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A. Proof of Theorem 5.1
Since g∗ : [−M ′,M ′]2K∗ → R is a positive definite kernel on a compact set, it follows from Mercer’s theorem that there
exist positive eigenvalues {λk}∞k=1 and continuous eigenfunctions {ϕk}∞k=1 such that

g∗(y∗,y
′
∗) =

∞∑
k=1

λkϕk(y∗)ϕk(y
′
∗), y∗,y

′
∗ ∈ [−M ′,M ′]K∗ ,

where the convergence is absolute and uniform (Minh et al., 2006). The uniform convergence implies that for any ε1 > 0
there exists K0 ∈ N such that

sup
(y∗,y

′
∗)∈[−M ′,M ′]2K∗

∣∣∣∣g∗(y∗,y
′
∗)−

K∑
k=1

λkϕk(y∗)ϕk(y
′
∗)

∣∣∣∣ < ε1, K ≥ K0.

This means g∗(y∗,y
′
∗) ≈ ⟨ΦK(y∗),ΦK(y′

∗)⟩ for a feature map ΦK(y∗) = (
√
λkϕk(y∗))

K
k=1.

We fix K and consider approximation of h(d)
k (x) :=

√
λkϕk(f

(d)
∗ (x)) below. Since h

(d)
k are continuous functions on a

compact set, there exists C = C(K) > 0 such that

sup
x∈[−M,M ]pd

|h(d)
k (x)| < C, k = 1, . . . ,K, d = 1, . . . , D.

Let us write the neural networks as f
(d)
ψ = (f

(d)
1 , . . . , f

(d)
K ), where f

(d)
k : Rpd → R, d = 1, . . . , D, k = 1, . . . ,K,

are two-layer neural networks with T hidden units. Since h
(d)
k are continuous functions, it follows from the universal

approximation theorem (Cybenko, 1989; Telgarsky, 2017) that for any ε2 > 0, there exists T0(K) ∈ N such that

sup
x∈[−M,M ]pd

|h(d)
k (x)− f

(d)
k (x)| < ε2, k = 1, . . . ,K, d = 1, . . . , D

for T ≥ T0(K). Therefore, for all d, e ∈ {1, 2, . . . , D}, we have

sup
(x,x′)∈[−M,M ]pd+pe

∣∣∣∣g∗ (f (d)
∗ (x), f

(e)
∗ (x′)

)
−

K∑
k=1

f
(d)
k (x)f

(e)
k (x′)

∣∣∣∣
≤ sup

(x,x′)∈[−M,M ]pd+pe

∣∣∣∣g∗ (f (d)
∗ (x), f

(e)
∗ (x′)

)
−

K∑
k=1

h
(d)
k (x)h

(e)
k (x′)

∣∣∣∣
+ sup

(x,x′)∈[−M,M ]pd+pe

∣∣∣∣ K∑
k=1

h
(d)
k (x)

(
h
(e)
k (x′)− f

(e)
k (x′)

)∣∣∣∣
+ sup

(x,x′)∈[−M,M ]pd+pe

∣∣∣∣ K∑
k=1

(
h
(d)
k (x)− f

(d)
k (x)

)
f
(e)
k (x′)

∣∣∣∣
≤ sup
y∗,y

′
∗∈[−M ′,M ′]K∗

∣∣∣∣g∗ (y∗,y
′
∗)−

K∑
k=1

λkϕk(y∗)ϕk(y
′
∗)

∣∣∣∣
+

K∑
k=1

sup
x∈[−M,M ]pd

|h(d)
k (x)| sup

x′∈[−M,M ]pe

∣∣∣h(e)
k (x′)− f

(e)
k (x′)

∣∣∣
+

K∑
k=1

sup
x∈[−M,M ]pd

∣∣∣h(d)
k (x)− f

(d)
k (x)

∣∣∣ sup
x′∈[−M,M ]pe

|f (e)
k (x′)|

< ε1 +KCε2 +Kε2(C + ε2).



A probabilistic framework for multi-view feature learning with many-to-many associations via neural networks

By letting ε1 = ε/2, ε2 = min (C, ε/(6KC)), the last formula becomes smaller than ε, thus proving

sup
(x,x′)∈[−M,M ]pd+pe

∣∣∣∣g∗ (f (d)
∗ (x), f

(e)
∗ (x′)

)
−

K∑
k=1

f
(d)
k (x)f

(e)
k (x′)

∣∣∣∣ < ε, d, e = 1, . . . , D.

