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Abstract

We provide a comprehensive overview and tool-

ing for GP modeling with non-Gaussian likeli-

hoods using state space methods. The state space

formulation allows to solve one-dimensional GP

models in O(n) time and memory complexity.

While existing literature has focused on the con-

nection between GP regression and state space

methods, the computational primitives allowing

for inference using general likelihoods in combi-

nation with the Laplace approximation (LA), vari-

ational Bayes (VB), and assumed density filtering

(ADF, a.k.a. single-sweep expectation propaga-

tion, EP) schemes has been largely overlooked.

We present means of combining the efficientO(n)
state space methodology with existing inference

methods. We extend existing methods, and pro-

vide unifying code implementing all approaches.

1. Introduction

Gaussian processes (GPs) (Rasmussen & Williams, 2006)

form a versatile class of probabilistic machine learning mod-

els with applications in regression, classification as well as

robust and ordinal regression. In practice, there are com-

putational challenges arising from (i) non-conjugate (non-

Gaussian) likelihoods and (ii) large datasets.

The former (i) can be addressed by approximating the non-

Gaussian posterior by an effective Gaussian giving rise to

a number of algorithms such as the Laplace approximation

(LA, Williams & Barber, 1998), variational Bayes (VB,

Gibbs & MacKay, 2000), direct Kullback–Leibler (KL) di-

vergence minimization (Opper & Archambeau, 2009) and

expectation propagation (EP, Minka, 2001) with different

tradeoffs in terms of accuracy and required computations

(Kuss & Rasmussen, 2005; Nickisch & Rasmussen, 2008;

Naish-Guzman & Holden, 2008). The latter (ii) can be
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addressed by approximate covariance computations using

sparse inducing point methods (Quiñonero-Candela & Ras-

mussen, 2005) based on variational free energy (VFE, Tit-

sias, 2009), fully independent training conditionals (FITC,

Snelson & Ghahramani, 2006), hybrids (Bui et al., 2017),

or stochastic approximations (Hensman et al., 2013; Krauth

et al., 2017) applicable to any data dimension D. A second

class of covariance interpolation methods, KISS-GP (Wilson

& Nickisch, 2015; Wilson et al., 2015), are based on grids

of inducing points. For 1 < D < 5, product covariance, and

rectilinear grids, the covariance matrix has Kronecker struc-

ture. For D = 1, stationary covariance, and a regular grid,

the covariance matrix has Toeplitz structure (a special case

of block-Toeplitz with Toeplitz blocks (BTTB) obtained for

1 < D < 5), which can be exploited for fast matrix-vector

multiplications (MVMs). A third covariance approximation

methodology is based on basis function expansions such as

sparse spectrum GPs (Lázaro-Gredilla et al., 2010), varia-

tional Fourier features (Hensman et al., 2018), or Hilbert

space GPs (Solin & Särkkä, 2014b) for stationary covari-

ance functions. Higher input dimensions D > 4 either tend

to get computationally heavy or prone to overfitting.

In time-series data, with D = 1, the data sets tend to be-

come long (or unbounded) when observations accumulate

over time. For these time-series models, leveraging sequen-

tial state space methods from signal processing makes it

possible to solve GP inference problems in linear time com-

plexity O(n) if the underlying GP has Markovian structure

(Reece & Roberts, 2010; Hartikainen & Särkkä, 2010). This

reformulation is exact for Markovian covariance functions

(see, e.g., Solin, 2016) such as the exponential, half-integer

Matérn, noise, constant, linear, polynomial, Wiener, etc.

(and their sums and products). Covariance functions such

as the squared exponential (Hartikainen & Särkkä, 2010),

rational quadratic (Solin & Särkkä, 2014a), and periodic

(Solin & Särkkä, 2014) can be approximated by their Marko-

vian counterparts. Grigorievskiy & Karhunen (2016); Grig-

orievskiy et al. (2017) bridge the state space connection

further by leveraging sparse matrices (SpInGP) in connec-

tion with the Markovian state space models. Another issue

is that if time gaps between data points are very uneven then

the computational power is spend on computing required

matrix exponentials. This still makes the method slow for

the large datasets with uneven sampling despite the linear
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computational complexity of inference. This shows as a

large cost per time step (the ‘hidden’ constant in the big-O

notation) due to evaluating matrix exponentials.

The previous literature has focused on rewriting the GP in

terms of a state space model (focusing on challenge (i)).

Addressing challenge (ii), non-Gaussian likelihoods have

been touched upon by Solin & Särkkä (2014a) (inner-loop

Laplace approximation) and Hartikainen et al. (2011) in a

spatio-temporal log Gaussian Cox process (using EP com-

bined with local extended Kalman filtering updates). How-

ever, deriving approximate inference schemes is in the state

space regime is complicated and requires hand-crafting for

each likelihood.

