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Abstract

A simple framework Probabilistic Multi-view
Graph Embedding (PMvGE) is proposed for
multi-view feature learning with many-to-many
associations so that it generalizes various existing
multi-view methods. PMvGE is a probabilistic
model for predicting new associations via graph
embedding of the nodes of data vectors with links
of their associations. Multi-view data vectors
with many-to-many associations are transformed
by neural networks to feature vectors in a shared
space, and the probability of new association be-
tween two data vectors is modeled by the inner
product of their feature vectors. While existing
multi-view feature learning techniques can treat
only either of many-to-many association or non-
linear transformation, PMvGE can treat both si-
multaneously. By combining Mercer’s theorem
and the universal approximation theorem, we
prove that PMvGE learns a wide class of similar-
ity measures across views. Our likelihood-based
estimator enables efficient computation of non-
linear transformations of data vectors in large-
scale datasets by minibatch SGD, and numerical
experiments illustrate that PMvGE outperforms
existing multi-view methods.

1. Introduction
With the rapid development of Internet communication
tools in past few decades, many different types of data vec-
tors become easily obtainable these days, advancing the de-
velopment of multi-view data analysis methods (Sun, 2013;
Zhao et al., 2017). Different types of vectors are called as
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Table 1. Comparison of PMvGE with existing multi-view / graph-
embedding methods. (Nv): Number of views, (MM): Many-
to-many, (NL): Non-linear, (Ind): Inductive, (Lik): Likelihood-
based. PMvGE has all the properties. Nv = D represents that the
method can deal with arbitrary number of views.

(Nv) (MM) (NL) (Ind) (Lik)
CCA 2 ✓
DCCA 2 ✓ ✓
MCCA D ✓
SGE 0 ✓
LINE 0 ✓ ✓
LPP 1 ✓ ✓
CvGE 2 ✓ ✓
CDMCA D ✓ ✓
DeepWalk 0 ✓ ✓
SBM 1 ✓ ✓ ✓
GCN 1 ✓ ✓ ✓
GraphSAGE 1 ✓ ✓ ✓ ✓
IDW 1 ✓ ✓ ✓ ✓
PMvGE D ✓ ✓ ✓ ✓

“views”, and their dimensions may be different depending
on the view. Typical examples are data vectors of images,
text tags, and user attributes available in Social Network-
ing Services (SNS). However, we cannot apply standard
data analysis methods, such as clustering, to multi-view
data vectors, because data vectors from different views, say,
images and text tags, are not directly compared with each
other. In this paper, we work on multi-view Feature Learn-
ing for transforming the data vectors from all the views
into new vector representations called “feature vectors” in
a shared euclidean subspace.

One of the best known approaches to multi-view fea-
ture learning is Canonical Correlation Analysis (Hotelling,
1936, CCA) for two-views, and Multiset CCA (Kettenring,
1971, MCCA) for many views. CCA considers pairs
of related data vectors {(x(1)

i ,x
(2)
i )}ni=1 ⊂ Rp1 × Rp2 .

For instance, x(1)
i ∈ Rp1 may represent an image, and

x
(2)
i ∈ Rp2 may represent a text tag. Their dimen-

sion p1 and p2 may be different. CCA finds linear trans-
formation matrices A(1),A(2) so that the sum of inner
products

∑n
i=1⟨A

(1)⊤x
(1)
i ,A(2)⊤x2

i ⟩ is maximized under
a variance constraint. The obtained linear transforma-
tions compute feature vectors y(1)

i := A(1)⊤x
(1)
i ,y

(2)
i :=
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A(2)⊤x
(2)
i ∈ RK where K ≤ min{p1, p2} is the dimen-

sion of the shared space of feature vectors from the two
views. However, the linear transformations may not cap-
ture the underlying structure of real-world datasets due to
its simplicity.

To enhance the expressiveness of transformations, CCA
has been further extended to non-linear settings, as Kernel
CCA (Lai and Fyfe, 2000) and Deep CCA (Andrew et al.,
2013; Wang et al., 2016, DCCA) which incorporate kernel
methods and neural networks to CCA, respectively. These
methods show drastic improvements in performance in face
recognition (Zheng et al., 2006) and image-text embed-
ding (Yan and Mikolajczyk, 2015). However, these CCA-
based approaches are limited to multi-view data vectors
with one-to-one correspondence across views.

Real-world datasets often have more complex association
structures among the data vectors, thus the whole dataset
is interpreted as a large graph with nodes of data vectors
and links of the associations. For example, associations be-
tween images {x(1)

i }n1
i=1 and their tags {x(2)

j }n2
j=1 may be

many-to-many relationships, in the sense that each image
has multiple associated tags as well as each tag has multi-
ple associated images. The weight wij ≥ 0, which we call
“link weight”, is defined to represent the strength of associ-
ation between data vectors x(1)

i ,x
(2)
j (i = 1, 2, . . . , n1; j =

1, 2, . . . , n2). The number of data vectors n1, n2 in each
view may be different.

