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Abstract

Backpropagation-based visualizations have been

proposed to interpret convolutional neural net-

works (CNNs), however a theory is missing to

justify their behaviors: Guided backpropagation

(GBP) and deconvolutional network (DeconvNet)

generate more human-interpretable but less class-

sensitive visualizations than saliency map. Moti-

vated by this, we develop a theoretical explanation

revealing that GBP and DeconvNet are essentially

doing (partial) image recovery which is unrelated

to the network decisions. Specifically, our analy-

sis shows that the backward ReLU introduced by

GBP and DeconvNet, and the local connections in

CNNs are the two main causes of compelling vi-

sualizations. Extensive experiments are provided

that support the theoretical analysis.

1. Introduction

Driven by massive data and computational resources, mod-

ern convolutional neural networks (CNNs) and other net-

work architectures have achieved many outstanding results,

such as image recognition (Krizhevsky et al., 2012), neural

machine translation (Sutskever et al., 2014), and playing

Go games (Silver et al., 2016), etc. Despite their exten-

sive applications, these neural networks are always con-

sidered as black boxes. Interpretability used to be for its

own sake; now, due to safety-critical applications such as

self-driving cars and tumor diagnosis, it is no longer sat-

isfying to have a black box that is unaccountable for its

decisions. The demand for explainable artificial intelligence

(XAI) (Gunning, 2017) – human interpretable explanations

of model decisions – has driven the development of visual-

ization techniques, including image synthesis via activation
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maximization (Simonyan et al., 2013; Johnson et al., 2016;

Nguyen et al., 2016) and backpropagation-based visualiza-

tions (Simonyan et al., 2013; Zeiler & Fergus, 2014; Sprin-

genberg et al., 2014; Shrikumar et al., 2017; Kindermans

et al., 2017).

The basic idea of backpropagation-based visualizations is to

highlight class-relevant pixels by propagating the network

output back to the input image space. The intensity changes

of these pixels have the most significant impact on network

decisions. Specifically, (Simonyan et al., 2013) visualizes

the spatial support of a given class in a given image, i.e.

saliency map, by using the true gradient which masks out

negative entries of bottom data via the forward ReLU. De-

spite its simplicity, the results of saliency map are normally

very noisy which makes the interpretation difficult. (Zeiler

& Fergus, 2014) visualize the reverse mapping from feature

activities back to the input pixel space with the deconvo-

lutional network (DeconvNet) method. The basic idea of

DeconvNet is to mask out negative entries of the top gra-

dients by resorting to the backward ReLU. (Springenberg

et al., 2014) proposed the Guided Backpropagation (GBP)

method which combines the above two methods: by consid-

ering both the forward and backward ReLUs, it masks out

the values for which either top gradients or bottom data are

negative and produces sharper visualizations. More recently,

DeepLift (Shrikumar et al., 2017) and PatternNet (Kinder-

mans et al., 2017) have been proposed to further improve

the visual quality of backpropagation-based methods.

This class of backpropagation-based visualizations, in partic-

ular GBP and DeconvNet, has attracted a lot of attention in

both the deep learning community and other fields (Szegedy

et al., 2013; Dosovitskiy & Brox, 2016; Selvaraju et al.,

2016; Fong & Vedaldi, 2017; Kraus et al., 2016). Despite

their good visual quality, the question of how they are ac-

tually related to the decision-making has remained largely

unexplored. Do the pretty visualizations actually tell us reli-

ably about what the network is doing internally? Our exper-

iments have confirmed previous observations (Mahendran

& Vedaldi, 2016; Selvaraju et al., 2016; Samek et al., 2017)

that saliency map is indeed very sensitive to the change of

class labels, while GBP and DeconvNet, though their visual-

ization results are much cleaner than saliency map, remain

almost the same given different class labels. It seems that
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the visual quality improvement of backpropagation-based

methods is sacrificing the ability of highlighting important

pixels to a specific output class. In this sense, GBP and De-

convNet may be unreliable in interpreting how deep neural

networks make classification decisions.

