
Tree Edit Distance Learning via Adaptive Symbol Embeddings

Benjamin Paaßen 1 Claudio Gallicchio 2 Alessio Micheli 2 Barbara Hammer 1

Abstract
Metric learning has the aim to improve classifi-
cation accuracy by learning a distance measure
which brings data points from the same class
closer together and pushes data points from dif-
ferent classes further apart. Recent research has
demonstrated that metric learning approaches can
also be applied to trees, such as molecular struc-
tures, abstract syntax trees of computer programs,
or syntax trees of natural language, by learn-
ing the cost function of an edit distance, i.e. the
costs of replacing, deleting, or inserting nodes
in a tree. However, learning such costs directly
may yield an edit distance which violates met-
ric axioms, is challenging to interpret, and may
not generalize well. In this contribution, we pro-
pose a novel metric learning approach for trees
which we call embedding edit distance learning
(BEDL) and which learns an edit distance indi-
rectly by embedding the tree nodes as vectors,
such that the Euclidean distance between those
vectors supports class discrimination. We learn
such embeddings by reducing the distance to pro-
totypical trees from the same class and increasing
the distance to prototypical trees from different
classes. In our experiments, we show that BEDL
improves upon the state-of-the-art in metric learn-
ing for trees on six benchmark data sets, ranging
from computer science over biomedical data to a
natural-language processing data set containing
over 300,000 nodes.

1. Introduction
Many classification approaches in machine learning explic-
itly or implicitly rely on some measure of distance (Kulis,
2013; Bellet et al., 2014; Mokbel et al., 2015). This is par-

1Cognitive Interaction Technology, Bielefeld University, Ger-
many 2Department of Computer Science, University of Pisa, Italy.
Correspondence to: Benjamin Paaßen <bpaassen@techfak.uni-
bielefeld.de>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

ticularly apparent in case of the k-nearest neighbor classifier
which classifies data points by assigning the label of the
majority of the k nearest neighbors according to a given
distance (Cover & Hart, 1967); or in case of learning vec-
tor quantization approaches which classify data points by
assigning the label of the closest prototype according to
a given distance (Kohonen, 1995). The success of such
machine learning approaches hinges on the distance being
discriminative, that is, data points from the same class be-
ing generally closer compared to data points from different
classes. If the distance does not fulfill this criterion, one
has to adapt or learn the distance measure with respect to
the data, which is the topic of metric learning (Kulis, 2013;
Bellet et al., 2014).

Most prior research in metric learning has focused on learn-
ing a generalization of the Euclidean distance according
to some cost function (Kulis, 2013; Bellet et al., 2014).
However, the Euclidean distance is not applicable to non-
vectorial data, such as protein sequences, abstract syntax
trees of computer programs, or syntax trees of natural lan-
guage. To process these kinds of data, edit distances are a
popular option, in particular the tree edit distance (Zhang
& Shasha, 1989). In this contribution, we develop a novel
metric learning scheme for the tree edit distance which we
call embedding edit distance learning (BEDL).

While past research on metric learning for trees does exist
(Bellet et al., 2014), BEDL goes beyond the state-of-the-art
in multiple aspects:

• Based on the work of Bellet et al. (2012), we provide a
generalized re-formulation of the edit distance which
lends itself to metric learning, and can be applied to any
kind of edit distance which uses replacement, deletion,
and insertion operations. Furthermore, we consider not
only one optimal edit script for metric learning, but all
co-optimal edit scripts via a novel forward-backward
algorithm.

• Our approach requires only a linear number of data
tuples for metric learning, as we represent classes by
few prototypes, which are selected via median learning
vector quantization (Nebel et al., 2015).

• Most importantly, we do not directly learn the opera-
tion costs for the string edit distance, but instead learn

Tree Edit Distance Learning via Adaptive Symbol Embeddings

a vectorial embedding of the label alphabet for our
data structures, which yields Euclidean operation costs.
This re-formulation ensures that the resulting edit dis-
tance conforms to all metric axioms. Further, we can
interpret the resulting embedding vectors via visualiza-
tion, their pairwise distances and norms.

We begin by discussing related work, then we describe
BEDL in more detail, and finally we evaluate BEDL experi-
mentally and discuss the results.

2. Related Work
Our work is related to multiple areas of machine learning,
most notably distances on structured data, metric learning,
and vector embeddings.

In the past decades, multiple distance measures for struc-
tured data - i.e. sequences, trees, and graphs - have been
suggested. In particular, one could define a distance based
on existing string, tree, and graph kernels (Da San Martino &
Sperduti, 2010), such as Weisfeiler-Lehman Graph Kernels
(Shervashidze et al., 2011), topological distance-based tree
kernels (Aiolli et al., 2015), or deep graph kernels (Yanardag
& Vishwanathan, 2015). Such kernels achieve state-of-the-
art results on structured data and can be adapted to training
data via multiple-kernel learning (Aiolli & Donini, 2015),
or kernels based on Hidden-Markov-Model states (Bacciu
et al., 2018). Kernels, however, have drawbacks in terms
of interpretability, as a higher distance value does not nec-
essarily relate to any kind of intuitive difference between
the input trees. Further, kernel matrices are by definition
limited to be positive semi-definite, which may be an undue
restriction for certain data sets (Schleif & Tino, 2015).