□

B. Consistency of MLE in PMvGE
In this section, we provide technical details of the argument of Section 5.2.

For proving the consistency of MLE, we introduce the following generative model. Let di, i = 1, . . . , n, be random
variables independently distributed with the probability P(di = d) = η(d) ∈ (0, 1) where

∑D
d=1 η

(d) = 1. Data vectors
are also treated as random variables. The conditional distribution of xi given di is

xi | di
indep.∼ q(di), i = 1, . . . , n,

where q(di) is a distribution on a compact support in Rpdi . Let us denote eq. (3) as µij(xi,xj , di, dj |α,ψ) for indicating
the dependency on (xi,xj , di, dj). The conditional distributions of link weights are already specified in (1) as

wij | xi,xj , di, dj
indep.∼ Po(µ∗

ij), i, j = 1, . . . , n,

where µ∗
ij = µij(xi,xj , di, dj |α∗,ψ∗) with a true parameter (α∗,ψ∗). Due to the constraints α = α⊤ and wij =

0 ((di, dj) /∈ D), the vector of free parameters in α is αD := {α(d,e)}(d,e)∈D,d≤e ∈ R|D|
≥0 , and we write θ := (αD,ψ).

Let ñ := |In| = O(n2) denote the number of terms in the sum of ℓn(θ) in eq. (6). Then the expected value of ñ−1ℓn(θ)
under the generative model with the true parameter θ∗ is expressed as

ℓ(θ) := Ex1,x2,d1,d2

[
µ12(x1,x2, d1, d2|θ∗) log µ12(x1,x2, d1, d2|θ)− µ12(x1,x2, d1, d2|θ)

]
.

If it were the case of i.i.d. observations of sample size n, we would have that ñ−1ℓn(θ) converges to ℓ(θ) as n → ∞ from
the law of large numbers. In Theorem B.1, we actually prove the uniform convergence in probability, but we have to pay
careful attention to the fact that n2 observations of (xi,xj , di, dj) are not independent when indices overlap.

Theorem B.1 Let us assume that the parameter space of θ is Θ := [δ, 1/δ]|D| × Ψ, where δ ∈ (0, 1) is a sufficiently
small constant and Ψ ⊂ Rq is a compact set. Assume also that the transformations f (d)

ψ (x), d = 1, . . . , D, are Lipschitz
continuous with respect to (ψ,x). Then we have, as n → ∞,

sup
θ∈Θ

|ñ−1ℓn(θ)− ℓ(θ)| p→ 0. (13)

Proof B.1 We refer to Corollary 2.2 in Newey (1991). This corollary shows supθ∈Θ |Q̂n(θ) − Q̄n(θ)| = op(1) under
general setting of Q̂n(θ) and Q̄n(θ). Here we consider the case of Q̂n(θ) = ñ−1ℓn(θ) and Q̄n(θ) = ℓ(θ). For showing
(13), the four conditions of the corollary are written as follows. (i) Θ is compact, (ii) ñ−1ℓn(θ) − ℓ(θ)

p→ 0 for each
θ ∈ Θ, (iii) ℓ(θ) is continuous, (iv) there exists Bn = Op(1) such that |ñ−1ℓn(θ) − ñ−1ℓn(θ

′)| ≤ Bn∥θ − θ′∥2 for all
θ,θ′ ∈ Θ. The two conditions (i) and (iii) hold obviously, and thus we verify (ii) and (iv) below.

Before verifying (ii) and (iv), we first consider an array Z := (Zij) of random variables Zij ∈ Z , (i, j) ∈ In, and a
bounded and continuous function h : Z → R. We assume that Z ⊂ R is a compact set, and Zij is independent of Zkl if
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k, l ∈ Rn(i, j) := {(k, l) ∈ In | k, l ∈ {1, . . . , n} \ {i, j}} for all (i, j) ∈ In. Then we have

VZ

 1

ñ

∑
(i,j)∈In

h(Zij)

 = EZ


 1

ñ

∑
(i,j)∈In

h(Zij)

2
− EZ

 1

ñ

∑
(i,j)∈In

h(Zij)

2

=
1

ñ2


∑

(i,j)∈In

∑
(k,l)∈In

EZ [h(Zij)h(Zkl)]−

 ∑
(i,j)∈In

EZ [h(Zij)]

2


=
1

ñ2

∑
(i,j)∈In

∑
(k,l)∈In\Rn(i,j)

(EZ [h(Zij)h(Zkl)]− EZ [h(Zij)]EZ [h(Zkl)]) .