The most commonly used explanation for these visualiza-

tions is to approximate the neural networks with a linear

function (Simonyan et al., 2013; Kindermans et al., 2017),

where the derivative of output with respect to input image

is just the weight vector of the model. In such sense, the

backpropagation-based methods can be regarded as visual-

izing the learned weights. But apparently the approximate

linear model is too simplistic to reflect the highly nonlin-

ear property of deep neural networks. For example, GBP

and DeconvNet essentially apply the same algorithm as

saliency map, but treat ReLU, the nonlinear activation, dif-

ferently. The linear model explanation thus cannot answer

questions regarding why GBP and DeconvNet outperform

saliency map in terms of visual quality whereas they are less

class-sensitive than saliency map, as both of them reduce to

saliency map in a linear model. Therefore, we need a more

complex model, which should at least capture the impact

of both forward ReLU and backward ReLU, to better un-

derstand what the main causes of their visually compelling

results are and what information, if not the classification

decisions, we can extract from these visualizations.

Our contributions. We provide a theoretical explana-

tion for why GBP and DeconvNet generate more human-

interpretable but less class-sensitive visualizations than

saliency map. Specifically, our analysis reveals that GBP

and DeconvNet are essentially doing (partial) image recov-

ery instead of highlighting class-relevant pixels or visualiz-

ing the learned weights, which means in principle they are

unrelated to the decision-making of neural networks. We

also find that it is the backward ReLU introduced by either

GBP or DeconvNet, together with the local connections in

CNNs that results in crisp visualizations. In particular, we

explain how DeconvNet also relies on the max-pooling to

recover the input. Finally, we do extensive experiments to

support our theory and further reveal more detailed proper-

ties of these backpropagation-based visualizations1.

2. Backpropagation-based Visualizations

In this section, we first give formal definitions of

backpropagation-based visualizations: saliency map, Decon-

vNet and GBP, and then compare their empirical behaviors.

2.1. Formal Definitions

The key difference of backpropagation-based methods is

the way they propagate the output score back through the

1Code is available at https://github.com/weilinie/BackpropVis
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Figure 1. Illustration of how backpropagation-based methods prop-

agate back through the i-th nonlinear activation in the l-th layer

with input y
(l)
i and output o

(l)
i , where T

(l)
i denotes the (modified)

gradient after passing through the activation and R
(l)
i denotes the

top gradient before the activation.

ReLU activations. As illustrated by Figure 1, we consider

the i-th ReLU activation in the l-th layer with its input y
(l)
i

and its output o
(l)
i and denote by σ(t) = max(t, 0) the

ReLU activation. Also, denote by R
(l)
i the top gradient

before activation, i.e., gradient of the output score with

respect to o
(l)
i and denote by T

(l)
i the (modified) gradient

after activation, i.e., gradient of the output score with respect

to y
(l)
i . Then in the gradient calculations, the corresponding

forward ReLU could be formally defined as a function

σ
(l)
f,i(t) , I

(

y
(l)
i

)

t

where I(·) is the indicator function and the corresponding

backward ReLU could be formally defined as a function

σ
(l)
b,i(t) , I

(

R
(l)
i

)

t

Therefore, the formal definition of backpropagation-based

methods for propagating the output score back through the

i-th ReLU activation in the l-th layer is
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which can be further uniformly formulated as
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(l)
i = h

(

R
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i

) ∂g
(

y
(l)
i

)

∂y
(l)
i

(1)

where the two functions h(·) and g(·) are defined as

h(t) =

{

t for saliency map

σ(t) for DeconvNet and GBP

g(t) =

{

t for DeconvNet

σ(t) for saliency map and GBP

(2)
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tabby

Sal-max Sal-482 Sal-560

Deconv-max Deconv-482 Deconv-560

GBP-max GBP-482 GBP-560

Figure 2. Backpropagation-based visualizations for the trained

VGG-16 net given an input “tabby”. From top row to the last

row, it is saliency map, DeconvNet and GBP, where “max” refers

to computing the (modified) gradient for the maximum class logit

and the number, say “482”, refers to computing the (modified)

gradient for the 482-th logit. These numbers are randomly chosen

for generality. Best viewed in the electronic version.

