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A. Analysis of Algorithm 1
A.1. Analysis of coding step

Proof of Lemma 1. Denote S = supp(x⇤) and skip the superscript s on A
s for simplicity of notation. We will argue that

w.h.p. S = {i 2 [m] : 1
⇢
|hA•i, yi| � C/2} and sgn(hAs

•i, yi) = sgn(x⇤
i
) for every i 2 S.

First, we write the element-wise estimate before thresholding in the encoding step as follows:
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The second term in (6) can be bounded by using the facts that kA⇤kmax  O(1/
p
n) and kA•ik = 1. Specifically,
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Moreover, since k  ⇢
p
n/ log n, the second term in (6) is bounded by O((1� ⇢)/

p
n log n) = o(C).

We bound the first term in (6) by using the incoherence and closeness. For each j 2 S\{i}, we have
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p
n due to the µ-incoherence of A⇤. Now, we combine the term across j and get a matrix form to

leverage the spectral norm bound. In particular,
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where we have used m = O(n) and kA⇤
•Sk  O(1). Also, we made use of the condition that µ 

p
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2k and k = ⌦(log n).
Putting these together, we get �2

Zi
 O(1/ log n). By an application of Bernstein’s inequality, we get that |Zi|  C/4

w.h.p.

We now argue that (1/⇢)hA•i, yi is small when i /2 S and big otherwise. Clearly, when i /2 S, (1/⇢)hA•i, yi = Zi

is less than C/4 in magnitude w.h.p. On the contrary, when i 2 S, then |x⇤
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Finally, we take the union bound over all i = 1, 2, . . . ,m to finish the proof.

A.2. Analysis of the update g
s (in expectation)

Lemma 1 is the key to analyzing the approximate gradient update term

g
s = Ey[(P�(A

s
x)� y)sgn(x)T ].

This section presents a rigorous analysis of gs, and is a key step towards achieving the descent property stated in Theorem 4.
In essence, we make use of the distributions of x⇤, together with its estimate, x to simplify the expectation in g

s. The result
is the following:
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Lemma 5. The column-wise expected value g
s

of the update rule is of the form
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Proof. For notational simplicity, we skip the superscript s on As and gs. Recall from Lemma 1 that the sign of x⇤ is recovered
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Here, we make use of the fact that nonzero entries are conditionally independent given the support and have zero mean;
therefore E[x⇤

j
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)|S] = 0 for all j 6= i. In the expression, � denotes any vector whose norm is sufficiently small

because of the sign consistency and bounded (P�(As
x)� y)sgn(x)T (see Claim 2 in Appendix C).
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a result, gi is expressed as follows:
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where �i = hA•i, A
⇤
•ii. Furthermore, AT

•�i
denotes the matrix A whose i

th column is removed, and diag(qij) denotes the
diagonal matrix of (qi1, qi2 . . . , qim)T without entry qii = qi.

We will prove that ⇢piqi(�iA•i � A
⇤
•i) is the dominant term in (7). In the special case when ⇢ = 1, gi is well studied

in (Arora et al., 2015). Here we follow the same strategy and give upper bounds for the remaining terms. First, from the
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nearness we have kAk  kA�A
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p
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From (7), (8), (10) and (12), we have the additive terms in (7) (excluding �) bounded by o(⇢piqi), hence we can write gi as
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Proof. We prove this lemma by mainly using the results in the above section. We first rewrite gi in Equation (7) in terms
of the desired update direction A

s

•i � A
⇤
•i and everything else. For simplicity, we omit the superscript s and 2↵ = ⇢piqi

throughout the proof. We have:
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where in the last step we have used the Cauchy-Schwarz inequality:
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Since (1� ⇢)/⇢  k  O(⇢
p
n/ log n) and m = O(n), then 1 < ⇣

2
< 2. Besides, we have pi = ⇥(k/m) and qi = ⇥(1),

then ↵ = (1/2)⇢piqi = ⇥(⇢k/m), and ✏
2
/↵ = O(k3/⇢m3) we have lower bound on the gradient. This is equivalent to

saying that gs
i

is (⌦(k/m),⌦(m/k), O(k3/⇢m3))-correlated with the true solution A
⇤
•i (see (Arora et al., 2015).)