By considering |In \ Rn(i, j)| = O(n), the last formula is O(ñ−2 · ñ · n) = O(n−1). Therefore,

VZ

 1

ñ

∑
(i,j)∈In

h(Zij)

 = O(n−1). (14)

Next we evaluate the variance of ñ−1ℓn(θ) to show (ii). DenotingW := (wij),X := (xi),d := (di),

VW ,X,d[ñ
−1ℓn(θ)] = EX,d[VW [ñ−1ℓn(θ) |X,d]] + VX,d[EW [ñ−1ℓn(θ) |X,d]]

= EX,d

 1

ñ2

∑
(i,j)∈In

µij(θ∗)(logµij(θ))
2

+ VX,d

 1

ñ

∑
(i,j)∈In

(µij(θ∗) log µij(θ)− µij(θ))

 ,

for every θ ∈ Θ. The first term in the last formula is O(ñ−1 · ñ) = O(ñ−1) = o(1), and the second term is O(n−1) = o(1)
by applying eq. (14) with Zij := (xi,xj , di, dj), h(Zij) = µij(θ∗) log µij(θ)−µij(θ). Therefore, VW ,X,d[ñ

−1ℓn(θ)] =

o(1) and Chebyshev’s inequality implies the pointwise convergence ñ−1ℓn(θ)
p→ ℓ(θ) for every θ ∈ Θ where ℓ(θ) =

EW ,X,d[ñ
−1ℓn(θ)] = Ex1,x2,d1,d2 [µ12(θ∗) log µ12(θ)− µ12(θ)]. Thus, condition (ii) holds.

Finally, we work on condition (iv). Since µij(θ) is a composite function of C1-functions on Θ, µij(θ) is Lipschitz
continuous. The Lipschitz continuity of µij(θ) and µij(θ) > 0 (θ ∈ Θ) indicates the Lipschitz continuity of logµij(θ).
Therefore, there exist M1,M2 > 0 such that

|ñ−1ℓn(θ)− ñ−1ℓn(θ
′)| ≤

∣∣∣∣ 1ñ ∑
(i,j)∈In

wij(logµij(θ)− logµij(θ
′))− 1

ñ

∑
(i,j)∈In

(µij(θ)− µij(θ
′))

∣∣∣∣
≤ 1

ñ

∑
(i,j)∈In

wij | logµij(θ)− logµij(θ
′)|+ 1

ñ

∑
(i,j)∈In

|µij(θ)− µij(θ
′)|

≤ M1

(
ñ−1

∑
(i,j)∈In

wij

)
∥θ − θ′∥2 +M2∥θ − θ′∥2.

Denoting by Bn := M1 · ñ−1
∑

(i,j)∈In
wij +M2, we have

|ñ−1ℓn(θ)− ñ−1ℓn(θ
′)| ≤ Bn∥θ − θ′∥2.

Since ñ−1
∑

(i,j)∈In
wij = Op(1), the law of large numbers indicates Bn = Op(1). Thus, condition (iv) holds. □

Noticing that θ∗ is a maximizer of ℓ(θ) and θ̂n is a maximizer of ℓn(θ), we would have the desired result θ̂n
p→ θ∗ by

combining Theorem B.1 and continuity of ℓ(θ). However it does not hold unfortunately. Instead, we define the set of
parameter values equivalent to θ∗ as Θ∗ := {θ ∈ Θ | ℓ(θ) = ℓ(θ∗)}. Every θ ∈ Θ∗ gives the correct probability of
link weights, because ℓ(θ) = ℓ(θ∗) holds if and only if µ12(θ) = µ12(θ∗) almost surely w.r.t. (x1,x2, d1, d2). With this
setting, the theorem below states that Θ̂n converges to Θ∗ in probability. This indicates that, θ̂n will represent the true
probability model for sufficiently large n.
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Theorem B.2 Let dH(·, ·) denote the Hausdorff distance defined as max-min L2-distance between two sets. We assume
the same conditions as in Theorem B.1. Then we have, as n → ∞,

dH(Θ̂n,Θ∗)
p→ 0. (15)

Proof B.2 We refer to the case (1) of Theorem 3.1 in Chernozhukov et al. (2007) with ĉ = 1 under the condition C.1 This
theorem shows, for general setting of Θ̂I ,ΘI , that

dH(Θ̂I ,ΘI)
p→ 0. (16)

Here Θ̂I := {θ ∈ Θ | Q̂n(θ) ≤ 1/an} and ΘI := arg infθ∈Θ Q(θ), where Q̂n(θ), Q(θ) are general functions satisfying
supθ∈ΘI

Qn(θ) = op(1/an), and an → ∞.