Related work also includes Kalman filtering for optimization

in parametric models (Aravkin et al., 2013; 2014), and non-

linear GP priors in system identification models (a.k.a. ‘GP

state space’ models, see, e.g., Frigola et al., 2014).

This paper advances the state-of-the-art in two ways:

• We present a unifying framework for solving computa-

tional primitives for non-Gaussian inference schemes

in the state space setting, thus directly enabling infer-

ence to be done through LA, VB, KL, and ADF/EP.

• We present a novel way for solving the continuous-time

state space model through interpolation of the matrix

exponential, which further speeds up the linear time-

complexity by addressing the large-constant problem.

Code for the paper is available as part of the GPML toolbox

version 4.2 (Rasmussen & Nickisch, 2010).

2. Methods

We introduce the GP framework in Sec. 2.1, then name

four computational primitives that can be used to operate

approximate inference schemes beyond the exact Gaussian

case in Sec. 2.2. The state space representation of GPs

is introduced in 2.3 along with the Kalman filtering and

smoothing algorithms, Algs. 2+3. Then, we will show how

these primitives including prediction can be implemented

for GPs using the state space representation in Sec. 2.5.

Further, we detail how they can be used to operate inference

for Laplace approximation (LA) in Sec. 2.6, variational

Bayes (VB) in Sec. 2.7, assumed density filtering (ADF)

a.k.a. single sweep expectation propagation (EP) in Sec. 2.9

and Kullback–Leibler (KL) minimization in Sec. 2.8. For

the first three algorithms, we are also able to perform full-

fledged gradient-based hyperparameter learning.

2.1. Gaussian process training and prediction

The models we are interested, in take the following stan-

dard form of having a latent Gaussian process prior and a

measurement (likelihood) model:

f(t) ∼ GP(m(t), k(t, t′)), y|f ∼
n
∏

i=1

P(yi|f(ti)),

where the likelihood factorizes over the observations. This

family of models covers many types of modeling problems

including (robust or ordinal) regression and classification.

We denote the data as a set of scalar input–output pairs

D = {(ti, yi)}
n
i=1. We are interested in models follow-

ing Rasmussen & Nickisch (2010) that – starting from the

Gaussian prior f = N(f |m,K) given by the GP – admit an

approximate posterior of the form

Q(f |D) = N
(

f |m+Kα, (K−1 +W)−1
)

, (1)

where mi = m(ti) and Ki,j = k(ti, tj) are the prior mean

and covariance. The vector α and the (likelihood precision)

matrix W = diag(w) form the set of 2n parameters. Ele-

ments of w are non negative for log-concave likelihoods.

Equivalently, we can use the natural parameters (b,W) of

the effective likelihood, where b = WKα+α in general

and for Gaussian likelihood b = W(y −m) in particular.

Given these parameters, the predictive distribution for an

unseen test input t∗ is obtained by integrating the Gaussian

latent marginal distribution N (f∗|µf,∗, σ
2
f,∗)

µf,∗=m∗+k⊤
∗ α; σ2

f,∗=k∗∗− k⊤
∗

(

K+W−1
)−1

k∗ (2)

against the likelihood P(y∗|f∗) to obtain

P(y∗) =

∫

P(y∗|f∗)N (f∗|µf,∗, σ
2
f,∗) df∗ (3)

the predictive distribution whose first two moments can be

used to make a statement about the unknown y∗.

The model may have hyperparameters θ = [a, d, σf , ℓ, σn]
of the mean e.g. m(t) = at + d, the covariance e.g.

k(t, t′) = σ2
f exp(−(t− t

′)2/(2ℓ2)) and the likelihood e.g.

P(yi|fi) = N (fi|yi, σ
2
n) which can be fit by maximizing

the (log) marginal likelihood of the model

logZ(θ) = log

∫

N (f |m,K)
∏

i

P(yi|fi) df , (4)

which is an intractable integral in the non-Gaussian case but

can be approximated or bounded in various ways.

A prominent instance of this setting is plain GP regres-

sion (see Alg. 1), where the computation is dominated by

the O(n3) log-determinant computation and the linear sys-

tem for α. To overcome the challenges arising from non-

conjugacy and large dataset size n, we define a set of generic

computations and replace their dense matrix implementation

(see Alg. 1) with state space algorithms.
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Algorithm 1 Predictions and log marginal likelihood logZ
for Gaussian process regression (Alg. 2.1 in Rasmussen &

Williams (2006)). Complexity is O(n3) for the Cholesky

decomposition, and O(n2) for solving triangular systems.