Proof of Theorem 4. Having argued the correlation of gs
i

and A•i � A
⇤
•i, we apply Theorem 6 in (Arora et al., 2015) to

obtain the descent stated in Theorem 4. Next, we will establish the nearness for the update at step s.
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A.4. Nearness

The final step in analyzing Algorithm 1 is to show that the nearness of A
s+1 to the ground truth A

⇤ is maintained
after each update. Clearly, As+1 is columnwise close to A

⇤, which follows from Theorem 4. What remains is to
argue that kAs+1 � A

⇤k  2kA⇤k holds true, which is stated in Lemma 7. To this end, we require the sampling
probability ⇢ to be constant. However, we can remove this condition by projecting each update of A on convex set
B = {A|A is �-close to A

⇤ and kAk  2kA⇤k} to guarantee the nearness. The details can be found in (Arora et al., 2015).

Lemma 7. Provided that A
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and that the probability ⇢ is a constant of n, then kAs+1 �A
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k  o(kA⇤k). We will show that the last two terms involving 1 � ⇢ are negligible of kA⇤k. From (11), we have
bound on each column Qi such that kQik  O(maxj 6=i qij). Then,

kQk  kQk
F


p
mmax

i

kQik  O(max
j 6=i

qij

p
m) = O(k2/m

p
m).

Moreover, ⌘ = ⇥(m/⇢k) and k  O
⇤(⇢

p
n/ log n), therefore

⌘(1� ⇢)kQk  O

⇣ (1� ⇢)k

⇢
p
m

⌘
= o(1)

We now bound the term ⌘(1� ⇢)(A⇤ �As �As)diag(piqi) using the column-wise upper bound in (10). More specifically,

k⌘(1� ⇢)(A⇤ �As �As)diag(piqi)k 
p
mk⌘(1� ⇢)piqidiag(A⇤

•i �A•i)A•ik  O(
m

⇢k
(1� ⇢)piqi�

p
m/n)  o(1)

for a constant ⇢ independent of n, piqi = ⇥(k/m) and m = O(n). Put together, we complete the proof of Lemma 7.

B. Analysis of Algorithm 2
Proof of Lemma 3. Recall the distributional properties of x⇤ that x⇤
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We continue calculating the expectations over �. All of those terms are of the same form:
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where all the terms except
P

i2U\V
qici�i�

0
i
A

⇤
•iA

⇤T
•i are expected to be small enough. When ⇢ = 1, then Mu,v simply

includes the first four terms, which is exactly the weighted matrix studied in (Arora et al., 2015) for regular sparse coding.
We will adapt bounds for these terms that now depend on ⇢. First of all, for i /2 U \ V assume ↵i = 0, using Claim 2 and
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i
� ↵

0
i
)|+ |�i↵

0
i
|  O

⇤(1/ log n), then
���

X

i/2U\V

qici�i�
0
i
A

⇤
•iA

⇤T
•i

���  O
⇤(k/m log n), (19)

for qi = ⇥(k/m). For next two perturbation terms, recall from Claim 2 � and �
0 has norms bounded by O(

p
k log n/⇢)

and qij = ⇥(k2/m2). We again use the results from (Arora et al., 2015) to get

���
X

j 6=i

qij(�i�
0
i
A

⇤
•jA

⇤T
•j + 2�i�

0
j
A

⇤
•iA

⇤T
•j )

���  O

⇣
k
3 log2 n

⇢2m2

⌘
. (20)

Now, we will handle the terms involving the diagonal matrices as follows,
���
X

i2[m]

qi�i�
0
i
diag(A⇤

•i �A⇤
•i)

��� = max
j2[n]

��
X

i2[m]

qi�i�
0
i
A

⇤2
ji

��  max
i,j

(qiA
⇤2
ji
)
��
X

i2m

�i�
0
i

��

 max
i

qikA⇤k2maxk�kk�
0k = O

⇣
k
2 log2 n

⇢2mn

⌘
(21)

because of the fact that kA⇤kmax  O(1/
p
n). Similarly, we also have the same bound for the below term