2.2. Empirical Observations

To be a good visualization method, a clean and visually

human-interpretable result is very desirable. More impor-

tantly, it should also reveal how the neural networks make

decisions. Based on this, we provide the empirical behav-

iors of the backpropagation-based visualizations for a pre-

trained VGG-16 net (Simonyan & Zisserman, 2014) in Fig-

ure 2. Without loss of generality, the visualizations are

obtained by choosing one of the class logits (i.e. the unnor-

malized class probability output right before the softmax

function) as the output score to be taken derivative with

respect to the input image.

For the visual quality, saliency map is very noisy while

DeconvNet and GBP produce human-interpretable visual-

izations with a subtle difference: DeconvNet unexpectedly

produces some kind of texture-like pattern, and GBP is

cleaner with some background information filtered out. For

the class-sensitivity, saliency map changes greatly for dif-

ferent class logits while DeconvNet and GBP are almost

invariant to which class logit we choose. This, together

with more experiments, suggests that after introducing the

backward ReLU, both DeconvNet and GBP modify the true

gradient in a way that they create much cleaner results but

their functionality as an indicator of important pixels to a

specific class has disappeared. In the next section, we will

explain these empirical behaviors and discuss the reason

why GBP and DeconvNet differ greatly from saliency map.

3. Theoretical Explanations

We first analyze the backpropagation-based methods in a

three-layer CNN with random Gaussian weights, which is

then extended to more complicated models such as CNNs

with max-pooling and deep CNNs. Besides, we also investi-

gate their behaviors in well-trained CNNs.

3.1. A Random Three-Layer CNN

Consider a three-layer CNN, consisting of an input layer

and a convolutional hidden layer, followed by a ReLU ac-

tivation function and a fully connected layer of which its

output is called class logits. Formally, let x ∈ R
d be a

normalized input image with dimension d and ‖x‖ = 1,

and let W ∈ R
p×N be N convolutional filters where each

column w(i) denotes the i-th filter with size p. Note that

here we use vectors to represent images and filters for sim-

plicity, and the analysis also works for the more practical

two-dimensional case. Then, we let Y ∈ R
p×J be J im-

age patches extracted from x, and each column y(j) with

size p is generated by a linear function y(j) = Djx where

Dj ,
[

0p×(j−1)b Ip×p 0p×(d−(j−1)b−p)

]

with b being

the stride size2. For example, given a filter with size 3 and

stride 1, the resulting j-th patch y(j) is made of the j-th

to (j + 2)-th consecutive pixels. The weights in the fully-

connected layer can be represented by V ∈ R
NJ×K with

K being the number of output logits. Therefore, the k-th

logit is represented by

fk(x) =

N
∑

i=1

J
∑

j=1

Vqij ,kσ(w
(i)T y(j)) (3)

where the index qij denotes the ((i− 1)J + j)-th entry in

every column vector of weight matrix V .

Assume every entry of V and W is sampled from an i.i.d.

Gaussian distribution N (0, c2). The following lemma pro-

vides the formula for backpropagation-based visualizations

in a random three-layer CNN. Note that the norm of the

final results will be in the range of [0, 1] as we apply the

normalization during visualizations.

Lemma 1. The backpropagation-based visualizations for

the k-th logit in a random three-layer CNN is formalized as

sk(x) =
1

Zk

J
∑

j=1

Dj
T

N
∑

i=1

h(Vqij ,k)w̃
(i,j) (4)

where Zk is the normalization coefficient to ensure

‖sk(x)‖ ∈ [0, 1], h(·) is given by Eq. (2) and

w̃(i,j) =

{

w(i) for DeconvNet

w(i)
I
(

w(i)T y(j)
)

for saliency map and GBP

2Here we assume a VALID padding method implicitly, and
other padding methods do not impact our analysis.
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Proof. See Appendix A. �

Next, we can analyze the different behaviors of these

backpropagation-based methods case by case.

3.1.1. GUIDED BACKPROPAGATION

First, the behavior of GBP is given as follows.

