(zi|O)
∏
i∈V

δ(zi = z̃i) (6)

where O is the total set of all observations available to the
benchmark system (e.g. noisy labels, vetted labels, classifier
scores, data features). We make the plausible assumption
that the distribution of unvetted labels factors conditioned
on O.

Our proposed active testing framework (see Alg 1) estimates
this distribution pest(z) based on available observations
and predicts expected benchmark performance under this
distribution:

Epest(z)

[
Q(z)

]
[Learned Estimator] (7)

Computing expected performance: Given posterior esti-
mates p(zi|O) we can always compute the expected perfor-
mance metric Q by generating samples from these distri-
butions, computing the metric for each joint sample, and
average over samples. Here we introduce two applications
(studied in our experiments) where the metric is linear or
quadratic in z, allowing us to compute the expected perfor-
mance in closed-form.

Multi-label Tags: Multi-label tag prediction is a common
task in video/image retrieval. Following recent work (Joulin
et al., 2016; Gong et al., 2013; Izadinia et al., 2015; Guillau-
min et al., 2009), we measure accuracy with Precision@K -
e.g., what fraction of the topK search results contain the tag
of interest? In this setting, noisy labels yi come from user
provided tags which may contain errors and are typically
incomplete. Conveniently, we can write expected perfor-
mance Eq. 7 for Precision@K for a single tag in closed
form:

E[Prec@K] =
1

K

( ∑
i∈VK

z̃i +
∑
i∈UK

p(zi = 1|O)
)

(8)

where we write VK and UK to denote the vetted and un-
vetted subsets of K highest-scoring examples in the total
set V ∪ U . Some benchmarks compute an aggregate mean
precision over all tags under consideration, but since this
average is linear, one again obtains a closed form estimate.

Instance segmentation: Instance segmentation is another
natural task for which to apply active testing. It is well
known that human annotation is prohibitively expensive –
(Cordts et al., 2016) reports that an average of more than
1.5 hours is required to annotate a single image. Widely
used benchmarks such as (Cordts et al., 2016) release small
fraction of images annotated with high quality, along with
a larger set of noisy or “coarse”-quality annotations. Other
instance segmentation datasets such as COCO (Lin et al.,
2014) are constructed stage-wise by first creating a detection
dataset which only indicates rectangular bounding boxes
around each object which are subsequently refined into a
precise instance segmentations. Fig. 3 shows an example of
a partially vetted image in which some instances are only
indicated by a bounding box (noisy), while others have a
detailed mask (vetted).

When computing Average Precision, a predicted instance
segmentation is considered a true positive if it has sufficient
intersection-over-union (IoU) overlap with a ground-truth in-
stance. In this setting, we let the variable zi indicate that pre-
dicted instance i is matched to a ground-truth instance and
has an above threshold overlap. Assuming independence of
zi’s, the expected AP can be written as (see supplement for
proof):

E[AP ] =
1

Np

(∑
k∈V

z̃kE[Prec@k]

+
∑
k∈U

p(zk = 1|O)E[Prec@k]
)

(9)

In practice, standard instance segmentation benchmarks are
somewhat more complicated. In particular, they enforce
one-to-one matching between detections and ground-truth.
For example, if two detections overlap a ground-truth in-
stance, only one is counted as a true positive while the other
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Top-10 images retrieved by system for ‘animal’

Naive Estimator
Prec@10=40.00%

Learned Estimator
Prec@10=63.25%

noisy

vetted

Figure 4. Estimating Prec@K. Images at left are the top K=10 entries returned by the system being evaluated. The image border denotes
the current label and vetting status (solid blue/red = vetted positive/negative, and dotted blue/red = noisy positive/negative). Estimates
of precision can be significantly improved by using a learned estimator trained on the statistics of examples that have already been
vetted. Current approaches that evaluate on vetted-only or vetted+noisy labels (naive) produce poor estimates of precision (30% and 40%
respectively). Our learned estimator is much closer to the true precision (63% vs 80% respectively).

is scored as a false positive. This also holds for multi-class
detections - if a detection is labeled as a dog (by matching
to a ground-truth dog), it can no longer be labeled as cat.
While this interdependence can in principle be modeled by
the conditioning variables O which could include informa-
tion about which class detections overlap, in practice our
estimators for p(zi = 1|O) do not take this into account.
Nevertheless, we show that such estimators provide remark-
ably good estimates of performance.