For proving (15), we consider the case of Q̂n(θ) = −ñ−1ℓn(θ)+supθ∈Θ ñ−1ℓn(θ), Q(θ) = −ℓ(θ)+supθ∈Θ ℓ(θ). The
condition C.1 for (16) is re-written as follows. (i) Θ is a (non-empty) compact set, (ii) ñ−1ℓn(θ) and ℓ(θ) are continuous,
(iii) supθ∈Θ |ñ−1ℓn(θ) − ℓ(θ)| p→ 0, and (iv) supθ∈Θ∗

(−ñ−1ℓn(θ) + supθ∈Θ ñ−1ℓn(θ))
p→ 0. The conditions (i), (ii)

are obvious. (iii) is shown in Theorem B.1. (iv) is verified by

sup
θ∈Θ∗

(
−ñ−1ℓn(θ) + sup

θ∈Θ
ñ−1ℓn(θ)

)
= − inf

θ∈ΘI

ñ−1ℓn(θ) + sup
θ∈Θ

ñ−1ℓn(θ)
p→ −ℓ(θ∗) + ℓ(θ∗) = 0,

where θ∗ is an element of ΘI . Thus, (16) holds.

Next, we consider two sets Θ̂n = arg supθ∈Θ ñ−1ℓn(θ) = {θ ∈ Θ | Qn(θ) = 0} and Θ̂I . Since these sets satisfy
Qn(θ) = 0 (θ ∈ Θ̂n), Qn(θ

′) ≤ 1/an (θ′ ∈ Θ̂I) and 1/an → 0 as n → ∞, we have dH(Θ̂n, Θ̂I)
p→ 0. It follows from

this convergence and (16) that, by noticing Θ∗ = ΘI ,

dH(Θ̂n,Θ∗) = dH(Θ̂n,ΘI) ≤ dH(Θ̂n, Θ̂I) + dH(Θ̂I ,ΘI)
p→ 0,

thus (15) holds. □

C. CDMCA is approximated by PMvGE with linear transformations
We argue an approximate relation between CDMCA and PMvGE, which is briefly explained in Section 3.6. In the below,
we will derive the solution ψ̂CDMCA of a slightly modified version of CDMCA, and an approximate solution ψ̂Apr.PMvGE of
PMvGE with linear transformations. We then show that these two solutions are equivalent up to a scaling in each axis of
the shared space.

C.1. Solution of a modified CDMCA

The original CDMCA imposes the quadratic constraint (8) for maximizing the objective function (7). Here we replace wij

in (8) with δij so that the constraint becomes
n∑

i=1

ψ(di)⊤xix
⊤
i ψ

(di) = I.

This modification changes the scaling in the solution, but the computation below is essentially the same as that in
Shimodaira (2016). Let us define the augmented data vector, called “simple coding” (Shimodaira, 2016), x̃i :=
(0p1

, . . . ,0pdi−1
,xi,0pdi+1

, . . . ,0pD
) ∈ Rp where p := p1 + p2 + · · · + pD. Now, data matrix is X :=

(x̃⊤
1 , x̃

⊤
2 , . . . , x̃

⊤
n )

⊤ ∈ Rn×p, and the parameter matrix is ψ := (ψ(1)⊤,ψ(2)⊤, . . . ,ψ(D)⊤)⊤ ∈ Rp×K . With this
augmented representation, the D-view embedding is now interpreted as a 1-view embedding. CDMCA maximizes the
objective function

1

2

n∑
i=1

n∑
j=1

wij⟨ψ(di)⊤xi,ψ
(dj)⊤xj⟩ = tr

(
ψ⊤Hψ

)
(H :=X⊤WX),

with respect to ψ under constraint ψ⊤Gψ = I where G := X⊤X . Let UK be the matrix composed of the top-K
eigenvectors ofG−1/2HG−1/2. Then the solution of the modified CDMCA is

ψ̂CDMCA := G−1/2UK .
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C.2. Approximate solution of PMvGE with linear transformations

MLE of PMvGE maximizes ℓn(α,ψ) defined in (6). Here we modify it by adding an extra term as ℓ̃n(α,ψ) := ℓn(α,ψ)−
1
2