To fully utilize the complex associations represented
by {wij}, Cross-view Graph Embedding (Huang et al.,
2012, CvGE) and its extension to more than three
views called Cross-Domain Matching Correlation Analy-
sis (Shimodaira, 2016, CDMCA) are proposed recently,
by extending CCA to many-to-many settings. 2-view
CDMCA (=CvGE) obtains linear transformation ma-
trices A(1),A(2) so that the sum of inner products∑n1

i=1

∑n2

j=1 wij⟨A(1)⊤x
(1)
i ,A(2)⊤x

(2)
j ⟩ is maximized un-

der a variance constraint.

CDMCA includes various existing multi-view / graph-
embedding methods as special cases. For instance, 2-
view CDMCA obviously includes CCA as a special case
wij = δij , where δij is Kronecker’s delta. By consider-
ing 1-view setting, where xi ∈ Rp is a 1-view data vector
and wij ≥ 0 is a link weight between xi and xj , CDMCA
reduces to Locality Preserving Projections (He and Niyogi,
2004; Yan et al., 2007, LPP). LPP also reduces to Spectral
Graph Embedding (Chung, 1997; Belkin and Niyogi, 2001,
SGE), which is interpreted as “0-view” graph embedding,
by letting xi ∈ {0, 1}n be 1-hot vector with 1 at i-th entry
and 0 otherwise.

Although CDMCA shows a good performance in word
and image embeddings (Oshikiri et al., 2016; Fukui et al.,

2016), its expressiveness is still limited due to its linear-
ity. There has been a necessity of a framework, which
can deal with many-to-many associations and non-linear
transformations simultaneously. Therefore, in this paper,
we propose a non-linear framework for multi-view fea-
ture learning with many-to-many associations. We name
the framework as Probabilistic Multi-view Graph Embed-
ding (PMvGE). Since PMvGE generalizes CDMCA to
non-linear setting, PMvGE can be regarded as a general-
ization of various existing multi-view methods as well.

PMvGE is built on a simple observation: many existing ap-
proaches to feature learning consider the inner product sim-
ilarity of feature vectors. For instance, the objective func-
tion of CDMCA is the weighted sum of the inner product
⟨yi,yj⟩ of the two feature vectors yi and yj in the shared
space. Turning our eyes to recent 1-view feature learning,
Graph Convolutional Network (Kipf and Welling, 2017),
GraphSAGE (Hamilton et al., 2017), and Inductive Deep-
Walk (Dai et al., 2018) assume that the inner product of
feature vectors ⟨yi,yj⟩ approximates link weight wij ≥ 0.

Inspired by these existing studies, for D-view feature learn-
ing (D ≥ 1), PMvGE transforms data vectors xi ∈ Rpdi

from view di ∈ {1, . . . , D} by neural networks xi 7→
yi := NN(di)(xi) ∈ RK (i = 1, 2, . . . , n) so that the
function exp(⟨yi,yj⟩) approximates the weight wij for
i, j = 1, . . . , n. We introduce a parametric model of
the conditional probability of {wij} given {(xi, di)}, and
thus PMvGE is a non-linear and probabilistic extension
of CDMCA. This leads to very efficient computation of
the Maximum Likelihood Estimator (MLE) with minibatch
SGD.

Our contribution in this paper is summarized as follows:

(1) We propose PMvGE for multi-view feature learning
with many-to-many associations, which is non-linear, effi-
cient to compute, and inductive. Comparison with existing
methods is shown in Table 1. See Section 2 for the descrip-
tion of these methods.

(2) We show in Section 3 that PMvGE generalizes vari-
ous existing multi-view methods, at least approximately,
by considering the Maximum Likelihood Estimator (MLE)
with a novel probabilistic model.

(3) We show in Section 4 that PMvGE with large-scale
datasets can be efficiently computed by minibatch SGD.

(4) We prove that PMvGE, yet very simple, learns a wide
class of similarity measures across views. By combining
Mercer’s theorem and the universal approximation theo-
rem, we prove in Section 5.1 that the inner product of fea-
ture vectors can approximate arbitrary continuous positive-
definite similarity measures via sufficiently large neural
networks. We also prove in Section 5.2 that MLE will actu-
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ally learn the correct parameter value for sufficiently large
number of data vectors.

2. Related works
0-view feature learning: There are several graph em-
bedding methods related to PMvGE without data vec-
tors. We call them as 0-view feature learning methods.
Given a graph, Spectral Graph Embedding (Chung, 1997;
Belkin and Niyogi, 2001, SGE) obtains feature vectors of
nodes by considering the adjacency matrix. However, SGE
requires time-consuming eigenvector computation due to
its variance constraint. LINE (Tang et al., 2015) is very
similar to 0-view PMvGE, which reduces the time com-
plexity of SGE by proposing a probabilistic model so that
any constraint is not required. DeepWalk (Perozzi et al.,
2014) and node2vec (Grover and Leskovec, 2016) ob-
tain feature vectors of nodes by applying skip-gram
model (Mikolov et al., 2013) to the node-series computed
by random-walk over the given graph, while PMvGE di-
rectly considers the likelihood function.