Theorem 1. In a random three-layer CNN, if the number

of filters N is sufficiently large, GBP at the k-th logit can

be approximated as

sGBP
k (x) ≈ x (5)

Proof. See Appendix B. �

The above theorem shows that after introducing the back-

ward ReLU, the input image can be approximately recov-

ered by GBP in a random three-layer CNN, regardless of

the class label. However, according to the linear model ex-

planation, backpropagation-based methods are visualizing

learned weights, which should be random noise as they are

all sampled from i.i.d Gaussians. Obviously, it is inconsis-

tent with the actual behavior of GBP.

As the approximation in Eq. (5) builds on an assump-

tion that the number of filters N is sufficiently large, a

key question is: How many filters are needed to guarantee

an accurate recovery? From (Lugosi & Mendelson, 2017),

we can set N = Õ( p
ǫ2
) such that with high probability

‖ 1
N

∑N
i=1 w̃

(i,j) − E[w̃(i,j)]‖ < ǫ, where p denotes the fil-

ter size and Õ(·) hides some other factors. As an upper

bound, it reveals that the number of convolutional filters

needed heavily depends on the filter size p. As the filter size

intrinsically determined by the local connections in CNNs is

usually small, we could use a mild number of convolutional

filters to recover the input image. For example, given a filter

size 3× 3× 3, we need at most O(103) filters to achieve an

estimation error ǫ less than 0.1. This strongly suggests that

GBP visualizations are human-interpretable in most of the

CNNs, and thus the local connections property is another

key factor underlying crisp visualizations.

3.1.2. SALIENCY MAP AND DECONVNET

Here we show the behaviors of saliency map and DeconvNet

in a random three-layer CNN are largely different from GBP.

Theorem 2. In a random three-layer CNN, if the number of

filters N is sufficiently large, saliency map and DeconvNet

are approximated as Gaussian random variables satisfying

sSal
k (x), sDeconv

k (x) ∼ N (0, I)

Proof. See Appendix C. �

The above theorem shows that both saliency map and De-

convNet visualizations will yield random noise, conveying

little information about the input image and class logits. For

saliency map, it is easily understood since saliency map

represents the true gradient of the class logit, which heav-

ily depends on the weights. For DeconvNet, although its

behavior appears similar to saliency map in this simplistic

scenario, we will show later on that it behaves more similarly

to GBP, in particular with the existence of max-pooling.

3.2. Extensions to More Realistic Models

In this section, we extend our analysis of a simple random

three-layer CNN to other more realistic cases, including the

max-pooling, deeper nets and trained weights.

3.2.1. CNNS WITH MAX-POOLING

If we add a max-pooling layer between the ReLU and the

fully-connected layer, the k-th logit becomes

fk(x) =

N
∑

i=1

J
∑

j=1

Vq̃ij ,kδ(σ(w
(i)T y(j)))

where δ(·) denotes the max-pooling, which successively

selects the maximum value in a fixed-size pooling window,

and the new index q̃ij is the down-sampled version of qij .

Then the backpropagation-based visualizations for the k-th

logit can be formulated as

sk(x) =
1

Zk

J
∑

j=1

Dj
T

N
∑

i=1

h(δ′(oij)Vq̃ij ,k)w̃
(i,j) (6)

where oij , σ(w(i)T y(j)) is the output of each ReLU acti-

vation and δ′(oij) denotes the derivative of δ(·) evaluated

at oij , which is

δ′(oij) =

{

1 if oij is chosen by max-pooling

0 otherwise

Since oij ≥ 0 with equality holds for w(i)T y(j) ≤ 0, given

a proper pooling window size, it is highly possible that oij
is chosen by the max-pooling if and only if w(i)T y(j) > 0.

It means with high probability, Eq. (6) is approximated as

sk(x) ≈
1

Zk

J
∑

j=1

Dj
T

N
∑

i=1

h(Vq̃ij ,k)w̃
(i,j)

I(w(i)T y(j))

(7)

For saliency map and GBP, we know w̃(i,j)
I(w(i)T y(j)) =

w̃(i,j) and thus Eq. (7) is further reduced to Eq. (4), which

means the behaviors of saliency map and GBP remain the

same after introducing the max-pooling. However, with

high probability, DeconvNet at the k-th logit becomes

sDeconv
k (x) ≈

1

Zk

J
∑

j=1

Dj
T

N
∑

i=1

σ(Vq̃ij ,k)w
(i)
I(w(i)T y(j))
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which is exactly the form of GBP in Eq. (4). Therefore,

adding the max-pooling makes the DeconvNet behave like

GBP – doing nothing but image recovery. This also explains

and extends the previous intuitive claims in (Samek et al.,

2017; Odena et al., 2016) that the image-specific informa-

tion in DeconvNet comes from the max-pooling.