���
X

j 6=i

qij�i�
0
i
diag(A⇤

•j �A⇤
•j)

��� = max
l2[n]

��
X

j 6=i

qij�i�
0
i
A

⇤2
lj

�� = max
l2[n]

��
X

i

�i�
0
i

X

j 6=i

qijA
⇤2
lj

��

 max
i,l

(
X

j 6=i

qijA
⇤2
lj
)
��
X

i2m

�i�
0
i

��  max
i,l

(
X

j 6=i

qijA
⇤2
lj
)k�kk�0k

= O

⇣
k
2 log2 n

⇢2mn

⌘
, (22)

where we used
P

j 6=i
qijA

⇤2
lj

 maxi 6=j qijkA⇤
l•k

2  O(k2/mn) since kA⇤
l•k  kA⇤k  O(

p
m/n).

We bound the last term using a result from (Nguyen et al., 2018) (proof of Claim 4) that
P

j 6=i
qij�i�

0
j
A

⇤
li
A

⇤
lj
= A

⇤T
l• Q�A

⇤
l•

where (Q�)ij = qij�i�
0
j

for i 6= j and (Q�)ij = 0 for i = j, so

|A⇤T
l• Q�A

⇤
l•|  kQ�kkA⇤

l•k
2  kQ�kF kA

⇤k21,2,

Moreover, kQ�k2F =
P

i 6=j
q
2
ij
�
2
i
(�0

j
)2  (maxi 6=j q

2
ij
)
P

i
�
2
i

P
j
(�0

j
)2  (maxi 6=j q

2
ij
)k�k2k�0k2, then

���
X

j 6=i

qij�i�
0
j
diag(A⇤

•i �A⇤
•j

��� = max
l2[n]

��
X

j 6=i

qij�i�
0
j
A

⇤
li
A

⇤
lj

�� = max
l2[n]

|A⇤T
l• Q�A

⇤
l•|

 (max
i 6=j

q
2
ij
)k�k2k�0k2  O

⇣
k
2 log2 n

⇢2m2

⌘
. (23)

Since (1�⇢)/⇢  k and m = O(n), then (20), (21), (22) and (23) are all bounded by O

⇣
k
3 log2

n

⇢2mn

⌘
. Besides, we know that

k  O
⇤( ⇢

p
n

logn
), then all the perturbation terms are bounded by O

⇤(k/m log n). We have finished the proof of Lemma 3.

C. Sample Complexity

In this section, we give concentration bounds for the finite-sample estimates bgs and cMu,v and prove Theorem 3 and
Theorem 5 . We employ the same technique used in (Arora et al., 2015), which basically apply Bernstein inequalities for
proper vector and matrix random variables. The inequality is generally stated in the following lemma.
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Lemma 8. Suppose that Z
(1)

, Z
(2)

, . . . , Z
(p)

are p i.i.d. samples drawn from some distribution D such that E[Z(j)] = 0,

kZ(j)k  R almost surely and kE[Z(j)(Z(j))T k  �
2

for each j, then

1

p

���
pX

j=1

Z
(j)

���  eO
✓
R

p
+

s
�2

p

◆
(24)

holds with probability 1� n
�!(1)

.

In order to apply the above inequality, we need bounds on the random variable Z and its covariance. However, these
quantities are not bounded almost surely, and hence we use the common trick of analyzing a truncated version of Z to
overcome this issue. Lemma 9 provides sufficient conditions for the truncation trick to work

Lemma 9 (Arora et al. (2015)). Suppose a random variable Z satisfies P[kZk � R(log(1/⇢))C ]  ⇢ for some constant

C > 0, then

1. If p = n
O(1)

, it holds that kZ(j)k  eO(R) for each j with probability 1� n
�!(1)

.

2. kE[Z1kZk�e⌦(R)]k = n
�!(1)

.

Note that there is a slight abuse of notation here: the constant C and ⇢ are only used in the context of the above lemma and are
not related to those used in our generative model. Since the random components in bg and cMu,v are products of sub-Gaussian
random variables, we can apply Lemma 8 and Lemma 9 to show the concentration of 1

p

P
p

i=1 Z
(j)(1� 1kZ(j)k�e⌦(R)), then

conclude about the concentration of 1
p

P
p

i=1 Z
(j) likewise.