Input: {ti}, {yi} # training inputs and targets

k, σ2
n, t∗ # covariance, noise variance, test input

L← Cholesky(K+ σ2
n I); α← L−⊤(L−1(y −m))

logZ ← − 1
2 (y −m)⊤α−

∑

i logLi,i −
n
2 log 2π

µf,∗ ←m∗ + k⊤
∗ α; σ2

f,∗ ← k∗∗ − ‖L\k∗‖
2
2

Return: µf,∗, σ
2
f,∗, logZ # mean, variance, evidence

2.2. Gaussian process computational primitives

The following computational primitives allow to cast the

covariance approximation in more generic terms:

1. Linear system with “regularized” covariance:

solveK(W, r) := (K+W−1)−1r.

2. Matrix-vector multiplications: mvmK(r) := Kr.

For learning we also need
mvmK(r)

∂θ
.

3. Log-determinants: ldK(W) := log |B| with symmet-

ric and well-conditioned B = I+W
1

2KW
1

2 .

For learning, we need derivatives:
∂ldK(W)

∂θ
,
∂ldK(W)

∂W
.

4. Predictions need latent mean E[f∗] and variance V[f∗].

Using these primitives, GP regression can be compactly

written as W = I/σ2
n, α = solveK(W,y −m), and

logZGPR =

−
1

2

[

α⊤(y −m) + ldK(W) + n log(2πσ2
n)
]

. (5)

Approximate inference (LA, VB, KL, ADF/EP) – in case

of non-Gaussian likelihoods – requires these primitives as

necessary building blocks. Depending on the covariance

approximation method e.g. exact, sparse, grid-based, or state

space, the four primitives differ in their implementation and

computational complexity.

2.3. State space form of Gaussian processes

GP models with covariance functions with a Markovian

structure can be transformed into equivalent state space

models. The following exposition is based on Solin (2016,

Ch. 3), which also covers how to derive the equivalent exact

models for sum, product, linear, noise, constant, Matérn

(half-integer), Ornstein–Uhlenbeck, and Wiener covariance

functions. Other common covariance functions can be

approximated by their Markovian counterparts, including

squared exponential, rational quadratic, and periodic covari-

ance functions.

Algorithm 2 Kalman (forward) filtering. For ADF, (W,b)
are not required as inputs. Note, b = Wr.

Input: {ti} , y # training inputs and targets

{Ai}, {Qi}, H, P0 # state space model

W, b # likelihood eff. precision and location

for i = 1 to n do

if i == 1 then

mi ← 0; Pi ← P0 # init

else

mi ← Aimi−1; Pi ← AiPi−1A
⊤
i +Qi # predict

end if

if has label yi then

µf ← Hmi; u← PiH
⊤; σ2

f ← Hu # latent

if ADF (assumed density filtering) then

set (bi,Wii) to match moments of P(yi|fi) and

exp(bifi −Wiif
2
i /2) w.r.t. latent N (fi|µf , σ

2
f )

end if

zi ←Wiiσ
2
f + 1; ci ←Wiiµf − bi

ki ←Wiiu/zi; Pi ← Pi − kiu
⊤ # variance

γi ← −ci/zi; mi ←mi + γiu # mean

end if

end for

ldK(W)←
∑

i log zi

Algorithm 3 Rauch–Tung–Striebel (backward) smoothing.

Input: {mi}, {Pi} # Kalman filter output

{Ai}, {Qi} # state space model

for i = n down to 2 do

m← Aimi−1; P← AiPi−1A
⊤
i +Qi # predict

Gi ← Pi−1A
⊤
i P

−1; ∆mi−1 ← Gi(mi −m)
Pi−1 ← Pi−1 +Gi(Pi −P)G⊤

i # variance

mi−1 ←mi−1 +∆mi−1 # mean

ρi−1 ← H∆mi−1 # posterior

end for

solveK(W, r) = α← γ −Wρ # posterior

A state space model describes the evolution of a dynamical

system at different time instances ti, i = 1, 2, . . . by

fi ∼ P(fi|fi−1), yi ∼ P(yi|fi), (6)

where fi := f(ti) ∈ Rd and f0 ∼ P(f0) with fi being

the latent (hidden/unobserved) variable and yi being the

observed variable. In continuous time, a simple dynamical

system able to represent many covariance functions is given

by the following linear time-invariant stochastic differential

equation:

ḟ(t) = F f(t) + Lw(t), yi = Hf(ti) + ǫi, (7)

where w(t) is an s-dimensional white noise process, the

measurement noise ǫi ∼ N (0, σ2
n) is Gaussian, and F ∈

Rd×d, L ∈ Rd×s, H ∈ R1×d are the feedback, noise effect,
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and measurement matrices, respectively. The initial state is

distributed according to f0 ∼ N (0,P0).

