Is Generator Conditioning Causally Related to GAN Performance?

A. Why Compute the Condition Number?

There are many summary statistics one could compute
from the spectrum of the Jacobian. It is not obvious a priori
that it makes sense to focus on the ratio of the maximum
eigenvalue to the minimum eigenvalue, so here we make
some attempt to justify that decision.

If you were to just glance at the spectra figures provided in
the main text, using the log-determinant might seem like a
reasonable thing to do. However, we note that (at least for
the MNIST experiments) the largest singular values for the
‘well behaved’ runs are distinctly lower than those for the
‘poorly behaved’ ones. This suggests that the conditioning
might be more pertinent than the determinant.

Even given that the conditioning is what’s relevant, one
could imagine other measures of Jacobian conditioning that
less strongly emphasize the extreme singular values. In-
deed, computing such quantities would be a useful exer-
cise, and we expect that they would also correlate with
GAN performance, but we have kept the condition num-
ber because it is simple and well-understood. We also feel
that the condition number most closely relates to what is
being optimized by the Jacobian Clamping procedure.

B. Additional Experimental Results

This section contains results that we have included for the
purpose of completeness but which were not necessary for
following the narrative of the paper. References to this sec-
tion can be found in the main text.

B.1. Misbehaving Generators can be Well-Conditioned

We have observed that intervening to improve generator
conditioning improves generator performance during GAN
training. We also might like to know whether this rela-
tionship holds for all possible generators. Here we provide
a counterexample of a deliberately pathological generator
(not trained with a GAN loss) which is nonetheless well-
conditioned. This suggests that the causal relationship we
explore in the main text may relate to the GAN training
process, and may not be an absolute property of generators
in isolation.

We train a generator using the DCGAN architecture with
a latent space of 64 dimensions. Rather than an adversar-
ial loss, we train with an L2 reconstruction loss - in effect,
teaching the generator to memorize the training examples it
has seen. We select 10,000 examples to memorize: half of
them (5,000) are random MNIST digits, and the other half
are identical copies of a single MNIST sample (in this case,
a four). We then establish a consistent but arbitrary map-
ping from 10,000 random z values to the training examples.
The generator is trained with an L2 reconstruction loss to

map each memorized z value to its associated training ex-
ample. The generator’s behavior on non-memorized z val-
ues is not considered at training time. There is no discrim-
inator involved in this training procedure. Figure 8 shows
the generator’s output when provided the z values it was
trained to associate with specific samples, indicating that it
succeeds at memorizing the half-random half-identical data
it was trained on.

At evaluation time, we provide random latent vectors,
rather than the latent vectors the generator has been trained
to memorize. Figure 9 shows the samples that this gener-
ator produces at evaluation time. This generator is clearly
not well-behaved: it suffers from mode collapse (i.e. it of-
ten reproduces the single four that made up half of its train-
ing data) and mode dropping (i.e. even when it produces
a novel sample, it usually looks an indistinct four or nine,
and seldom looks like any other class). Figure 10 shows the
label distribution as measured by a pre-trained classifier,
confirming that this generator has a severe missing mode
problem. This generator’s poor behavior is also confirmed
by its scores. Its Classifier Score is 4.95 for memorized z
values and 2.22 on non-memorized z values. Its Frechet
Distance is 118 for memorized z values and 240 for non-
memorized z values.

Figure 11 shows that this poorly-behaved generator
nonetheless has a good condition number. Taken in iso-
lation, the trajectory of this generator’s condition number
would suggest that it belongs in the ”good cluster” of Fig-
ure 1.

In summary, we demonstrate a generator that is not trained
with a GAN loss, with conspicuous mode collapse and
mode dropping, which is nonetheless well-conditioned.
This suggests that the relationship between generator con-
ditioning and generator performance does not hold for all
generators, and suggests that it may instead be a property
of GAN training dynamics.
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Figure 8. Samples from memorized zs. Half of the samples the
generator was trained to memorize are identical copies of a single
MNIST sample (in this case, a four) and the other half are random
MNIST digits. The generator has successfully memorized the z-
to-digit associations it was trained to reproduce.

Figure 9. Samples from random zs. The generator’s behavior on
these z values was not considered at training time. These samples
often resemble the single four that made up half its training data,
or other four- and nine-like digits. Occasionally, it produces in-
distinct digits that are not four-like, such as the 3 and the 5 in the
bottom row, or indistinct samples that are not digit-like.
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Figure 10. Label distribution of samples from random zs
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Figure 11. Mean log-condition number of misbehaving generator
over 10 runs. Compare to Figure 1 in the main text: this misbe-
having generator is better-conditioned than the “good cluster” of

GAN generators.
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Figure 12. CIFAR10 Experimental results. Left and right columns correspond to 10 runs without and with Jacobian Clamping, respec-
tively. Within each column, each run has a unique color.
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Figure 13. STL10 Experimental Results. Left and right columns correspond to 10 runs without and with Jacobian Clamping, respectively.
Within each column, each run has a unique color.