In bounding kE[ZZ
T (1� 1kZk�e⌦(R))]k, we sometimes need to take bounds of some random terms out of the expectation.

In such case, the following lemma is often useful.

Lemma 10 (Nguyen et al. (2018)). Suppose a random variable Z̃Z̃
T = aT where a � 0 and T is positive semi-definite.

Suppose P[a � A] = n
�!(1)

and B > 0 is a constant. Then,

kE[Z̃Z̃
T (1� 1kZ̃k�B)]k  AkE[T ]k+O(n�!(1))

Other details of these auxiliary lemmas can be found in (Arora et al., 2015; Nguyen et al., 2018).

C.1. Sample Complexity of Algorithm 1

C.1.1. PROOF OF THEOREM 3

We start by using two key auxiliary lemmas for the concentration of bg, both column-wise as well as for the whole matrix.

Lemma 11. At iteration s of Algorithm 1, suppose that A
s

is (�s, 2)-near to A
⇤
. Then kbgs

i
�g

s

i
k  O(k/m)·(o(�s)+O(✏s))

with high probability for �s = O
⇤(1/ log n) and ✏s = O(

p
k/n) when p = e⌦(m).

Lemma 12. If A
s

is (�s, 2)-near to A
⇤

and number of samples used in step s is p = e⌦(mk), then with high probability

kAs+1 �A
⇤k  2kA⇤k.

While the proof of Lemma 11 is provided below, Lemma 12 directly follows from Lemma 42 in Arora et al. (2015) and the
number of samples being e⌦(mk).

Proof of Theorem 3. We can write bgs
i

as

bgs
i
= g

s

i
+ (bgs

i
� g

s

i
) = g

s

i
+O(k/m) · (o(�s) +O(✏s))

with high probability; then argue that bgs
i

is correlated with A•i �A
⇤
•i with high probability from Lemma 6. The descent

property follows directly as Theorem 4 except that we have the expected hbgs
i
, A•i �A

⇤
•ii on the right hand side. The overall

sample complexity is eO(mk), which combines the complexities of having descent and maintaining nearness.
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C.1.2. PROOF OF LEMMA 11

Notice that bgs
i

is a sum of p random vectors of the form (P�(Ax)� y)sgn(xi). We will show the concentration of bgs
i

by
applying the Bernstein inequality on Z , (P�(Ax)�y)sgn(xi). Nevertheless, the inequality does not give a sharp bound for
such sparse Z, so we instead consider Z , (P�(Ax)� y)sgn(xi)|i 2 S, with S = supp(x⇤) and x = thresholdC/2(A

T
y).

Claim 1. Suppose that Z
(1)

, Z
(2)

, . . . , Z
(N)

are i.i.d. samples of the random variable Z = P�(y � Ax)sgn(xi)|i 2 S.

Then,

���
1

N

NX

j=1

Z
(j) � E[Z]

���  o(�s) +O(✏s) (25)

holds with probability when N = e⌦(k), �s = O
⇤(1/ log n) and ✏s = O(

p
k/n).

Proof of Lemma 11. The lemma is easily proved by applying Claim 1. For the reader, we recycle the proof of Lemma 43 in
(Arora et al., 2015).

Write W = {j : i 2 supp(x⇤(j))} and N = |W |, then express bgi as

bgi =
N

p

1

N

X

j

(P�(Ax
(j))� y

(j))sgn(x(j)
i

),

where 1
|W |

P
j
(P�(Ax

(j)) � y
(j))sgn(x(j)

i
) is distributed as 1

N

P
N

j=1 Z
(j) with N = |W |. Note that E[(P�(Ax) �

y)sgn(xi)] = E[(P�(Ax)� y)sgn(xi)1i2S ] = E[Z]P[i 2 S] = qiE[Z] with qi = ⇥(k/m). Following Claim 1, we have

kbgs
i
� g

s

i
k  O(k/m)

���
1

N

NX

j=1

Z
(j) � E[Z]

���  O(k/m) · (o(�s) +O(✏s)),

holds with high probability as p = ⌦(mN/k). Substituting N in Claim 1, we obtain the results in Lemma 11.