The latent GP is recovered by f(t) = Hf(t) and w(t) ∈ Rs

is a multivariate white noise process with spectral density

matrix Qc ∈ Rs×s. For discrete values, this translates into

fi ∼ N (Ai−1fi−1,Qi−1), yi ∼ P(yi|Hfi), (8)

with f0 ∼ N (0,P0). The discrete-time matrices are

Ai = A[∆ti] = e∆tiF, (9)

Qi =

∫ ∆ti

0

e(∆tk−τ)FLQc L
⊤e(∆ti−τ)F⊤

dτ, (10)

where ∆ti = ti+1 − ti ≥ 0.

For stationary covariances k(t, t′) = k(t−t′), the stationary

state is distributed by f∞ ∼ N (0,P∞) and the stationary

covariance can be found by solving the Lyapunov equation

Ṗ∞ = FP∞ +P∞ F⊤ + LQc L
⊤ = 0, (11)

which leads to the identity Qi = P∞ −Ai P∞ A⊤
i .

2.4. Fast computation of Ai and Qi by interpolation

In practice, the evaluation of the n discrete-time transition

matrices Ai = e∆tiF and the noise covariance matrices

Qi = P∞ −AiP∞A⊤
i (in the stationary case) for differ-

ent values of ∆ti is a computational challenge. When the

distribution of ∆ti in the dataset is narrow then computed

matrices can be reused. However, when the distribution is

wide, then computing Ai and Qi consumes roughly 50% of

the time on average if done naı̈vely.

Since the matrix exponential ψ : s 7→ esX is smooth, its

evaluation can be accurately approximated by convolution

interpolation (Keys, 1981) as done for the covariance func-

tions in the KISS-GP framework (Wilson & Nickisch, 2015;

Wilson et al., 2015). The idea is to evaluate the function on

a set of equispaced discrete locations s1, s2, .., sK , where

sj = s0 + j ·∆s and interpolate A = esX from the closest

precomputed Aj = esjX i.e. use the 4 point approxima-

tion A ≈ c1Aj−1 + c2Aj + c3Aj+1 + c4Aj+2. The grid

resolution ∆s governs approximation accuracy.

The same interpolation can be done for the noise covari-

ance matrices Qi. Finally, the number of matrix exponen-

tial evaluations can be reduced from n to K, which – for

large datasets – is practically negligible. The accuracy of

the interpolation depends on the underlying grid spacing

∆s. In practice, we use an equispaced grid covering range

[mini ∆ti,maxi ∆ti], but hybrid strategies, where the bulk

of the mass of the ∆ti is covered by the grid and outliers are

evaluated exactly, are – of course – possible. Very diverse

sets of ∆ti with vastly different values, could benefit from

a clustering with an individual grid per cluster.

2.5. State space computational primitives

In the following, we will detail how the SpInGP viewpoint

of Grigorievskiy et al. (2017) can be used to implement

the computational primitives of Sec. 2.2 with linear com-

plexity in the number of inputs n. The covariance ma-

trix of the latent GP f(t) evaluated at the training inputs

t1, . . . , tn is denoted K ∈ Rn×n and the (joint) covariance

of the dynamical system state vectors [F0;F1; ..;Fn] is de-

noted by K ∈ R(n+1)d×(n+1)d. Defining the sparse matrix

Gn×(n+1)d = [0n×d, In ⊗ H], we obtain K = GKG⊤.

Further, define the symmetric block diagonal matrix

Q =











P0 0 . . . 0

0 Q1 . . . 0
...

...
. . .

...

0 0 . . . Qn











∈ R(n+1)d×(n+1)d

and (n+ 1)d× (n+ 1)d matrix T = A−1 =














I 0 0 . . . 0

−A[∆t1] I 0 . . . 0

0 −A[∆t2] I . . . 0
...

...
...

. . .
...

0 0 −A[∆tn] . . . I















of block tridiagonal (BTD) structure allowing to write

K−1 = T⊤Q−1T, andK = AQA⊤,

where it becomes obvious that K−1 is a symmetric BTD;

which is in essence the structure exploited in the SpInGP

framework by Grigorievskiy et al. (2017).

2.5.1. LINEAR SYSTEMS

Using the the matrix inversion lemma, we can rewrite
(

K+W−1
)−1

as

= W −WG
(

K−1 +G⊤W−1G
)−1

G⊤W

= W −WGR−1G⊤W, R = T⊤Q−1T+G⊤WG.

This reveals that we have to solve a system with a symmetric

BTD system matrix R, where G⊤WG = diag([0;W])⊗
(H⊤H). The only (numerical) problem could be the large

condition of any of the constituent matrices of Q as it would

render the multiplication with K−1 a numerical endeavour.