Note that that the approximation from Eq. (6) to Eq. (7)

in DeconvNet with the max-pooling is essentially different

from the approximations used in GBP. For GBP, the approx-

imate gap can be made arbitrarily small by increasing the

hidden layer size N , leading to a perfect recovery of the

input. However, for DeconvNet, given any pooling window

size, there might always exist at least one of the following

two contradictory cases: it is possible that aij is chosen by

the max-pooling if w(i)T y(j) ≤ 0, and also possible that

aij is not chosen if w(i)T y(j) > 0. This makes DeconvNet

(with max-pooling), in theory, never recover input perfectly,

which might explain why the unusual texture-like artifacts

appear in the DeconvNet visualizations.

3.2.2. DEEP CNNS

The analysis for a three-layer CNN can be generalized to

the multi-layer (or deeper) case. For clarity, we formulate

the k-th logit of an L-layer deep CNN in a matrix form:

fk(x) = Γ
(L)T
k σ

(

Γ(L−1)T · · ·σ
(

Γ(1)Tx
))

where Γ(l) ∈ R
dl×dl+1 denotes either the convolutional

or fully-connected operator matrix in the l-th layer and

Γ
(L)
k is the k-th column of Γ(L). Denote by o(l) the out-

put of ReLU activations in the l-th layer, i.e. o(l) =
σ
(

Γ(l)T o(l−1)
)

, ∀l ∈ {1, · · · , L−1} with o(0) , x. Then

backpropagation-based visualizations at the k-th logit in an

L-layer deep CNN can be formulated as

sk(x) =
1

Zk

∂õ(1)

∂x
· h(V̂

(1)
·,k )

(a)
=

1

Zk

J
∑

j=1

Dj
T

N
∑

i=1

h(V̂
(1)
qij ,k

)w̃(i,j)

(8)

with ∀l ∈ {1, · · · , L− 1},

V̂
(l)
·,k =

∂õ(l+1)

∂o(l)
· h

(

∂õ(l+2)

∂o(l+1)
· · ·h

(

∂õ(L−1)

∂o(L−2)
h
(

Γ
(L)
k

)

))

where in (a) we rewrite sk(x) in an expanded form, õ(l) ,

g
(

Γ(l)T o(l−1)
)

, w(i) is the i-th filter encoded in Γ(1) and N

is the number of filters in the first convolutional layer. Also,

h(·), g(·) and w̃(i,j) are defined in Eq. (2) and Lemma 1.

First, the approximate property of V̂
(1)
·,k in the random deep

CNN is given in the following proposition.

w(i)

y(j)

w(i)

y(j)

(a) A toy example

(b) neuron-26 in trained fc1 (c) neuron-44 in trained fc1

Figure 3. (a) shows a two-dimensional toy example where w(i)’s

are all in a cone (the orange area) and all the y(j)’s in another cone

(the grey area) called “dead zone” will be filtered out by the ReLU.

(b) and (c) show the histograms of all weights connected to the

26-th activation and the 44-th one, respectively, in the layer “fc1”

of the trained VGG-16 net. Note that we randomly picked up two

activations (i.e. 26 and 44 here) for comparison.

Proposition 1. For a random deep CNN where weights are

i.i.d. Gaussians with zero mean, we can also approximate

every entry of V̂
(1)
·,k as i.i.d. Gaussian with zero mean.

Proof. See Appendix D. �

Based on Proposition 1, we can see that the statistical prop-

erties of V̂
(1)
qij ,k

in Eq. (8) are approximately the same with

those of Vqij ,k in Eq. (4), which means the analysis of

backpropagation-based visualizations in a shallow three-

layer CNN also applies to the deep CNN case. Therefore,

the behaviors of these visualizations will barely change

when increasing the depth of neural networks.