Fitting estimators to partially vetted data: We alternate
between vetting small batches of data and refitting the esti-
mator to the vetted set. For multi-label tagging, we update
estimates for the prior probability that a noisy tag for a
particular category will be flipped when vetted p(z̃i 6= yi).
For instance segmentation, we train a per-category classifier
that uses sizes of the predicted and unvetted ground-truth
bounding box to predict whether a detected instance will
overlap the ground-truth. We discuss the specifics of fitting
these particular estimators in the experimental results.

3.2. Vetting Strategies

The second component of the active testing system is a
strategy for choosing the “next” data samples to vet. The
goal of such a strategy is to produce accurate estimates of
benchmark performance with fewest number of vettings.
An alternate, but closely related goal, is to determine the
benchmark rankings of a set of recognition systems being
compared. The success of a given strategy depends on the
distribution of the data, the chosen estimator, and the sys-
tem(s) under test. We consider several selection strategies,
motivated by existing data collection practice and modeled
after active learning, which adapt to these statistics in order
to improve efficiency.

Random Sampling: The simplest vetting strategy is to
choose test examples to vet at random. The distribution of
examples across categories often follows a long-tail distribu-
tion. To achieve faster uniform convergence of performance

estimates across all categories, we use a hierarchical sam-
pling approach in which we first sample a category and then
select a sub-batch of test examples to vet from that category.
This mirrors the way, e.g. image classification and detection
datasets are manually curated to assure a minimum number
of examples per category.

Most-Confident Mistake (MCM): This strategy selects
unvetted examples for which the system under test reports
a high-confidence detection/classification score, but which
are considered a mistake according to the current metric
estimator. Specifically, we focus on the strategy of selecting
Most-confident Negative which is applicable to image/video
tagging where the set of user-provided tags are often incom-
plete. The intuition is that, if a high-performance system
believes that the current sample is a positive with high proba-
bility, it’s likely that the noisy label is at fault. This strategy
is motivated by experience with object detection bench-
marks where, e.g., visualizing high-confident false positive
face detections often reveals missing annotations in the test
set (Mathias et al., 2014).

Maximum Expected Estimator Change (MEEC): In ad-
dition to utilizing the confidence scores produced by the sys-
tem under test, it is natural to also consider the uncertainty
in the learned estimator pest(z). Exploiting the analogy of
active testing with active learning, it is natural to vet samples
that are most confusing to the current estimator (e.g., with
largest entropy), or ones that will likely generate a large
update to the estimator (e.g., largest information gain).

Specifically, we explore a active selection strategy based
on maximum expected model change (Settles, 2010), which
in our case corresponds to selecting a sample that yields
the largest expected change in our estimate of Q. Let
Ep(z|V )[Q(z)] be the expected performance based on the
distribution p(z|V ) estimated from the current vetted set V .
Ep(z|V,zi)[Q(z)] be the expected performance after vetting
example i and updating the estimator based on the outcome.
The actual change in the estimate of Q depends on the
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(a) Micro-Videos (b) NUS-WIDE
Figure 5. Results for multi-label classification task. The figures show the mean and standard deviation of the estimated Precision@48
at different amount of annotation efforts. Using a fairly simple estimator and vetting strategy, the proposed framework can estimate
the performance very closely to the true values. For references, the precision@48 averaged across classes is 20.06% and 19.88% for
Microvideos and NUS-WIDE respectively.

realization of the random variable zi:

∆i(zi) =
∣∣∣Ep(z|V,zi)[Q(z)]− Ep(z|V )[Q(z)]

∣∣∣ (10)

We can choose the example i with the largest expected
change, using the current estimate of the distribution
over zi ∼ p(zi|V ) to compute the expected change
Ep(zi|V ) [∆i(zi)].

For Prec@K, this expected change is given by:

Ep(zi|V ) [∆i(zi)] =
2

K
pi(1− pi) (11)

where we write pi = p(zi = 1|O). Interestingly, selecting
the sample yielded the maximum expected change in the
estimator corresponds to a standard maximum entropy selec-
tion criteria for active learning. Similarly, in the supplement
we show that for AP :

Ep(zi|V ) [∆i(zi)] =
1

Np
ripi(1− pi) (12)

where ri is the proportion of unvetted examples scoring
higher than example i. In this case, we select an example to
vet which has high-entropy and for which there is a relatively
small proportion of higher-scoring unvetted examples.

4. Experiments
We validate our active testing framework on two specific ap-
plications, multi-label classification and instance segmenta-
tion. For each of these applications, we describe the datasets
and systems evaluated and the specifics of the estimators
and vetting strategies used.