1-view feature learning: Locality Preserving Projec-
tions (He and Niyogi, 2004; Yan et al., 2007, LPP) in-
corporates linear transformation of data vectors into
SGE. For introducing non-linear transformation, the
graph neural network (Scarselli et al., 2009, GNN) de-
fines a graph-based convolutional neural network. Cheb-
Net (Defferrard et al., 2016) and Graph Convolutional Net-
work (GCN) (Kipf and Welling, 2017) reduce the time
complexity of GNN by approximating the convolution.
These GNN-based approaches are highly expressive but not
inductive. A method is called inductive if it computes fea-
ture vectors for newly obtained vectors which are not in-
cluded in the training set. GraphSAGE (Hamilton et al.,
2017) and Inductive DeepWalk (Dai et al., 2018, IDW) are
inductive as well as our proposal PMvGE, but probabilistic
models of these methods are different.

Multi-view feature learning: HIMFAC (Nori et al., 2012)
is mathematically equivalent to CDMCA. Factorization
Machine (Rendle, 2010, FM) incorporates higher-order
products of multi-view data vectors to linear-regression. It
can be used for link prediction across views. If only the
second terms in FM are considered, FM is approximately
the same as PMvGE with linear transformations. However,
FM does not include PMvGE with neural networks.

Another study Stochastic Block Model (Holland et al.,
1983; Nowicki and Snijders, 2001, SBM) is a well-known
probabilistic model of graphs, whose links are generated
with probabilities depending on the cluster memberships of
nodes. SBM assumes the cluster structure of nodes, while
our model does not.

3. Proposed model and its parameter
estimation

3.1. Preliminaries

We consider an undirected graph consisting of n nodes
{vi}ni=1 and link weights wij ≥ 0 (i, j = 1, 2, . . . , n)
satisfying wij = wji for all i, j, and wii = 0. Let
D ∈ N be the number of views. For D-view feature
learning, node vi belongs to one of views, which we de-
note as di ∈ {1, 2, . . . , D}. The data vector represent-
ing the attributes (or side-information) at node vi is de-
noted as xi ∈ Rpdi for view di with dimension pdi . For
0-view feature learning, we formally let D = 1 and use
the 1-hot vector xi ∈ {0, 1}n. We assume that we obtain
{wij}ni,j=1, {xi, di}ni=1 as observations. By taking wij as
a random variable, we consider a parametric model of con-
ditional probability of wij given the data vectors. In Sec-
tion 3.2, we consider the probability model of wij with the
conditional expected value

µij = E(wij |{xi, di}ni=1)

where {xi, di}ni=1 is given, for all 1 ≤ i < j ≤ n. In
Section 3.3, we then define PMvGE by specifying the func-
tional form of µij via feature vectors.

3.2. Probabilistic model

For deriving our probabilistic model, we first consider a
random graph model with fixed n nodes. At each time-
point t = 1, 2, . . . , T , an unordered node pair (vi, vj) is
chosen randomly with probability

P(et = (vi, vj)) =
µi′j′∑

1≤i<j≤n µij

where i′ := min{i, j}, j′ := max{i, j} and et repre-
sents the undirected link at time t. The parameters µij ≥
0 (1 ≤ i < j ≤ n) are interpreted as unnormalized
probabilities of node pairs. We allow the same pair is
sampled several times. Given independent observations
e1, e2, . . . , eT , we consider the number of links generated
between vi and vj as

wij = wji := ♯{t ∈ {1, . . . , T} | et = (vi, vj)}.

The conditional probability P({wij}1≤i<j≤n | T ) follows
a multinomial distribution. Assuming that T obeys Poisson
distribution with mean

∑
1≤i<j≤n µij , the probability of

{wij}1≤i<j≤n follows

P({wij}1≤i<j≤n) =
∏

1≤i<j≤n

p(wij ;µij)

where p(w;µ) is the probability function of Poisson distri-
bution with mean µ. Thus wij follows Poisson distribution
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independently as

wij
indep.∼ Po(µij) (1)

for all 1 ≤ i < j ≤ n. Although wij should be a non-
negative integer as an outcome of Poisson distribution, our
likelihood computation allows wij to take any nonnegative
real value.

Our probabilistic model (1) is nothing but Stochastic Block
Model (Holland et al., 1983, SBM) by assuming that node
vi belongs to a cluster ci ∈ {1, 2, . . . , C}. The model is
specified as

µij = β(ci,cj), (2)

where β(ci,cj) is the parameter regulating the number of
links whose end-points belong to clusters ci and cj . Note
that SBM is interpreted as 1-view method with 1-hot vector
xi ∈ {0, 1}C indicating the cluster membership.