Adding a small ridge α2 to the individual constituents of Q

i.e. use Q̃i = Qi + α2I instead of Qi is a practical remedy.

Finally, we have

solveK(W,R) = WR−WGR−1G⊤WR.

2.5.2. MATRIX-VECTOR MULTIPLICATIONS

Using the identity K = AQA⊤ from Grigorievskiy et al.

(2017) and K = GKG⊤, we can write

mvmK(R) = GT−1QT−⊤G⊤R
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where all constituents allow for fast matrix-vector mul-

tiplications. The matrix G is sparse, the matrix Q is

block diagonal and the linear system with T is of BTD

type. Hence, overall runtime is O(nd2). For the deriva-

tives
mvmK(r)

∂θi
, we proceed component-wise using Q

∂θi
and

T−1

∂θi
= −T−1 T

∂θi
T−1. The derivative d exp(X) of the ma-

trix exponential exp(X) is obtained via a method by Najfeld

& Havel (1995, Eqs. 10&11) using a matrix exponential of

twice the size

exp

([

X 0

dX X

])

=

[

exp(X) 0

d exp(X) exp(X)

]

.

2.5.3. LOG DETERMINANTS

The Kalman filter (Alg. 2) can be used to compute the log

determinant ldK(W) =
∑

i log zi in O(nd3).

There are two kinds of derivatives of the log determinant re-

quired for learning (see Sec. 2.2). First, the hyperparameter

derivatives
∂ldK(W)

∂θ
are computed component-wise using a

differential version of the Kalman filter (Alg. 2) as described

in Särkkä (2013, Appendix), the matrix exponential deriva-

tive algorithm by Najfeld & Havel (1995, Eqs. 10&11) and

the identity
∂ldK(W)

∂θj
=

∑

i
1
zi

∂zi
∂θj

.

Second, the noise precision derivative is computed using the

matrix determinant lemma

∂ldK(W)

∂W
= diag(GR−1G⊤)

where R and G are as defined in Sec. 2.5.1. Since G is

a Kronecker product, we do not need to know R−1 com-

pletely; only the block diagonal part needs to be evaluated

(Grigorievskiy et al., 2017, Sec. 3.1), which we achieve

using the sparseinv package (Davis, 2014).

2.5.4. PREDICTIONS

Once the parameters α and W have been obtained from one

of the inference algorithms, predictions can be computed

using Kalman filtering (Alg. 2) followed by RTS smoothing

(Alg. 3) in linear time. The unseen test input(s) t∗ are simply

included into the data set, then the latent distribution can be

extracted via µf,i = Hmi and σ2
f,i = HPiH

⊤. Assumed

density filtering can be achieved by switching on the ADF

flag in Algorithm 2.

Now that we have detailed the computational primitives,

we describe how to use them to drive different approximate

inference methods.

2.6. Laplace approximation (LA)

The GP Laplace approximation (Williams & Barber, 1998)

is essentially a second order Taylor expansion of the GP pos-

terior P(F|y) ∝ N (F|m,K)
∏

i P(yi|fi) around its mode

F̂ = argmaxF P(F|y) with Wii = −∂
2 logP(yi|fi)/∂f

2
i

the likelihood curvature and

logZLA =

−
1

2

[

α⊤mvmK(α) + ldK(W)− 2
∑

i

logP(yi|f̂i)

]

being an approximation to the (log) marginal likelihood.

In practice, we use a Newton method with line searches.

Similar primitives have been used in Kalman-based demand

forecasting (Seeger et al., 2016) with linear models. Note

that for log-concave likelihoods, the mode finding is a con-

vex program.

2.7. Variational Bayes (VB)

The VB method uses convex duality to exactly represent the

individual (log) likelihoods as a maximum over quadratics

ℓ(fi) = logP(yi|fi) = maxWii
bifi −Wiif

2
i /s + h(Wii)

given that the likelihood is super Gaussian (e.g. Laplace, Stu-

dent’s t, logistic) (Gibbs & MacKay, 2000). Finally, infer-

ence can be interpreted as a sequence of Laplace approxima-

tions (Seeger & Nickisch, 2011) with the smoothed log like-

lihood ℓVB(fi) = ℓ(gi) + bi(fi − gi) with smoothed latent

gi = sign(fi − zi)
√

(fi − zi)2 + vi + zi. The parameters

(zi, bi) depend on the likelihood only e.g. (zi, bi) = (yi, 0)
for Student’s t and Laplace and (zi, bi) = (0, yi/2) for

logistic likelihood and vi is the marginal variance. The

marginal likelihood lower bound takes the form

logZ ≥ logZVB =

−
1

2

[

α⊤mvmK(α) + ldK(W)− 2
∑

i

ℓVB(fi)− 2ρVB

]

,

where ρVB collects a number of scalar terms depending on

(z,b,W,α,m).