3.2.3. CNNS WITH TRAINED WEIGHTS

The previous analysis for random CNNs does not apply to

the trained case directly since the weights here may not be

i.i.d. Gaussian distributed. For saliency map, which uses

the true gradient, the trained weights are likely to impose

a stronger bias towards some specific subset of the input

pixels, and so they can highlight class-relevant pixels rather

than producing random noise. For GBP and DeconvNet, the

analysis is a little more involved.

On the one hand, the trained weights w(i) will only lie in a

small subspace of the whole image patch space which will

create some “dead zones”, as illustrated in Figure 3 (a). That
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is, all image patches lying in the “dead zone” will be filtered

out by the forward ReLU. For example, it is well-known

that the trained weights in the first convolutional layer are

Gabor-like filters to detect the image patches containing

edges (Yosinski et al., 2014; Zeiler & Fergus, 2014). That is,

image patches without edges will probably be filtered out by

the first convolutional layer. Also, the higher convolutional

layers keep filtering out more image patches with certain

patterns (e.g. Figure 9). See the supplementary material for

a comparison between GBP and a linear edge detector.

On the other hand, as shown in Figure 3 (b) and (c), the

histograms of weights connected to the respective one of

any two different neurons in the first fully connected layer

(called “fc1”) of the trained VGG-16 net are very similar

to each other. Approximately, they form two very similar

Gaussians with a small standard deviation, which means

the (modified) gradients at any two different neurons in the

layer “fc1” with respect to the input image are almost the

same. Namely, ∂õ(fc1)

∂x
in Eq. (8) for GBP and DeconvNet

(with max-pooling) satisfies

∂õ
(fc1)
m

∂x
≈ Fconv(x), ∀m ∈ {1, · · · ,M}

where õ
(fc1)
m is the m-th entry of õ(fc1) and Fconv(·) : R

d →
R

d denotes the (normalized) overall filtering effect of the

convolutional layers and M is the number of neurons in the

layer “fc1”. Thus, Eq. (8) for GBP and DeconvNet (with

max-pooling) in the trained CNN can be approximated as

sk(x) =
1

Zk

∂õ(fc1)

∂x
· h(V̂

(fc1)
·,k )

=
1

Zk

M
∑

m=1

∂õ
(fc1)
m

∂x
· h(V̂

(fc1)
m,k )

(a)
≈ Fconv(x)

(9)

where (a) follows from setting the normalization coefficient

to be Zk = 1
∑

M
m=1 h(V̂

(fc1)
m,k

)
.

It shows that GBP and DeconvNet (with max-pooling) in a

trained CNN are actually doing the partial image recovery,

where the trained weights control which image patch could

form an active path to the class logit. More importantly,

this filtering process is not class sensitive (e.g. the edge

detector). In the end, only these “active” image patches

are combined in the first fully connected layer to form the

final visualization results. As the right side of (9) does

not depend on k, it illustrates why the GBP and DecovNet

visualizations in the trained VGG are not class-sensitive.

4. Experiments

To verify our theoretical analysis, we conduct a series

of experiments on a three-layer CNN, a three-layer fully-

GBP-CNN Deconv-CNN Sal-CNN

GBP-FCN Deconv-FCN Sal-FCN

Figure 4. Backpropagation-based visualizations in a random three-

layer CNN (top row) and a random three-layer FCN (bottom row)

given the input image “tabby”. From left to right, each column

represents GBP, DeconvNet and saliency map, respectively. Only

GBP visualization in the CNN is human-interpretable.

connected network (FCN) and a VGG-16 net. For a random

network, their weights are all sampled from the truncated

Gaussians with a zero-mean and standard deviation 0.1. Un-

less stated otherwise, the input is the image “tabby” from the

ImageNet dataset (Deng et al., 2009) with size 224×224×3.

See the supplementary materials for more results on other

images and other neural network such as ResNet (He et al.,

2016). In the three-layer CNN, the filter size is 7× 7× 3,

the number of filters is N = 256, and the stride is 2. In the

three-layer FCN, the hidden layer size is set to Nh = 4096.

By default, the backpropagation-based visualizations are

calculated with respect to the maximum class logit.