3.3. Proposed model (PMvGE)

Inspired by various existing methods for 0-view and 1-view
feature learning, we propose a novel model for the param-
eter µij in eq. (1) by using the inner-product similarity as

µij(α,ψ) := α(di,dj) exp
(⟨
yi,yj

⟩)
, (3)

yi := f
(di)
ψ (xi).

Here α = (α(d,e)) ∈ RD×D
≥0 is a symmetric parame-

ter matrix (α = α⊤) for regulating the sparseness of
W = (wij). For y,y′ ∈ RK , ⟨y,y′⟩ =

∑K
i=1 yiy

′
i is

simply the inner product in Euclidean space. The func-
tions f (d)

ψ : Rpd → RK , d = 1, 2, . . . , D, specify the non-
linear transformations from data vectors to feature vectors.
ψ represents a collection of parameters (e.g., neural net-
work weights).

View-1 View-2 View-Dℝ𝑝1 ℝ𝑝2 ℝ𝑝𝐷

N
eu

ral n
etw

o
rks

ℝ𝐾Shared space

Figure 1. Data vectors {xi} in each view are transformed to fea-
ture vectors {yi} by neural networks {f (d)

ψ }.
These transformations {f (d)

ψ } can be trained by maximiz-
ing the likelihood for the probabilistic model (1) as shown
in Section 3.5. PMvGE computes feature vectors {yi}ni=1

through maximum likelihood estimation of transformations
{f (d)
ψ }.

PMvGE associates nodes vi and vj with the probability
specified by the similarity between their feature vectors
yi := f

(di)
ψ (xi),yj := f

(dj)
ψ (xj) ∈ RK in the shared

space. Nodes with similar feature vectors will share many
links.

We consider the following neural network model for the
transformation function, while any functional form can
be accepted for PMvGE. Only the inner product of fea-
ture vectors is considered for measuring the similarity in
PMvGE. We prove in Theorem 5.1 that the inner product
with neural networks approximates a wide class of similar-
ity measures.

Neural Network (NN) with 3-layers is defined as

f
(d)
ψ (x) = σ(ψ

(d)⊤
3 σ(ψ

(d)⊤
2 σ(ψ

(d)⊤
1 x)))), (4)

where x ∈ Rpd is data vector, ψ(d)
1 ∈ Rpd×K

(d)
1 ,ψ

(d)
2 ∈

RK
(d)
1 ×K

(d)
2 ,ψ

(d)
3 ∈ RK

(d)
2 ×K are parameter matrices. The

neural network size is specified by pd,K
(d)
1 ,K

(d)
2 ,K ∈ N

(d = 1, 2, . . . , D). Each element of σ(x) is user-specified
activation function σ(·). Although we basically consider
a multi-layer perceptron (MLP) as f (d)

ψ , it can be replaced
with any deterministic NN with input and output layers,
such as recurrent NN and Deep NN (DNN).

NN model reduces to linear model

f
(d)
ψ (x) := ψ(d)⊤x (5)

(d = 1, 2, . . . , D) by applying σ(x) = x, where ψ(d) ∈
Rpd×K is parameter matrix.

3.4. Link weights across some view pairs may be
missing

Link weights across all the view pairs may not be available
in practice. So we consider the set of unordered view pairs

D := {(d, e) : Link weights are
observed between views d, e},

and we formally set wij = 0 for the missing (di, dj) /∈ D.
For example, D = {(1, 2)} for D = 2 indicates that link
weights across view-1 and view-2 are observed while link
weights within view-1 or view-2 are missing. We should
notice the distinction between setting wij = 0 with missing
and observing wij = 0 without missing, because these two
cases give different likelihood functions.
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3.5. Maximum Likelihood Estimator

Since PMvGE is specified by (1) and (3), the log-likelihood
function is given by

ℓn(α,ψ)

:=
∑

(i,j)∈In

[wij logµij(α,ψ)− µij(α,ψ)], (6)

whose sum is over the set of index pairs In := {(i, j) |
1 ≤ i < j ≤ n, (di, dj) ∈ D}. The Maximum Likeli-
hood Estimator (MLE) of the parameter (α,ψ) is defined
as the maximizer of (6). We estimate (α,ψ) by maximiz-
ing ℓn(α,ψ) with constraints α = α⊤ and α(d,e) = 0 for
(d, e) /∈ D.

3.6. PMvGE approximately generalizes various
methods for multi-view learning

SBM (2) is 1-view PMvGE with 1-hot cluster member-
ship vector xi ∈ {0, 1}C . Consider the linear model (5)
with ψ(1)⊤ = (ψ1, . . . ,ψC) ∈ RK×C , where ψc ∈ RK

is a feature vector for class c = 1, . . . , C. Then µij =
α(1,1) exp(⟨ψci ,ψcj ⟩) will specify β(ci,cj) for sufficiently
large K, and {ψci} represent low-dimensional structure of
SBM for smaller K. SBM is also interpreted as PMvGE
with D = C views by letting di = ci and f

(di)
ψ (x) ≡ 0.