Proof of Claim 1. To prove it, we need to bound kZk and its variance (Lemma 2 and Lemma 3), then we can apply the
Bernstein inequality in Lemma 8.

Claim 2. kZk  eO(�s
p
k + µk/

p
n) holds with high probability over the randomness of y.

Proof. From the generative model and the support consistency of the encoding step, we have

y = P�(A
⇤
x
⇤) = A

⇤
�,Sx

⇤
S

and xS = A
T

•Sy = A
T

•SA
⇤
�,Sx

⇤
S

and plug the following quantities into the

y � P�(Ax) = A
⇤
�,Sx

⇤
S
�A�,SA

T

•SA
⇤
�,Sx

⇤
S

= (A⇤
�,S �A�,S)x

⇤
S
+A�,S(In �A

T

•SA
⇤
�,S)x

⇤
S
.

By the fact that x⇤
S

is sub-Gaussian and kMwk  eO(�wkMk
F
) holds with high probability for a fixed M and a sub-

Gaussian w of entrywise variance �
2
w

, we have

k(P�(Ax)� y)sgn(xi)|i 2 Sk  eO(kA⇤
�,S �A�,SkF + kA�,S(Ik �A

T

•SA
⇤
•S)kF ).

Now, we need to bound those Frobenius norms. The first quantity is easily bounded as

kA⇤
�,S �A�,Sk2F =

X

i2S

kA�,i �A
⇤
�,ik

2  �
2
s
k (26)
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due to the �-closeness of A and A
⇤. This leads to kA⇤

�,S �A�,SkF  �s

p
k w.h.p. To handle the other two, we use the fact

that kUV k
F
 kUkkV k

F
. For the second term, we have

kA�,S(Ik �A
T

•SA
⇤
•S)kF  kA�,Skk(Ik �A

T

•SA
⇤
•S)kF ,

where kA�,Sk  kA�•k  O(1) due to the nearness.

The second part is rearranged to take advantage of the closeness and incoherence properties:

kIk �A
T

•SA
⇤
•SkF  kIk �A

⇤T
•SA

⇤
•S � (A•S �A

⇤
•S)

T
A

⇤
•SkF

 kIk �A
⇤T
•SA

⇤
•SkF + k(A•S �A

⇤
•S)

T
A

⇤
•SkF

 kIk �A
⇤T
•SA

⇤
•SkF + kA⇤

•SkkA•S �A
⇤
•SkF

 µk/
p
n+O(�s

p
k),

where we have used kIk � A
⇤T
•SA

⇤
•SkF  µk/

p
n because of the µ-incoherence of A⇤, kA•S � A

⇤
•SkF  �s

p
k in (26)

and kA⇤
•Sk  kA⇤k  O(1). Accordingly, the second Frobenius norm is bounded by

kA�,S(Ik �A
T

•SA
⇤
•S)kF  O

�
µk/

p
n+ �s

p
k
�
. (27)

Claim 3. E[kZk2]  O(�2
s
k + k

2
/n) holds with �s = O

⇤(1/ log n).

Proof. In the following proofs, we use x
⇤
S

to mean a vector of size k obtained by selecting entries in S. Using the fact that
E[x⇤

S
x
⇤T
S

] = Ik, we can expand the expectation E[kZk2] as follows,

E[kP�(y �Ax)sgn(xi)k2|i 2 S] = E[k(A⇤
�,S �A�,SA

T

•SA
⇤
•S)x

⇤
S
k2]

= E[kA⇤
�,S �A�,SA

T

•SA
⇤
•Sk

2
F
|i 2 S]

 E[k(A⇤
�,S �A�,S)k2|i 2 S] + E[kA�,S(Ik �A

T

•SA
⇤
•S)k

2|i 2 S]

 �
2
s
k + E[kA�,S(Ik �A

T

•SA
⇤
•S)k

2|i 2 S].