2.8. Direct Kullback–Leibler minization (KL)

Finding the best Gaussian posterior approximation

N (b|µ,V) by minimizing its Kullback–Leibler divergence

to the exact posterior is a very generic inference approach

(Opper & Archambeau, 2009) which has recently been

made practical via a conjugate variational inference algo-

rithm (Khan & Lin, 2017) operating as a sequence of GP

regression steps. In particular, GP regression problems

j = 1, . . . , J are solved for a sequence of Gaussian pseudo

observations whose mean and precision (ỹj ,W̃j) are itera-

tively updated based on the first and second derivative of the

convolved likelihood ℓKL(fi) =
∫

ℓ(t)N (fi|t, vi) dt where

vi is the marginal variance until convergence. The marginal
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likelihood lower bound takes the form

logZ ≥ logZKL =

−
1

2

[

α⊤mvmK(α) + ldK(W)− 2
∑

i

ℓKL(fi)− 2ρKL

]

,

where the remainder ρKL = tr(W⊤∂ldK(W)/∂W) can

be computed using computational primitive 4.

2.9. Assumed density filtering (ADF) a.k.a.

single-sweep Expectation propagation (EP)

In expectation propagation (EP) (Minka, 2001), the non-

Gaussian likelihoods P(yi|fi) are replaced by unnormal-

ized Gaussians ti(fi) = exp(bifi − Wiif
2
i /2) and their

parameters (bi,Wii) are iteratively (in multiple passes) up-

dated such that Q¬i(fi)P(yi|fi) and Q¬i(fi)t(fi) have k =
0, . . . , 2 identical moments zki =

∫

fki Q¬i(fi)t(fi) dfi.
Here, Q¬i(fi) =

∫

N (f |m,K)
∏

j 6=i tj(fj) df¬i denotes

the cavity distribution. Unlike full state space EP using for-

ward and backward passes (Heskes & Zoeter, 2002), there

is a single-pass variant doing only one forward sweep that is

know as assumed density filtering (ADF). It is very simple

to implement in the GP setting. In fact, ADF is readily im-

plemented by Algorithm 2 when the flag “ADF” is switched

on. The marginal likelihood approximation takes the form

logZADF =

−
1

2

[

α⊤mvmK(α) + ldK(W)− 2
∑

i

log z0i − 2ρADF

]

,

where the remainder ρADF collects a number of scalar terms

depending on (b,W,α,m).

3. Experiments

The experiments focus on showing that the state space for-

mulation delivers the exactness of the full naı̈ve solution,

but with appealing computational benefits, and wide appli-

cability over GP regression and classification tasks. Sec. 3.1

assesses the effects of the fast approximations of Ai and

Qi. Sec. 3.2 demonstrates the unprecedented computational

speed, and Sec. 3.3 presents a comparison study including

12 likelihood/inference combinations. Finally, two large-

scale real-data examples are presented and solved on a stan-

dard laptop in a matter of minutes.

3.1. Effects in fast computation of Ai and Qi

In the first experiment we study the validity of the inter-

polation to approximate matrix exponential computation

(Sec. 2.4). The input time points of observations ti were

randomly selected from the interval [0, 12] and outputs yi
were generated from the sum of two sinusoids plus Gaussian
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Figure 1. Relative differences in logZ with different approxima-

tion grid sizes for Ai and Qi, K, of solving a GP regression

problem. Results calculated over 20 independent repetitions,

mean±min/max errors visualized.
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Figure 2. Empirical computational times of GP prediction using

the GPML toolbox implementation as a function of number of

training inputs, n, and degree of approximation, K. For all four

methods the maximum absolute error in predicted means was 10−9.

Results calculated over ten independent runs.

noise: yi = 0.2 sin(2π ti + 2) + 0.5 sin(0.6π ti + 0.13) +
0.1N (0, 1). The ∆tis were exponentially distributed since

the time points followed a Poisson point process generation

scheme. All results were calculated over 20 independent

realizations.

For each generated dataset we considered GP regression (in

the form of Sec. 2.5) with a Gaussian likelihood and Matérn

(ν = 5/2) covariance function. Initially, all the matrices Ai

and Qi were computed exactly. The results were compared

to the approximate results of those matrices with various

number of interpolation grid pointsK. The absolute relative

difference between the approximated and not approximated

marginal likelihood and its derivatives were computed. The

results are given in Figure 1. The figure shows that the

relative difference is decreasing with the number of grid
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Table 1. A representative subset of supported likelihoods and inference schemes (for a full list, see Rasmussen & Nickisch, 2010). Results

for simulated data with n = 1000 (around the break-even point of computational benefits). Results compared to respective naı̈ve solution

in mean absolute error (MAE). †The results for EP are compared against ADF explaining the deviation and speed-up.