Then µij = α(ci,cj) is equivalent to SBM.

More generally, CDMCA (Shimodaira, 2016) is approxi-
mated by D-view PMvGE with the linear transformations
(5). The first half of the objective function (6) becomes

1

2

n∑
i=1

n∑
j=1

wij⟨ψ(di)⊤xi,ψ
(dj)⊤xj⟩ (7)

by specifying α(d,e) ≡ 1. CDMCA computes the transfor-
mation matrices {ψ(d)} by maximizing this objective func-
tion under a quadratic constraint such as

n∑
i=1

n∑
j=1

wijψ
(di)⊤xix

⊤
i ψ

(di) = I. (8)

The above observation intuitively explains why PMvGE
approximates CDMCA; this is more formally discussed
in Supplement C. The quadratic constraint is required for
preventing the maximizer of (7) from being diverged in
CDMCA. However, our likelihood approach does not re-
quire it, because the last half of (6) serves as a regulariza-
tion term.

3.7. PMvGE represents neural network classifiers of
multiple classes

For illustrating the generality of PMvGE, here we con-
sider the multi-class classification problem. We show that

PMvGE includes Feed-Forward Neural Network (FFNN)
classifier as a special case.

Let (xi, ci) ∈ Rp × {1, . . . , C}, i = 1, . . . , n be the train-
ing data for the classification problem of C classes. FFNN
classifier with softmax function (Bishop, 2006) is defined
as

hj(xi) :=
exp(fψ,j(xi))∑C
j=1 exp(fψ,j(xi))

, j = 1, . . . , C,

where fψ(x) := (fψ,1(x), . . . , fψ,C(x)) ∈ RC
≥0 is a

multi-valued neural network, and xi is classified into the
class argmax

j∈{1,2,...,C}
hj(xi). This classifier is equivalent to

argmax
j∈{1,2,...,C}

exp (⟨fψ(xi), ej⟩) , (9)

where ej ∈ {0, 1}C is the 1-hot vector with 1 at j-th entry
and 0 otherwise.

The classifier (9) can be interpreted as PMvGE with D =

2,D = {(1, 2)} as follows. For view-1, f (1)
ψ (x) := fψ(x)

and inputs are x1, . . . ,xn. For view-2, f (2)
ψ (x′) := x′ and

inputs are e1, . . . , eC . We set wij = 1 between xi and eci ,
and wij = 0 otherwise.

4. Optimization
In this section, we present an efficient way of optimiz-
ing the parameters for maximizing the objective function
ℓn(α,ψ) defined in eq. (6). We alternatively optimize the
two parameters α and ψ. Efficient update of ψ with mini-
batch SGD is considered in Section 4.1, and update ofα by
solving an estimating equation is considered in Section 4.2.
We iterate these two steps for maximizing ℓn(α,ψ).

4.1. Update of ψ

We update ψ using the gradient of ℓn(ᾱ,ψ) by fixing
current parameter value ᾱ. Since W = (wij) may be
sparse in practice, the computational cost of minibatch
SGD (Goodfellow et al., 2016) for the first half of ℓn(ᾱ,ψ)
is expected to be reduced by considering the sum over the
set Wn := {(i, j) ∈ In | wij > 0}. On the other hand,
there should be |In| = O(n2) positive terms in the last
half of ℓn(ᾱ,ψ), so we consider the sum over node pairs
uniformly-resampled from In.

We make two sets I ′
n,W ′

n by picking (i, j) from In and
Wn, respectively, so that

|I ′
n|+ |W ′

n| = m, |I ′
n|/|W ′

n| = r.

User-specified constants m ∈ N and r > 0 are usually
called as “minibatch size” and “negative sampling rate”.
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We sequentially update minibatch I ′
n,W ′

n for computing
the gradient of∑

(i,j)∈W′
n

wij logµij(ᾱ,ψ)− τ
∑

(i,j)∈I′
n

µij(ᾱ,ψ) (10)

with respect to ψ. By utilizing the gradient, the parameter
ψ can be sequentially updated by SGD, where τ > 0 is a
tuning parameter. Eq. (10) approximates ℓn(ᾱ,ψ) if (i, j)
are uniformly-resampled and τ = |In|/(r |Wn|), however,
smaller τ such as τ = 1 may make this algorithm stable in
some cases.

4.2. Update of α

Let ψ̄ represent current parameter value of ψ. By solving
the estimating equation ∂ℓn(α,ψ̄)

∂α(d,e) = 0 with respect to α(d,e)

under constraints α = α⊤ and α(d,e) = 0, (d, e) /∈ D, we
explicitly obtain a local maximizer of ℓn(α, ψ̄). However,
the local maximizer requires roughly O(n2) operations for
computation. To reduce the high computational cost, we
efficiently update α by (11), which is a minibatch-based
approximation of the local maximizer.