4.1. Impact of Local Connections

Figure 4 shows the backpropagation-based visualizations on

a random three-layer CNN and a random three-layer FCN,

respectively. We can see only GBP in the CNN can produce

a human-interpretable visualization, while DeconvNet and

saliency map in the CNN get random noise, which veri-

fies our theoretical analysis in the section 3.1. In contrast,

as local connections do not exist in the FCN and the in-

put size (e.g. 224 × 224 × 3) is extremely large, all the

backpropagation-based methods (including GBP) in the

FCN generate random noise. Particularly for GBP, the num-

ber of hidden neurons Nh = 4096 is still not large enough

to recover the image.

To further highlight the impact of local connections in the

visual quality of GBP, we vary the number of filters N in

the CNN and the number of hidden neurons Nh in the FCN,

respectively, while keep other parameters fixed. The results

are given in Figure 5. Note that in the FCN, we have down-

sampled the input image to be of size 64 × 64 × 3 due to

computational limitations. We can see that as the number of

filters N increases (resp. the hidden layer size Nh), the vi-
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N = 8 N = 16 N = 32 N = 64

Nh = 5000 Nh = 10000 Nh = 40000 Nh = 70000

Figure 5. GBP visualizations given the input image “tabby” in a

three-layer CNN (top row) by varying the number of filters N

and in a three-layer FCN (bottom row) by varying the number of

hidden neurons Nh.

sual quality of GBP in the CNN (resp. in the FCN) becomes

better. Interestingly, even by setting Nh = 70000, which is

definitely unrealistic, the FCN cannot achieve a comparable

performance to the CNN with N = 64. Therefore, it con-

firms that the local connections in the CNN really contribute

to the good visual quality of GBP.

4.2. Impact of Max-Pooling and Network Depth

To show the impact of the max-pooling in backpropagation-

based visualizations, we then add a max-pooling layer in

the above random three-layer CNN while keeping other pa-

rameters fixed, and the results are given in Figure 6 (top

row). As compared with the visualizations in Figure 4

(top row), neither GBP or saliency map is impacted by the

max-pooling, whereas the DeconvNet visualization has now

become human interpretable instead of being the random

noise as before. It confirms that the max-pooling is critical

in helping DeconvNet produce human-interpretable visual-

izations via image recovery, as predicted by our theoretical

analysis in the section 3.2.1.

To show the impact of network depth, we also apply

backpropagation-based visualizations in a random VGG-16

net, which also includes the max-pooling but is much deeper

than the three-layer CNN. Figure 6 (bottom row) shows that

only saliency map generates random noise while both GBP

and DeconvNet could produce human-interpretable visual-

izations. Though there are subtle visual differences between

the top row and bottom row of Figure 6, the behaviors of

backpropagation-based methods are basically unchanged

after increasing the network depth. In addition, both GBP

and DeconvNet reconstruct every fine-grained detail of the

input image in the random VGG , which is different from the

trained VGG in Figure 2 where only those “active” image

patches are preserved.

GBP-pool Deconv-pool Sal-pool

GBP-VGG Deconv-VGG Sal-VGG

Figure 6. Backpropagation-based visualizations given the input im-

age “tabby” in a random three layer CNN with the max-pooling

(top row) and in a random VGG-16 net (bottom row). Now Decon-

vNet visualization also becomes human-interpretable.

Figure 7. Average l2 distance statistics. For each input, we ran-

domly choose two class logits to get corresponding visualizations

and calculate their l2 distances. The above is an average l2 distance

by using 10K images of the ImageNet for each backpropagation-

based method in both random and trained VGG-16 net.

4.3. Average l2 Distance Statistics

To quantitatively describe how backpropagation-based visu-

alizations change with respect to different class logits, we

also provide the average l2 distance statistics as shown in

Figure 7. Our results are obtained by first calculating the l2
distance of two visualization results given two different class

logits for each input image and then taking an average of

those l2 distances based on 10K images from the ImageNet

test set. The process is repeated for all backpropagation-

based methods in both random and trained cases. As we can

see, the average l2 distance of saliency map is much larger

than that of both GBP and DeconvNet in either a random

VGG or a trained VGG, which clearly demonstrates that

saliency map is class-sensitive but GBP and DeconvNet are

not. Interestingly, in the trained VGG-16 net, the average

l2 distance of DeconvNet is slightly larger than that of GBP.