Here we have used the bound k(A⇤
�,S �A�,S)k2  �

2
s
k for the first term shown in the previous claim. For the second term,

we notice that

E[kA�,S(Ik �A
T

•SA
⇤
•S)k

2
F
|i 2 S]  sup

S

kA�,Sk2E[kIk �A
T

•SA
⇤
•Sk

2
F
|i 2 S], (28)

in which supSkA�,Sk  kA�•k  O(1). We will show that E[kIk�A
T

•SA
⇤
•Sk

2
F
|i 2 S]  O(k�2

s
)+O(k2/n) by recycling

the proof from (Arora et al., 2015):

E[kIk �A
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•SA
⇤
•Sk

2
F
|i 2 S] = E[

X

j2S

(1�A
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•jA
⇤
•j)

2 +
X

j2S

kAT

•jA
⇤
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k2|i 2 S]

= E[
X

j2S

1

4
kA•j �A

⇤
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2] + qij
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j 6=i
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⇤
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k2 + qikAT

•iA
⇤
•,�i

k2 + qikAT

•,�i
A

⇤
•ik

2
,

where A•,�i is the matrix A with the i
th column removed, qij  O(k2/m2) and qi  O(k/m). For any j = 1, 2, . . . ,m,

kAT

•jA
⇤
•,�j

k2 = kA⇤T

•j A
⇤
•,�j

+ (A•j �A
⇤
•j)

T
A

⇤
•,�j

k2


X

l 6=j

hA⇤
•j , A

⇤
•li

2 + k(A•j �A
⇤
•j)

T
A

⇤
•,�j

k2


X

l 6=j

hA⇤
•j , A

⇤
•li

2 + kA•j �A
⇤
•jk

2kA⇤
•,�j

k2  µ
2 + �

2
s
.

The µ-incoherence, �-closeness and the spectral norm of A⇤ have been used in the last step. Similarly, we can bound
kAT

•iA
⇤
•,�i

k2 and kAT

•,�i
A

⇤
•ik

2. As a result,

E[kIk �A
T

•SA
⇤
•Sk

2
F
|i 2 S]  O(k�2

s
) +O(k2/n). (29)
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Combining (28) and (29), we have shown that the covariance is bounded by: �2 = O(�2
s
k + k

2
/n).

Having had R = eO(�s
p
k + µk/

p
n) and �

2 = O(�2
s
k + k

2
/n) in Claims 2 and 3, we are now ready to apply truncated

Bernstein inequality to the random variable Z
(j)(1� 1kZ(j)k�⌦(R)), leading to the concentration of 1

N

P
N

j=1 Z
(j). More

precisely,

���
1

N

NX

i=1

Z
(j) � E[Z]

���  eO
⇣
R

N

⌘
+ eO

✓r
�2

N

◆
= o(�s) +O(

p
k/n)

holds with high probability when N = e⌦(k). As such, we finished the proof of Claim 1.

C.2. Sample Complexity of Algorithm 2

In the next proofs, we argue the concentration inequality for cMu,v computed in Algorithm 2, which is the empirical average
over i.i.d. samples of y, then prove Theorem 5. We note that while u and v are fixed for one iteration, they are random. The
(conditional) expectations contain randomness from u and v, hence in some high probability statement, we refer it to the
randomness of u, v.

Lemma 13. Consider Algorithm 2 in which p is the given number of incomplete samples. For any pair of full samples u

and v, with high probability kcMu,v �Mu,vk  O
⇤(k/m log n) when p = e⌦(mk/⇢

4).

C.2.1. PROOF OF LEMMA 13

Consider a random matrix variable Z , hy, uihy, viyyT . We have cMu,v = 1
p

P
p

i=1 Z
(i)
/⇢

4. To give a tail bound for

kcMu,v �Mu,vk, all we need is derive are an upper norm bound R of the matrix random variable Z and its variance, then
apply Bernstein inequality. These following claims provide bounds for kZk and kE[ZZ

T ]k.

Claim 4. kyk  eO(
p
k) and |hy, ui|  eO(

p
k) hold with high probability (over random samples u and v.)