α̂(d,e) :=


∑

(i,j)∈I
′(d,e)
n

wij∑
(i,j)∈I

′(d,e)
n

exp(ḡij)
for (d, e) ∈ D

0 otherwise,

(11)

where ḡij := ⟨f (d)

ψ̄
(xi), f

(e)

ψ̄
(xj)⟩, I

′(d,e)
n := {(i, j) ∈

I ′
n | (di, dj) = (d, e)}, and I ′

n is the minibatch defined in
Section 4.1. Note that (d, e) is unordered view pair.

4.3. Computational cost

PMvGE requires O(m) operations for each minibatch iter-
ation. It is efficiently computed even if the number of data
vectors n is very large.

5. PMvGE learns arbitrary similarity
measure

Two theoretical results are shown here for indicating that
PMvGE with sufficiently large neural networks learns arbi-
trary similarity measure using sufficiently many data vec-
tors. In Section 5.1, we prove that arbitrary similarity
measure can be approximated by the inner product in the
shared space with sufficiently large neural networks. In
Section 5.2, we prove that MLE of PMvGE converges to
the true parameter value, i.e., the consistency of MLE, in
some sense as the number of data vectors increases.

5.1. Inner product of NNs approximates a wide class of
similarity measures across views

Feedforward neural networks with ReLU or sigmoid func-
tion are proved to be able to approximate arbitrary contin-

uous functions under some assumptions (Cybenko, 1989;
Funahashi, 1989; Yarotsky, 2016; Telgarsky, 2017). How-
ever, these results cannot be directly applied to PMvGE,
because our model is based on the inner product of
two neural networks ⟨f (di)

ψ (xi), f
(dj)
ψ (xj)⟩. In Theo-

rem 5.1, we show that the inner product can approximate
g∗

(
f
(di)
∗ (xi), f

(dj)
∗ (xj)

)
, that is, arbitrary similarity mea-

sure g∗(·, ·) in K∗ dimensional shared space, where f
(di)
∗ ,

f
(dj)
∗ are arbitrary two continuous functions. For show-

ing g∗(f
(d)
∗ (x), f

(e)
∗ (x′)) ≈ ⟨f (d)

ψ (x), f
(e)
ψ (x′)⟩, the idea

is first consider a feature map ΦK : RK∗ → RK for ap-
proximating g∗(y∗,y

′
∗) ≈ ⟨ΦK(y∗),ΦK(y′

∗)⟩ with suffi-
ciently large K, and then consider neural networks f

(d)
ψ :

Rpd → RK with sufficiently many hidden units for approx-
imating ΦK(f

(d)
∗ (x)) ≈ f

(d)
ψ (x).

Theorem 5.1 Let f (d)
∗ : [−M,M ]pd → [−M ′,M ′]K∗ ,

d = 1, 2, . . . , D, be continuous functions and g∗ :
[−M ′,M ′]K∗ × [−M ′,M ′]K∗ → R be a symmetric,
continuous, and positive-definite kernel function for some
K∗,M,M ′ > 0. σ(·) is ReLU or activation function which
is non-constant, continuous, bounded, and monotonically-
increasing. Then, for arbitrary ε > 0, by specifying suf-
ficiently large K ∈ N, T = T (K) ∈ N, there exist
Ad ∈ RK×T ,Bd ∈ RT×pd , c ∈ RT , d ∈ {1, 2, . . . , D},
such that∣∣∣∣g∗ (f (d)

∗ (x), f
(e)
∗ (x′)

)
−

⟨
f
(d)
ψ (x), f

(e)
ψ (x′)

⟩∣∣∣∣ < ε (12)

for all (x,x′) ∈ [−M,M ]pd+pe , d, e ∈ {1, 2, . . . , D},
where f (d)

ψ (xd) = Adσ(Bdxd+cd), d = 1, 2, . . . , D, are
two-layer neural networks with T hidden units and σ(x) is
element-wise σ(·) function.

Proof of the theorem is given in Supplement A.

If D = 1, Theorem 5.1 corresponds to Mercer’s theo-
rem (Mercer, 1909; Courant and Hilbert, 1989) of Kernel
methods, which states that arbitrary positive definite ker-
nel g∗(·, ·) can be expressed as the inner product of high-
dimensional feature maps. While Mercer’s theorem indi-
cates only the existence of such feature maps, Theorem 5.1
also states that the feature maps can be approximated by
neural networks.

Illustrative example As an example of positive definite
similarity, we consider the cosine similarity

g∗(f∗(x), f∗(x
′)) :=

⟨f∗(x), f∗(x′)⟩
∥f∗(x)∥2∥f∗(x′)∥2

with f∗(x) = (x1, cosx2, exp(−x3), sin(x4 − x5)), p =
5. For 2-dim visualization in Fig. 2 with (s, t) ∈ R2,
let us define G∗(s, t) := g∗(f∗(se1), f∗(te2)), e1 :=
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(1, 1, 1, 0, 0), e2 := (0, 0, 1, 1, 1) and its approximation
by the inner product of neural networks ĜK(s, t) :=
⟨fψ(se1), fψ(te2)⟩ with T = 103 hidden units. If K and
T are sufficiently large, ĜK(s, t) approximates G∗(s, t)
very well as suggested by Theorem 5.1.

