Autoregressive Quantile Networks for Generative Modeling

Appendix

Quantile regression minimizes the quantile
divergence

Proposition 1. For any distributions P and Q, define the
quantile divergence

wwar=['|[5 "

Then the expected quantile loss of a quantile function Q
implicitly defining the distribution @ satisfies

iy xEp [P (X = QU] = a(P.Q) + A(P),

(Fp(x) —7)dx| dr.

where h(P) does not depend on Q.

Proof. Let P be a distribution with p.d.f. fp and c.d.f. Fp.
Define

pr(u) = u(t —{u < 0}),
gT(q) = X@P[pT(X - q)]

We have, for any ¢ and 7,
/q
Jr/ (x — ¢)tfp(z)dx
q
/q

4Fr(g) + / " Fp(a)de - [oFp(e)),

9-(q) (x—q)(r = 1)fp(z)dx

oo

(x —q)rfp(x)dx

(¢ — @) fp(2)dz + /

— 00

E [X]-q)
+7 (XNP[|—a
/q
where the third equality follows from an integration by
parts of [*_xfp(x)dz. Thus the function ¢ — g-(q)

Fp(z)de + T (XIEP[X] - q) ,

is minimized for ¢ = F5*(7) and its minimum is
G
/.
We deduce that

9:(q) — g-(Fp (7))

/ ql(Fela)da 4 7(F5 (1)~

/q
Fpl(r)

E [X] - Fp'(r)

g+ (F5'(7)) E,

Fp(x)dx+7'(

(Fp(z) —7)dz.

)

— | Fp () = F ' (7)]

F—l

R

0 1

Figure 8. Illustration of the relation between the 1-Wasserstein
metric (red) and the quantile divergence (blue).

Probability

Thus for a quantile function), we have the expected quan-
tile loss:
: [9:(Q(7))] = a(P, Q)+ g7 (Fp ' (1)] -

does not depend on @

E E
TU([0,1] T~U([0,1])

This finishes the proof of the proposition. [
We observe that quantile regression is nothing else than
a projection under the quantile divergence. Thus for a
parametrized quantile function Qg with corresponding dis-
tribution D, the sample-based quantile regression gradient
Vopr (X — Qq(7)) for a sample 7 ~ 14([0,1]) and X ~ P
is an unbiased estimate of Vyq(P, Qp):

E[Vopr(X = Qo) = Vo E [g-(Qo(r))];

- VGQ(P» Qo)

We illustrate the relation between the 1-Wasserstein metric
and the quantile divergence in Figure 8. Notice that, for
each 7 € [0, 1], while the Wasserstein measures the error
between the two quantile functions, the quantile divergence
measures a subset of the area enclosed between their graphs.

Network and Training Details

All PixelCNN and PixellQN models in Section 4 are directly
based on the small and large conditional Gated PixelCNN
models developed in (van den Oord et al., 2016b). For
CIFAR-10 (Section 4.1), we are using the smaller variant
with 15 layer blocks, convolutional filters of size 5, 128
feature planes in each layer block, and 1024 features planes
for the residual connections feeding into the output layer of
the network. For small ImageNet (Section 4.2), we use both
this model, and a larger 20 layer version with 256 feature
planes in each layer block.

Autoregressive Quantile Networks for Generative Modeling

For PixelIQN, we rescale the 7 € [0, 1]3"2 linearly to lie in
[—1,1]*", and input it to the network in exactly the same
way as the location-dependent conditioning in (van den
Oord et al., 2016b), that is, by applying a 1 x 1 convolu-
tion producing the same number of feature planes as in the
respective layer block, and adding it to the output of this
block prior to the gating activation.

All models on CIFAR-10 were trained for a total of 300K
steps, those on ImageNet for 400K steps. We trained the
small models with a mini-batch size of 32, running approx-
imately 200K updates per day on a single NVIDIA Tesla
P100 GPU, while the larger models were trained with a
mini-batch size of 128 with synchronous updates from 16
P100 GPUs, achieving approximately half of this step rate.