Proof. Under the generative model where S = supp(x⇤), we have

kyk = kA⇤
�,Sx

⇤
S
k  kA⇤

�,Sx
⇤
S
k  kA⇤

�,Skkx⇤
S
k.

From Claim 2, kx⇤
S
k  eO(

p
k) w.h.p. In addition, kA⇤

�,Sk  kA⇤k  O(1). Therefore, kyk  eO(
p
k) w.h.p., which is the

first part of the proof. To bound the second term, we write it as

|hy, ui| = |hA⇤
�,Sx

⇤
S
, ui|  |hx⇤

S
, A

⇤T
�,Sui|.

Even though u is fully observed sample, we can prove similarly that kuk  eO(
p
k) w.h.p. which results in kA⇤T

•Suk 
kA⇤T

•Skkuk  eO(
p
k) with high probability. Consequently, |hy, ui|  eO(

p
k) w.h.p., and we finish the proof of the

claim.

Claim 5. kZk  eO(k2) and kE[ZZ
T ]k  eO(⇢4k3/m) hold with high probability.

Proof. First, it is obvious that
kZk  |hy, uihy, vi|kyk2,

in which |hy, uihy, vi|  eO(k) and kyk2  eO(k) w.h.p. (according to Claim 4). Clearly, kZk  eO(k2) w.h.p.

For the second part, we use the auxiliary lemma 10 to take out the bound of kZk. Specifically, we have just shown that
kZk  eO(k2) and hy, vi2kyk2  eO(k2), applying Lemma 10:

kE[ZZ
T (1� 1kZk�e⌦(k2))]k  eO(k2)kE[hy, ui2yyT ]k+ eO(k2)O(n�!(1))  eO(k2)k⇢4Mu,uk,

where Mu,u is the expected weighted covariance matrix defined in Lemma 3 for u and v = u. From Lemma 3 we have

Mu,u =
X

i

qici�
2
i
A

⇤
•iA

⇤T
•i + perturbation terms,
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and the perturbation terms are all bounded by O
⇤(k/m log n) whereas

k
X

i

qici�
2
i
A

⇤
•iA

⇤T
•i k = kA⇤diag(qici�i)A

⇤T k  (max
i

qici�
2
i
)kA⇤k2  eO(k/⇢m)kA⇤k2  eO(k/m)

w.h.p. since |�i|  log n w.h.p. Finally, the variance bound is eO(⇢4k3/m) w.h.p.

Then, applying Bernstein inequality in Lemma 8 to the truncated version of Z with R = eO(k2) and variance �
2 =

eO(⇢4k3/m) and obtain the concentration for the full Z to get

kcMu,v �Mu,vk 
eO(k2)

⇢4p
+

1

⇢4

s
eO(⇢4k3/m)

p
 O

⇤(k/m log n)

w.h.p. when the number of samples is p = e⌦(mk/⇢
4). We finish the proof of Lemma 13.

C.2.2. PROOF OF THEOREM 5

We can write the empirical estimate cMu,v in term of its expectation Mu,v as

cMu,v = qici�i�
0
i
A

⇤
•iA

⇤T
•i + perturbation terms + (cMu,v �Mu,v),

and the new term cMu,v �Mu,v can be considered an additional perturbation with the same magnitude O
⇤(k/m log n) in

spectral norm. As a consequence, as u and v share a unique element in their code supports, the top singular vectors of cMu,v

is O⇤(1/ log n) -close to A
⇤
•i with high probability using p = eO(mk/⇢

4) partial samples.

Each vector added to the list L in Algorithm 2 is close to one of the dictionary, then it must be the case that A0 is
�-close to A

⇤. In addition, the nearness of A0 to A
⇤ is guaranteed via an appropriate projection onto the convex set

B = {A|A close to A
0 and kAk  2kA⇤k}.

Finally, using the result in (Arora et al., 2015), the number of full samples in P1 is eO(m) such that we can draw u, v share
uniquely and estimate all the m dictionary atoms. Overall, the sample complexities of Algorithm 2 are eO(m) full samples
and p = eO(mk/⇢

4) partial samples. We finish the proof of Theorem 5.