(a) Ĝ2(s, t) (b) Ĝ50(s, t) (c) G∗(s, t)

Figure 2. A two-dim visualization G∗(s, t) of similarity measure
g∗(y∗,y

′
∗) = ⟨y,y′⟩

∥y∥2∥y′∥2
with K∗ = 2 is well approximated

by the visualization ĜK(s, t) of the inner product ⟨y,y′⟩ for
K = 100, while the approximation is poor for K = 2. A neural
network fψ with T = 103 ReLU units and K = 2 or K = 50
linear output units are trained with n = 103 data vectors and link
weights across views.

5.2. MLE converges to the true parameter value

We have shown the universal approximation theorem of
similarity measure in Theorem 5.1. However, it only states
that the good approximation is achieved if we properly tune
the parameters of neural networks. Here we argue that
MLE of Section 3.5 will actually achieve the good approxi-
mation if we have sufficiently many data vectors. The tech-
nical details of the argument are given in Supplement B.

Let θ ∈ Θ denote the vector of free parameters in α,ψ,
and ℓn(θ) be the log-likelihood function (6). We assume
that the optimization algorithm in Section 4 successfully
computes MLE θ̂n that maximizes ℓn(θ). Here we ignore
the difficulty of global optimization, while we may only get
a local maximum in practice. We also assume that PMvGE
is correctly specified; there exists a parameter value θ∗ so
that the parametric model represents the true probability
distribution.

Then, we would like to claim that θ̂n converges to the true
parameter value θ∗ in the limit of n → ∞, the property
called the consistency of MLE. However, we have to pay
careful attention to the fact that PMvGE is not a standard
setting in the sense that (i) there are correlated O(n2) sam-
ples instead of n i.i.d. observations, and (ii) the model is
not identifiable with infinitely many equivalent parameter
values; for example there are rotational degrees of freedom
in the shared space so that ⟨y,y′⟩ = ⟨Oy,Oy′⟩ with any
orthogonal matrix O in RK . We then consider the set of
equivalent parameters Θ̂n := {θ ∈ Θ | ℓn(θ) = ℓn(θ̂n)}.
Theorem B.2 states that, as n → ∞, Θ̂n converges to Θ∗,
the set of θ values equivalent to θ∗.

6. Real data analysis
6.1. Experiments on Citation dataset (1-view)

Dataset: We use Cora dataset (Sen et al., 2008) of cita-
tion network with 2,708 nodes and 5,278 ordered edges.
Each node vi represents a document, which has 1, 433-
dimensional (bag-of-words) data vector xi ∈ {0, 1}1433
and a class label of 7 classes. Each directed edge repre-
sents citation from a document vi to another document vj .
We set the link weight as wij = wji = 1 by ignoring the
direction, and wij = 0 otherwise. There is no cross or
self-citation. We divide the dataset into training set con-
sisting of 2, 166 nodes (80%) with their edges, and test set
consisting of remaining 542 nodes (20%) with their edges.
We utilize 20% of the training set for validation. Hyper-
parameters are tuned by utilizing the validation set.

We compare PMvGE with several feature learning
methods: Stochastic Block Model (Holland et al., 1983,
SBM), ISOMAP (Tenenbaum et al., 2000), Locally
Linear Embedding (Roweis and Saul, 2000, LLE),
Spectral Graph Embedding (Belkin and Niyogi, 2001,
SGE), Multi Dimensional Scaling (Kruskal, 1964,
MDS), DeepWalk (Perozzi et al., 2014), and Graph-
SAGE (Hamilton et al., 2017).

NN for PMvGE: 2-layer fully-connected network, which
consists of 3,000 tanh hidden units and 1,000 tanh
output units, is used. The network is trained by
Adam (Kingma and Ba, 2015) with batch normalization.
The learning rate is starting from 0.0001 and attenuated by
1/10 for every 100 iterations. Negative sampling rate r and
minibatch size m are set as 1 and 512, respectively, and the
number of iterations is 200.

Parameter tuning: For each method, parameters are tuned
on validation sets. Especially, the dimension of feature vec-
tors is selected from {50, 100, 150, 200}.

Label classification (Task 1): We classify the documents
into 7 classes using logistic regression with the feature vec-
tor as input and the class label as output. We utilize Lib-
Linear (Fan et al., 2008) for the implementation.

Clustering (Task 2): The k-means clustering of the fea-
ture vectors is performed for unsupervised learning of doc-
ument clusters. The number of clusters is set as 7.

Results: The quality of classification is evaluated by clas-
sification accuracy in Task 1, and Normalized Mutual In-
formation (NMI) in Task 2. Sample averages and standard
deviations over 10 experiments are shown in Table 2. In
experiment (A), we apply methods to both training set and
test set, and evaluate them by test set. In (B), we apply
methods to only the training set, and evaluate them by test
set. SGE, MDS, and DeepWalk are not inductive, and they
cannot be applied to unseen data vectors in (B). PMvGE
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outperforms the other methods in both experiments.