Likelihood Inference MAE in α MAE in W MAE in µf,∗ − logZ − logZss t/tss Description

Gaussian Exact < 10−4 < 10−16 < 10−14
−1252.29 −1252.30 2.0 Regression

Student’s t Laplace < 10−7 < 10−6 < 10−3 2114.45 2114.45 1.4 Regression,

Student’s t VB < 10−6 < 10−6 < 10−7 2114.72 2114.72 2.7 robust

Student’s t KL < 10−4 < 10−4 < 10−5 2114.86 2114.86 4.6
Poisson Laplace < 10−6 < 10−4 < 10−6 1200.11 1200.11 1.2 Poisson regression,

Poisson EP/ADF† < 10−1 < 100 < 10−2 1200.11 1206.59 39.5 count data

Logistic Laplace < 10−8 < 10−7 < 10−7 491.58 491.58 1.3 Classification,

Logistic VB < 10−6 < 10−6 < 10−6 492.36 492.36 2.3 logit regression

Logistic KL < 10−7 < 10−6 < 10−7 491.57 491.57 4.0
Logistic EP/ADF† < 10−1 < 100 < 10−1 491.50 525.46 48.1
Erf Laplace < 10−8 < 10−6 < 10−7 392.01 392.01 1.2 Classification,

Erf EP/ADF† < 100 < 100 < 10−1 392.01 433.75 37.1 probit regression

points and finally saturates. Hence, increasing accuracy of

approximation with the growing size of the interpolation

grid. More figures with the accuracies of the derivatives

computations can be found in the Supplementary material.

3.2. Computational benefits

The practical computational benefits of the state space form

in handling the latent were evaluated in the following sim-

ulation study. We consider GP regression with a Matérn

(ν = 3/2) covariance function with simulated data from a

modified sinc function (6 sin(7π x)/(7π x+ 1)) with Gaus-

sian measurement noise and input locations x drawn uni-

formly. The number of data points was increased step-wise

from n = 500 to n = 20,000. The calculations were re-

peated for 10 independent realizations of noise.

The results (including results in following sections) were run

on an Apple MacBook Pro (2.3 GHz Intel Core i5, 16 Gb

RAM) laptop in Mathworks Matlab 2017b. All methods

were implemented in the GPML Toolbox framework, and

the state space methods only differed in terms of solving the

continuous-time model for Ai and Qi (see Sec. 2.4).

Figure 2 shows the empirical computation times for the

O(n3) naı̈ve and O(n) state space results. The state space

results were computed with no interpolation, and Ai and Qi

interpolated with K = 2000 and K = 10. The computation

times with K = 2000 follow the exact state space model

up to n = 2000. In terms of error in predictive mean over a

uniform grid of 200 points, the maximum absolute error of

state space results compared to the naı̈ve results was 10−9.

3.3. Numerical effects in non-Gaussian likelihoods

The previous section focused on showing that the latent state

space computations essentially exact up to numerical errors

or choices of interpolation factors in solving the continuous-

time model. Delivering the computational primitives for

approximate inference using LA, VB, KL, or EP should

thus give the same results as if run through naı̈vely.

Table 1 shows a representative subset of combinations of

likelihoods and inference scheme combinations (for a full

list, see Rasmussen & Nickisch, 2010). For each model,

appropriate data was produced by modifying the simulation

scheme explained in the previous section (Student’s t: 10%

of observations outliers; Poisson: counts followed the ex-

ponentiated sinc function; Logistic/Erf: the sign function

applied to the sinc). The mean absolute error in α, W, and

µf,∗ between the state space and naı̈ve solution are shown.

The results are equal typically up to 4–6 decimals. It is

probable that the state space approach shows accumulation

of numerical errors. The large offsets in the EP values are

due to our state space implementation being single-sweep

(ADF). Here only n = 1000 data points were used, while

Figure 2 shows that for regression the computational bene-

fits only really kick-in in around n = 2000. For example in

KL, the speed-up is clear already at n = 1000.