∑
i:(di,di)∈D µii(α,ψ). The difference approaches zero for large n, because |ℓn(α,ψ) − ℓ̃n(α,ψ)|/|ℓn(α,ψ)| =

O(n−1). Since the parameter α is not considered in CDMCA, we assume D := {all pairs of views} and ᾱ =

(ᾱ(de)), ᾱ(de) ≡ α0 > 0 (∀d, e). We further assume that the transformation of PMvGE is linear: f (d)
ψ (x) = ψ(d)⊤x (∀d),

and data vectors in each view are centered. With this setting, we will show that the maximizer of a quadratic approximation
of ℓ̃n is equivalent to CDMCA.

To rewrite the likelihood function as ℓ̃n(ᾱ,ψ) = 1
2

∑n
i=1

∑n
j=1 Sij(gij(ψ)), we define gij(ψ) := ⟨ψ(di)⊤xi,ψ

(dj)⊤xj⟩
and Sij(g) := wij log(α0 exp(g))− α0 exp(g), g ∈ R. Since Sij(g) is approximated quadratically around g = 0 by

SQ
ij (g) = α0

{
−1

2
g2 +

(
wij

α0
− 1

)
g

}
+ Sij(0),

ℓ̃n(ᾱ,ψ) is approximated quadratically by

ℓ̃Qn (ψ) :=
1

2

n∑
i=1

n∑
j=1

SQ
ij (gij(ψ))

= α0

−1

2
tr
(
(ψ⊤Gψ)2

)
+

1

α0
tr
(
ψ⊤Hψ

)
− tr

(
ψ⊤X⊤1n1

⊤
nXψ

)
︸ ︷︷ ︸

=0 (∵{xi} is centered.)

+
1

2

n∑
i=1

n∑
j=1

Sij(0)︸ ︷︷ ︸
Const.

, (17)

where G = X⊤X,H = X⊤WX . The function ℓ̃Qn (ψ) has rotational degrees of freedom: ℓ̃Qn (ψ) = ℓ̃Qn (ψO) for
any orthogonal matrix O ∈ RK×K . Thus, we impose an additional constraint ψ⊤Gψ = ΓK := diag(γ1, γ2, . . . , γK)

for any (γ1, . . . , γK) ∈ RK
≥0. ψ satisfying this constraint is written as ψ = G−1/2V KΓ

1/2
K where V K ∈ RP×K is a

column-orthogonal matrix such that V ⊤
KV K = I . By substituting ψ = G−1/2V KΓ

1/2
K into eq. (17), we have

ℓ̃Qn (ψ) = α0

{
−1

2
tr
(
Γ2
K

)
+

1

α0
tr (ΓKSK)

}
+ Const. =

α0

2

{∥∥∥∥ 1

α0
SK

∥∥∥∥2
F
−

∥∥∥∥ΓK − 1

α0
SK

∥∥∥∥2
F

}
+ Const., (18)

where SK = V ⊤
KG

−1/2HG−1/2V K and ∥ · ∥F denotes the Frobenius norm. This objective function is maximized when
ΓK = 1

α0
SK and V K = UK , because minΓK

∥ΓK − 1
α0
SK∥2F = 0 is achieved by ΓK = 1

α0
SK , and maxV K

∥SK∥2F
is achieved by V K = UK where UK is the matrix composed of the top-K eigenvectors of G−1/2HG−1/2. Therefore,
ℓ̃Qn (ψ) is maximized by

ψ̂Apr.PMvGE = G−1/2UKΓ
1/2
K .

By substituting V K = UK into ΓK = 1
α0
SK , we verify that ΓK is a diagonal matrix with γk := λk/α0 where λk is the

k-th largest eigenvalue ofG−1/2HG−1/2 (k = 1, 2, . . . ,K).

C.3. Equivalence of the two solutions up to a scaling

By comparing the two solutions, we have

ψ̂Apr.PMvGE = ψ̂CDMCAΓ
1/2
K . (19)

This simply means that each axis in the shared space is scaled by the factor
√
γk, k = 1, . . . ,K. Let ŷ, ŷ′ be feature

vectors in the shared space computed by the approximate PMvGE with linear transformations, and y, y′ be feature vectors
in the shared space computed by the modified CDMCA. Then the inner product is weighted in PMvGE as

⟨ŷ, ŷ′⟩ =
K∑

k=1

ŷkŷ
′
k =

K∑
k=1

γkyky
′
k.
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