6.2. Experiments on AwA dataset (2-view)

Dataset: We use Animal with Attributes (AwA)
dataset (Lampert et al., 2009) with 30,475 images for view-
1 and 85 attributes for view-2. We prepared 4, 096 di-
mensional DeCAF data vector (Donahue et al., 2014) for
each image, and 300 dimensional GloVe (Pennington et al.,
2014) data vector for each attribute. Each image is associ-
ated with some attributes. We set wij = 1 for the associ-
ated pairs between the two views, and wij = 0 otherwise.
In addition to the attributes, each image has a class label
of 50 classes. We resampled 50 images from each of 50
classes; in total, 2500 images. In each experiment, we split
the 2500 images into 1500 training images and 100 test im-
ages. A validation set of 300 images is sampled from the
training images.

We compare PMvGE with CCA, DCCA (Andrew et al.,
2013), SGE, DeepWalk, and GraphSAGE.

NN for PMvGE: Each view uses a 2-layer fully-connected
network, which consists of 2000 tanh hidden units and 100
tanh output units. The dimension of the feature vector is
K = 100. Adam is used for optimization with Batch nor-
malization and Dropout (p = 0.5). Minibatch size, learn-
ing rate, and momentum are tuned on the validation set. We
monitor the score on the validation set for early stopping.

Parameter tuning: For each method, parameters are tuned
on validation sets. Especially, the dimension of feature vec-
tors is selected from {10, 50, 100, 150}.

Link prediction (Task 3): For each query image, we rank
attributes according to the cosine similarity of feature vec-
tors across views. An attribute is regarded as correct if it is
associated with the query image.

Results: The quality of the ranked list of attributes is mea-
sured by Average Precision (AP) score in Task 3. Sample
averages and standard deviations over 10 experiments are
shown in Table 2. In experiment (A), we apply methods
to both training set and test set, and evaluate them by test
set. The whole training set is used for validation. In ex-
periment (B), we apply methods to only the training set,
and evaluate them by test set. 20% of training set is used
for validation. PMvGE outperforms the other methods in-
cluding DCCA. While DeepWalk shows good performance
in experiment (A), DeepWalk and SGE cannot be applied
to unseen data vectors in (B). Unlike SGE and DeepWalk
which only consider the associations, 1-view feature learn-
ing methods such as GraphSAGE cannot be applied to this
AwA dataset since the dimension of data vectors is differ-
ent depending on the view. So we do not perform 1-view
methods in Task 3.

Table 2. Task 1 and Task 2 for the experiment on Citation dataset
(D = 1), and Task 3 for the experiment on AwA dataset (D = 2).
The larger values are better.

(A) (B)

Task 1
(D = 1)

ISOMAP 54.5± 1.78 54.8± 2.43
LLE 30.2± 1.91 31.9± 2.62
SGE 47.6± 1.64 -
MDS 29.8± 2.25 -
DeepWalk 54.2± 2.04 -
GraphSAGE 60.8± 1.73 57.1± 1.61
PMvGE 74.8± 2.55 71.1± 2.10

Task 2
(D = 1)

SBM 4.37± 1.44 2.81± 0.10
ISOMAP 13.0± 0.36 14.3± 1.98
LLE 7.40± 3.40 9.47± 3.00
SGE 1.41± 0.34 -
MDS 2.81± 0.10 -
DeepWalk 16.7± 1.05 -
GraphSAGE 19.6± 0.93 12.4± 3.00
PMvGE 35.9± 0.88 30.5± 3.90

Task 3
(D = 2)

CCA 45.5± 0.20 42.4± 0.30
DCCA 41.4± 0.30 41.2± 0.35
SGE 43.5± 0.39 -
DeepWalk 71.3± 0.57 -
PMvGE 71.5± 0.48 70.5± 0.53

Locality of each-view is preserved through neural net-
works: To see whether the locality of input is preserved
through neural networks in PMvGE, we computed the
Spearman’s rank correlation coefficient between ⟨x,x′⟩
and ⟨f (d)

ψ (x), f
(d)
ψ (x′)⟩ for view-d data vectors x,x′ in

AwA dataset (d = 1, 2). For DeCAF (view-1) and GloVe
(view-2) inputs, the values are 0.722 ± 0.058 and 0.811 ±
0.082, respectively. This result indicates that the feature
vectors of PMvGE preserves the similarities of the data
vectors fairly well.

7. Conclusion
We presented a simple probabilistic framework for multi-
view learning with many-to-many associations. We name
the framework as Probabilistic Multi-view Graph Embed-
ding (PMvGE). Various existing methods are approxi-
mately included in PMvGE. We gave theoretical justifica-
tion and practical estimation algorithm to PMvGE. Exper-
iments on real-world datasets showed that PMvGE outper-
forms existing methods.
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