3.4. Robust regression of electricity consumption

We present a proof-of-concept large-scale robust regression

study using a Student’s t likelihood for the observations,

where the data is inherently noisy and corrupted by out-

lying observations. We consider hourly observations of

log electricity consumption (Hébrail & Bérard, 2012) for

one household (in log kW) over a time-period of 1,442

days (n = 34,154, with 434 missing observations). We

use a GP with a Student’s t likelihood (with one degree

of freedom) and a Matérn (ν = 3/2) covariance function

for predicting/interpolating values for missing days (state

dimensionality d = 2). For inference we use direct KL min-

imization (Sec. 2.8). We evaluate our approach by 10-fold

cross-validation over complete days, in this experiment with

fixed hyperparameters, and obtain a predictive RMSE of

0.98± 0.02 and NLPD of 1.47± 0.01.
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3.5. Airline accidents

Finally, we study the regression problem of explaining the

time-dependent intensity of accidents and incidents of com-

mercial aircraft. The data consists of dates of incidents that

were scraped form (Wikipedia, 2018), and it covers 1210 in-

cidents over the time-span of 1919–2017. We use a log Gaus-

sian Cox process, an inhomogeneous Poisson process model

for count data. The unknown intensity function λ(t) is mod-

eled with a log-Gaussian process such that f(t) = log λ(t).
The likelihood of the unknown function corresponds to

P({ti}|f) = exp
(

−
∫

exp(f(t)) dt+
∑n

i=1 f(ti)
)

. How-

ever, this likelihood requires non-trivial integration over the

exponentiated GP. Møller et al. (1998) propose a locally

constant intensity in subregions based on discretising the

interval into bins. This approximation corresponds to hav-

ing a Poisson model for each bin. The likelihood becomes

P({ti}|f) ≈
∏N

j=1 Poisson(yj | exp(f(t̂j))), where t̂j is

the bin coordinate and yj the number of data points in it.

This model reaches posterior consistency in the limit of bin

width going to zero (N → ∞) (Tokdar & Ghosh, 2007).

Thus it is expected that the results improve the tighter the

binning is.

We use a bin width of one day leading to N = 35,959

observations, and a prior covariance structure k(t, t′) =
kMatérn(t, t

′) + kperiodic(t, t
′) kMatérn(t, t

′) capturing a slow

trend and decaying time-of-year effect (period one year).

The model state dimension is d = 30. For inference we

used ADF (single-sweep EP, Sec. 2.9). All hyperparameters

(except the period length) were optimized w.r.t. marginal

likelihood, such that we first obtained a ball-park estimate of

the parameters using one-month binning, and then continued

optimizing with the full data set.

Figure 3 shows the time-dependent intensity λ(t) that show

a clear trend and pronounced periodic effects. The time

course of the periodic effects are better visible in Figure 4

that show the gradual formation of the periodicity, and the

more recent decay of the winter mode. We omit speculation

of explaining factors in the data, but assume the effects

to be largely explained by the number of operating flights.

We further note that a wider bin size would deteriorate the

analysis of the periodic peaks (they become ‘smoothed’ out),

thus justifying the need for the large N as speculated above.

4. Discussion and conclusion

Motivated by the computational constraints imposed by

analytic intractability in the non-conjugate setting and cubic

scaling, we propose to extend the state space representation

of Gaussian processes to the non-Gaussian setting. We cast

a range of approximate inference schemes using a small

set of generic computational primitives to enable a unified

treatment and show how to implement them using scalable
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Figure 3. Intensity of aircraft incident modeled by a log Gaussian

Cox process with the mean and approximate 90% confidence re-

gions visualized (N = 35,959). The observed indicent dates are

shown by the markers on the bottom.
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Figure 4. The time course of the seasonal effect in the airline acci-

dent intensity, plotted in a year vs. month plot (with wrap-around

continuity between edges). Markers show incident dates. The

bimodal yearly effect has started receding in the previous years.

algorithms relying on Kalman filters and dynamical system

theory. We propose to use convolution interpolation to

accelerate the expensive matrix exponential computations,

which further reduces the runtime by a factor of two. We

demonstrate computational benefits on a number of time

series datasets to illustrate the tradeoffs and the achievable

accuracy as compared to the dense setting.

Possible drawbacks are related to the cubic computational

complexity in model state dimension (e.g. when consider-

ing several products of covariance functions), and problems

related to floating point precision accumulating in the recur-

sions when n is very large.

Overall, we conclude that for accurate scalable inference in

GP time series, the state space viewpoint adds a valuable

alternative to the computational toolbox of the modeling

practitioner using our reference implementation.
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Solin, A. and Särkkä, S. Explicit link between periodic

covariance functions and state space models. In Interna-

tional Conference on Artificial Intelligence and Statistics

(AISTATS), volume 33 of PMLR, pp. 904–912, 2014.

Solin, A. and Särkkä, S. Gaussian quadratures for state

space approximation of scale mixtures of squared expo-

nential covariance functions. In Proceedings of the IEEE

International Workshop on Machine Learning for Signal

Processing (MLSP), 2014a.
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