4.1. Active Testing for Multi-label Classification

NUS-WIDE: This dataset contains 269,648 Flickr images
with 5018 unique tags. The authors also provide a ’semi-

complete’ ground-truth via manual annotations for 81 con-
cepts. We removed images that are no longer available and
images that doesn’t contain one of the 81 tags. We are
left with around 100K images spanning across 81 concepts.
(Izadinia et al., 2015) analyzed the noisy and missing label
statistics for this dataset. Given that the tag is relevant to the
image, there is only 38% chance that it will appear in the
noisy tag list. If the tag does not apply, there’s 1% chance
that it appears anyway. They posited that the missing tags
are either non-entry level categories (e.g., person) or they
are not important in the scene (e.g., clouds and buildings).

Micro-videos: Micro-videos have recently become a preva-
lent form of media on many social platforms, such as Vine,
Instagram, and Snapchat. (Nguyen et al., 2016) formu-
lated a multi-label video-retrieval/annotation task for a large
collection of Vine videos. They introduce a micro-video
dataset, MV-85k containing 260K videos with 58K tags.
This dataset, however, only provides exhaustive vetting for
a small subset of tags on a small subset of videos. We vet-
ted 26K video-tag pairs from this dataset, spanning 17503
videos and 875 tags. Since tags provided by users have little
constraints, this dataset suffers from both under-tagging and
over-tagging. Under-tagging comes from not-yet popular
concepts, while over-tagging comes from the spamming of
extra tags In our experiments we use a subset of 75 tags.

Recognition systems: To obtain the classification results,
we implement two multi-label classification algorithms for
images (NUSWIDE) and videos (Microvideos). For NUS-
WIDE, we trained a multi-label logistic regression model
built on the pretrained ResNet-50 (He et al., 2016) features.
For Micro-videos, we follow the state-of-the-art video action
recognition framework (Wang et al., 2016) modified for the
multi-label setting to use multiple logistic cross-entropy
losses.
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Learned Estimators: We use Precision@48 as a evaluation
metric. For tagging, we estimate the posterior over unvetted
tags, p(zi|O), based on two pieces of observed information:
the statistics of noisy labels yi on vetted examples, and the
system confidence score, si. This posterior probability can
be derived as (see supplement for proof):

p(zi|si, yi) =
p(yi|zi)p(zi|si)∑

v∈{0,1} p(yi|zi = v)p(zi = v|si)
(13)

Given some vetted data, we fit the tag-flipping priors p(yi|zi)
by standard maximum likelihood estimation (counting fre-
quencies). The posterior probabilities of the true label given
the classifier confidence score, p(zi|si), is fit using logistic
regression.

4.2. Object Instance Detection and Segmentation

COCO Minival: For instance segmentation, we use ‘mini-
val2014’ subset of the COCO dataset (Lin et al., 2014).
This subset contains 5k images spanning over 80 categories.
We report the standard COCO metric: Average Precision
(averaged over all IoU thresholds).

To systematically analyze the impact of evaluation on noise
and vetting, we focus evaluation efforts on the high quality
test set, but simulate noisy annotations by replacing actual
instance segmentation masks by their tight-fitting bound-
ing box (the unvetted “noisy” set). We then simulate ac-
tive testing where certain instances are vetted, meaning the
bounding-box is replaced by the true segmentation mask.

Detection Systems: We did not implement instance seg-
mentation algorithms ourselves, but instead utilized three
sets of detection mask results produced by the authors of
Mask R-CNN (He et al., 2017). These were produced
by variants of the instance segmentation systems proposed
in (Xie et al., 2017; Lin et al., 2017; He et al., 2017).

Learned Estimators: To compute the probability whether
a detection will pass the IoU threshold with a bounding box
unvetted ground-truth instance (p(zi|O) in Eq. 9), we train
a χ2-SVM using the vetted portion of the database. The
features for an example includes the category id, the ‘noisy’
IoU estimate, the size of the bounding box containing the
detection mask and the size of ground-truth bounding box.
The training label is true whether the true IoU estimate, com-
puted using the vetted ground-truth mask and the detection
masks, is above a certain input IoU threshold.

4.3. Efficiency of active testing estimates

We measure the estimation accuracy of different combina-
tion of vetting strategies and estimators at different amount
of vetting efforts. We compute the absolute error between
the estimated metric and the true (fully vetted) metric and
average over all classes. Averaging the absolute estimation
error across classes prevents over-estimation for one class

Figure 6. Decoupling the effect of model change and vetting effort
for NUS-WIDE. This figure shows the reduction in estimation
errors. The vertical drop at the same % vetted point indicates the
reduction due to estimator quality. The slope between adjacent
points indicates value of vetting examples. A steeper slope means
the strategy is able to obtain a better set. In some sense, traditional
active learning is concerned primarily with the vertical drop (i.e.
a better model/predictor), while active testing also takes direct
advantage of the slope (i.e. more vetted labels).