It shows that the class insensitivity is exchanged for further

improvement of visual quality.
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panda saliency map DeconvNet GBP

busby saliency map DeconvNet GBP

Figure 8. Top row: the image “panda” and its backpropagation-

based visualizations. Bottom row: the adversarial example mis-

classified as “busby” and its backpropagation-based visualizations.

Both experiments are applied in the trained VGG-16 net.

4.4. Adversarial Attack on VGG

Adversarial attack provides another way of directly testing

whether visualizations are class-sensitive or doing image

recovery. The class-sensitive visualizations should change

drastically as both the predicted class label and ReLU states

of intermediate layers have changed, while the visualiza-

tions doing image recovery should change little as only a

tiny adversarial perturbation is added into the input image.

In this experiment, we first generate an adversarial example

“busby” via the fast gradient sign method (FGSM) (Goodfel-

low et al., 2014) by feeding the image “panda” into the pre-

trained VGG-16 net. Next, we apply the backpropagation-

based visualizations to the original image “panda” and its

adversary “busby” in the trained VGG-16 net. As shown

in Figure 8, the saliency map visualization changes sig-

nificantly whereas the GBP and DeconvNet visualizations

remain almost unchanged after replacing “panda” by its ad-

versary “busby”. Therefore, it further confirms that saliency

map is class-sensitive in that it highlights important pix-

els in making classification decisions. However, GBP and

DeconvNet are doing nothing but (partial) image recovery.

4.5. VGG with Partly Trained Weights

There exist some differences for backpropagation-based

visualizations, GBP and DeconvNet in particular, between

the random and trained cases. We take GBP as an example

here to investigate the contributions of different layers in

the trained VGG-16 net to these visual differences.

First, to isolate the impact of later layers, we load the trained

weights up to a given layer and leave later layers randomly

initialized. As shown in Figure 9 (top row), from “Conv1-

1*” to “Conv5-1*” GBP keeps filtering out more image

patches as the number of trained convolutional layers in-

creases. However, from “Conv5-1*” to “FC3*” (i.e., the

Conv1-1* Conv3-1* Conv5-1* FC3*

Conv1-1⋄ Conv3-1⋄ Conv5-1⋄ FC3⋄

Figure 9. Top row: load trained weights up to the indexed layer

and leave the later layers to be randomly initialized (marked by star

sign). Bottom row: load trained weights except for the indexed

layer is randomly initialized instead (marked by diamond sign).

fully-trained case) GBP behaves almost the same, no matter

weights in the dense layers are random or trained. There-

fore, it is the trained weights in the convolutional layers

rather than those in the dense layers that account for filter-

ing out image patches. Also, it further confirms that GBP is

class-insensitive. Furthermore, to reveal the impact of each

layer, we load the trained weights for the whole VGG-16

net except for a given layer which is randomly initialized

instead. The results are shown in Figure 9 (bottom row). We

can see that the GBP visualization is blurry for “Conv1-1⋄”,

clean with much background information for “Conv3-1⋄”

and clean without background information for “Conv5-1⋄”,

respectively. It means that the earlier convolutional layer

has more important impact in the GBP visualization than

the later convolutional layer.

5. Conclusions

In this paper, we proposed a theoretical explanation for

backpropagation-based visualizations, where we started

from a random three-layer CNN and later generalized it

to more realistic cases. We showed that unlike saliency map,

both GBP and DeconvNet are essentially doing (partial)

image recovery, which verified their class-insensitive prop-

erties. We revealed that it is the backward ReLU, used by

both GBP and DeconvNet, along with the local connections

in CNNs, that is responsible for human-interpretable visu-

alizations. We also explained how DeconvNet also relies

on the max-pooling to recover the input. Our analysis was

supported by extensive experiments. Finally, we hope our

analysis can provide useful insights into developing better

visualization methods for deep neural networks. A future

direction is to understand how the GBP visualizations in the

trained CNNs filter out image patches layer by layer.
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