Hyperparameter Tuning and Evaluation

All quantitative evaluations of our Pixel CNN and PixelIQN
models are based on the Fréchet Inception Distance (FID)
(Heusel et al., 2017),

d(z1,22) = |1 — p2)|® + Tr(S1 + B — 2(£15:)"/?),

where (p1, %) are the mean and covariance of 10, 000 sam-
ples from the model (PixelCNN or PixelIQN), and (u9, Xo)
are the mean and covariance matrix computed over a set of
10, 000 training data points. We slightly deviate from the
usual practice of using the entire training set for FID compu-
tation, as this would require an equal number (50, 000 in the
case of CIFAR-10) of samples to be drawn from the model,
which is computationally very expensive for autoregressive
models like PixelCNN or PixelIQN.

We use Polyak averaging (Polyak & Juditsky, 1992), keep-
ing an exponentially weighted average over past parameters
with a weight of 0.9999. This average is being loaded in-
stead of the model parameters before samples are generated,
but never used for training.

To tune our small PixelCNN and PixellQN models, we per-
formed a hyperparameter search over 500 hyperparameter
configurations for each model, each configuration evaluated
after 100K training steps on CIFAR-10, based on its FID
score computed on a small set of 2500 generated samples.

For PixelCNN, the parameter search involved choosing from
RMSProp, Adam, and SGD as the optimizer, and tuning the
learning rate, involving both constant and decaying learning
rate schedules. As a result we settled on the RMSProp
optimizer and a set of three possible learning rate regimes,
namely a constant learning rate of 10~%0or3-107° and a
decaying learning rate regime: 10~ in the first 120K, 3 -
10~° for the next 60K, and 10~ for the remaining training
steps. We found the first of these to work best on ImageNet,
and the decaying schedule to work best on CIFAR-10, and
only report the best model for each dataset.

For PixellQN, the parameter search included the above (but
with constant learning rates only), and additionally a sweep
over a range of values for the Huber loss parameter x (Equa-
tion 2). As a result, we used Adam with a constant learn-
ing rate of 10~ for all PixellQN model variants on both
datasets, and set k = 0.002. We found that the model is
not sensitive to this hyperparameter, but performs somewhat
worse if the regular quantile regression loss is used instead
of the Huber variant.

AIQN-VAE

One potential drawback to PixellQN presented above,
shared by PixelCNN and more generally autoregressive
models, is that due to their autoregressive nature sampling
can be extremely time-consuming. This is especially true as
the resolution of images increases. Although it is possible
to partially reduce this overhead with clever engineering,
these models are inherently much slower to sample from
than models such as GANs and VAEs. In this section, we
demonstrate how PixelIQN, due to the continuous nature of
the quantile function, can be used to learn distributions over
lower-dimensional, latent spaces, such as those produced by
an autoencoder, variational or otherwise. Specifically, we
use a standard VAE, but simultaneously train a small AIQN
to model the training distribution over latent codes. For sam-
pling, we then generate samples of the latent distribution
using AIQN instead of the VAE prior.

This approach works well for two reasons. First, even a
thoroughly trained VAE does not produce an encoder that
fully matches the Gaussian prior. Generaly, the data dis-
tribution exists on a non-Gaussian manifold in the latent
space, despite the use of variational training. Second, un-
like existing methods, AIQN learns to approximate the full
continuous-valued distribution without discretizing values
or making prior assumptions about the value range or under-
lying distribution.

We can see similarities between this approach and two other
recent publications. First, the a-GAN proposed by Rosca
et al. (2017). In both, there is an attempt to sample from the
true latent distribution of a VAE-like latent variable model.
In the case of a-GAN this sampling distribution is trained
using a GAN, while we propose to learn the distribution
using quantile regression. The similarity makes sense con-
sidering AIQN shares some of the benefits of GANs. Unlike
in this related work, we have not replaced the KL penalty
on the latent representation. It would be an interesting di-
rection for future research to explore a similar formulation.
Generally, the same trade-offs between GANs and AIQN
should be expected to come into play here just as they do
when learning image distributions. Second, the VQ-VAE
model (van den Oord et al., 2017), learns a Pixel CNN model
of the (discretized) latent space. Here, especially in the la-

Autoregressive Quantile Networks for Generative Modeling

Tl

4

-
)¢

Figure 9. CelebA 64x64: Real example images (left), samples generated by VAE (center), and samples generated by AIQN-VAE (right).

tent space, distribution losses respecting distances between
individual points is more applicable than likelihood-based
losses.