Figure 7. Results for instance segmentation. With 50% of in-
stances vetted, our best model’s estimation is 1% AP off from
the true values with the standard deviation ≤ 1%. A smart es-
timator with a smarter querying strategy can make the approach
more robust and efficient. Our approach has better approxima-
tion and is less prone to sample bias compared to the standard
approach(”random image”+ ”only vetted”).

canceling out under-estimation from another class. We plot
the mean and the standard deviation over 50 simulation runs
of each active testing approach.

Performance estimation: Figure 5 shows the results for
estimating Prec@48 for NUSWIDE and Microvideos. The
x-axis indicates the percentage of the top-k lists that are
vetted. For the Prec@K metric, it is only necessary to vet
100% of the top-k lists rather than 100% of the whole test
set2. A ’random’ strategy with a ‘naive’ estimator follows a

2The “vetted only” estimator is not applicable in this domain
until at least K examples in each short list have been vetted and
hence doesn’t appear in the plots.
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Figure 8. Relative performance differences and their relative ranking for multiple input systems. The left plot shows the mean squared
errors between the current difference to the true difference. The right plot shows how often the ranking orders between two input
algorithms are flipped. Both figures suggest that our active testing framework is a more robust and efficient approach toward comparing
models. With 50% of the data vetted, standard approaches that evaluate on only vetted data (black curve) incorrectly rank algorithms 16%
of the time, while our learned estimators with active vetting (red curve) reduce this error to 3% of the time.

linear trend since each batch of vetted examples contributes
on average the same reduction in estimation error. The
most confident mistake (mcm) heuristic works very well
for Microvideos due to the substantial amount of under-
tagging. However, in more reasonable balanced settings
such as NUS-WIDE, this heuristic does not perform as well.
The MCM vetting strategy does not pair well with a learned
estimator due to its biased sampling which quickly results
in priors that overestimate the number missing tags. In
contrast, the random and active MEEC vetting strategies
offer good samples for learning a good estimator. At 50%
vetting effort, MEEC sampling with a learned estimator on
average can achieve within 2-3% of the real estimates.

Figure 6 highlights the relative value of establishing the
true vetted label versus the value of vetted data in updating
the estimator. In some sense, traditional active learning
is concerned primarily with the vertical drop (i.e. a better
model/estimator), while active testing also takes direct ad-
vantage of the slope (i.e. more vetted labels). The initial
learned estimates have larger error due to small sample size,
but the fitting during the first few vetting batches rapidly
improves the estimator quality. Past 40% vetting effort, the
estimator model parameters stabilize and remaining vetting
serves to correct labels whose true value can’t be predicted
given the low-complexity of the estimator.

Figure 7 shows similar results for estimating the mAP for
instance segmentation on COCO. The current ‘gold stan-
dard’ approach of estimating performance based only on the
vetted subset of images leads to large errors in estimation
accuracy and high variance from from small sample sizes.
In the active testing framework, input algorithms are tested
using the whole dataset (vetted and unvetted). Naive esti-
mation is noticeably more accurate than vetted only and the
learned estimator with uncertainty sampling further reduces

both the absolute error and the variance.

Model ranking: The benefits of active testing are high-
lighted further when we consider the problem of ranking
system performance. We are often interested not in the ab-
solute performance number, but rather in the performance
gap between different systems. We find that active testing
is also valuable in this setting. Figure 8 shows the error
in estimating the performance gap between two different
instance segmentation systems as a function of the amount
data vetted. This follows a similar trend as the single model
performance estimation plot. Importantly, it highlights that
only evaluating vetted data, though unbiased, typically pro-
duces a large error in in performance gap between models
to high variance in the estimate of each individual mod-
els performance. In particular, if we use these estimates
to rank two models, we will often make errors in model
ranking even when relatively large amounts of the data have
been vetted. Using stronger estimators, actively guided
by MEEC sampling provide accurate rankings with sub-
stantially less vetting effort. With 50% of the data vetted,
standard approaches that evaluate on only vetted data (black
curve) incorrectly rank algorithms 15% of the time, while
our learned estimators with active vetting (red curve) reduce
this error to 3% of the time.

Conclusions We have introduced a general framework for
active testing that minimizes human vetting effort by ac-
tively selecting test examples to label and using performance
estimators that adapt to the statistics of the test data and the
systems under test. Simple implementations of this concept
demonstrate the potential for radically decreasing the human
labeling effort needed to evaluate system performance for
standard computer vision tasks. We anticipate this will have
substantial practical value in the ongoing construction of
such benchmarks.
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