Lete: R® — R™ and d: R™ — R" be the mean of the
encoder and decoder respectively of a VAE, although other
forms of autoencoder could be substituted. Then, let Q.- be
an AIQN on the space R™. During training we propose to
minimize
L(z)=Lyap(x)+ E “le(x) — Qr),
(x) @)+ LE . rel) Q)
where Ly 4k is the standard VAE loss function. Then, for
generation, we sample 7 ~ I/([0, 1]™), and reparameterize
this sample through the AIQN and the decoder to produce

y = d(Q+), a sample from the approximated distribution.
We call this simple combination the AIQN-VAE.

CelebA

We demonstrate the AIQN-VAE using the CelebA dataset
(Liu et al., 2015), at resolution 64 x 64. We modified an
open source VAE implementation* to simultaneously train
the AIQN on the output of the VAE encoder, with Polyak
averaging (Polyak & Juditsky, 1992) of the AIQN weights.
We reduce the latent dimension to 32, as our purpose is to
investigate the use of VAEs to learn in lower-dimensional
latent spaces. The AIQN used three fully connected layers
of width 512 with ReLU activations. For the AIQN-VAE,
but not the VAE, we lowered latent dimension variance to
0.1 and the KL-term weight to 0.5. It has been observed
that in this setting the VAE prior alone will produce poor
samples, thus high-quality samples will only be possible
by learning the latent distribution. Figure 9 shows samples
from both a VAE and AIQN-VAE after 200K training itera-
tions. Both models may be expected to improve with further

*https://github.com/LynnHo/VAE-Tensorflow

training, however, we can see that the AIQN-VAE samples

are frequently clearer and less blurry than those from the
VAE.

NEE T
CTONF
T 7=
A
—. .‘ ke
3V NEERE DR

ki .ﬁjﬂl.dﬂﬂ!‘ﬂu.h

SPASE Rl | N A SRS
l-linﬁﬁﬁﬂﬁ "HsEERNTE
S TEMER T sHErMEN AT
EDLTT L e Pele L
-ﬁﬂEHm EaENMESD__ SN
FEMDEBRE SEMELS - G RN H
Eh,l =] O 1 -E‘-ﬁﬂ..i... i il

Eiu
e
.. i
B
"R

C ¥

e

-
EEE _
B 8

&
L
-~
i
o
= g
=

Figure 10. Samples from PixelIQN trained on small ImageNet.

Autoregressive Quantile Networks for Generative Modeling

cheeseburger

IR =T FEa o OIS .

s FEET e SR e el
ﬁil&a *ldEEﬂﬁﬁﬁggi

coralreef
.I!IiillllllliE!III'illl
grand_piano

ﬁ.&v.ﬂlﬂﬁliﬂﬁﬂlﬂlﬂ
B SEC My i & SiNSwwas
FLYSIACH BN E=5LSES A

Jaguar

BEEANEs 5
Wg-nllnagg
4 Nooh Taa
“y yn' e e
N T A i ™
ﬁlﬂﬁ#gﬂlmgllllﬂf
il i s 1 i

P
Y| I—IIﬂE%

ﬂﬂﬂﬂ'ﬂ.ﬂm
ot $ RTINS [

Figure 11. Class-conditional samples from PixelIQN trained on small ImageNet.

Autoregressive Quantile Networks for Generative Modeling

L

v‘

- B2

I
W
<
V
=

) | b 2

Figure 12. Inpainting. Left column: Masked image given to the network. Middle columns: alternative image completions by the PixelIQN
network for different values of 7. Right column: Original image.