If one strives for an interpretable measure of distance, edit
distances are a popular choice, for example for the com-
parison of protein sequences in bioinformatics (Smith &
Waterman, 1981), or abstract syntax trees for intelligent tu-
toring systems (Paaßen et al., 2018). Here, we focus on the
tree edit distance, which permits deletions, insertions, and
replacements of single nodes to transform an ordered tree x̄
into another ordered tree ȳ (Zhang & Shasha, 1989). Such
ordered trees are the most general data structures which can
still be treated efficiently via edit distances, as edit distances
on unordered trees and general graphs are provably NP-hard
(Zhang et al., 1992; Zeng et al., 2009). Furthermore, the
tree edit distance includes the edit distance on sequences as
a special case, such that it can be seen as a representative
for edit distances as such.

Metric learning for the tree edit distance corresponds to
adapting the costs of edit operations in order to bring trees
from the same class closer and push trees from different
classes further apart. Almost all of the existing approaches,
however, only bring trees from the same class closer to-

gether (Bellet et al., 2014). For example, Boyer et al. (2007)
have proposed to replace the tree edit distance by the nega-
tive log probability of all tree edit scripts which transform
the left input tree x̄ into the right input tree ȳ. Accordingly,
the costs of edit operations change to probabilities of re-
placing, deleting, or inserting a certain label. These edit
probabilities are adapted to maximize the probability that
trees from the same class are edited into each other (Boyer
et al., 2007). To replace generative models by discrimi-
native ones, Bellet et al. (2012; 2016), have proposed to
learn an edit distance d, such that the corresponding sim-
ilarity 2 · exp[−d(x̄, ȳ)] − 1 is “good” as defined by the
goodness-framework of (Balcan et al., 2008). Goodness
according to this framework means that a linear separator
with low error between the classes exists in the space of
similarities (Balcan et al., 2008; Bellet et al., 2012). Bellet
et al. (2012) have experimentally shown that this approach
outperforms generative edit distance metric learning and
have also established generalization guarantees based on the
goodness framework. Therefore, this good edit similarity
learning (GESL) approach of Bellet et al. (2012) is our main
reference method.

Our novel approach is strongly inspired by GESL. How-
ever, our approach goes beyond GESL in key aspects. First,
we utilize a different cost function, namely the generalized
learning vector quantization (GLVQ) cost function, which
quantifies how much closer every data point is to the closest
prototypical example from the same class compared to the
closest prototypical example from another class (Sato & Ya-
mada, 1995). Just as GESL, LVQ methods are theoretically
well-justified because it yields a maximum-margin classifier
(Schneider et al., 2009), and have been successfully applied
for metric learning on the string edit distance in the past
(Mokbel et al., 2015; Paaßen et al., 2016). However, in
contrast to GESL, GLVQ also provides a principled way
to select prototypical examples for metric learning, and is
flexible enough to not only learn a cost matrix, but also a vec-
torial embedding of the tree labels, such that the Euclidean
distance on these embeddings provides a discriminative cost
function.

While embedding approaches are common in the literature,
prior work has focused mostly on embedding trees as a
whole, for example via graph kernel approaches (Aiolli
et al., 2015; Bacciu et al., 2018; Da San Martino & Sperduti,
2010; Shervashidze et al., 2011; Yanardag & Vishwanathan,
2015), recursive neural networks (Gallicchio & Micheli,
2013; Hammer et al., 2007; Socher et al., 2013), or dimen-
sionality reduction approaches (Gisbrecht et al., 2015). In
this contribution, we wish to obtain an embedding for the
single elements of a tree and maintain the tree structure. As
of yet, such approaches only exist for sequences, namely in
the form of recurrent neural network for natural language
processing tasks (Cho et al., 2014; Sutskever et al., 2014).

Tree Edit Distance Learning via Adaptive Symbol Embeddings

In addition to word embeddings for trees, our approach also
provides a corresponding tree edit distance, which is op-
timized for classification, and offers an intuitive view on
the data, supporting applications like intelligent tutoring
systems (Paaßen et al., 2018).

3. Background
In this section, we revisit the basic problem of tree edit
distance learning by first introducing the tree edit distance
of Zhang & Shasha (1989), as well as the metric learning
formalization suggested by Bellet et al. (2012).

3.1. Tree Edit Distance

We define a tree x̄ over some set X as x(x̄1, . . . , x̄R) where
x ∈ X and x̄1, . . . , x̄R is a (potentially empty) list of trees
over X . We denote the set of all possible trees over X as
T (X). Further, we call x the label of the tree. We define
the size of a tree x(x̄1, . . . , x̄R) as |x̄| := 1 +

∑R
r=1 |x̄r|.

Finally, we call a list of trees x̄1, . . . , x̄R a forest. Note that
every tree is also a forest.

Next, we introduce edits over trees. In general, a tree edit δ
is a function which transforms a forest into a forest (Paaßen
et al., 2018). In this particular case, we are only concerned
with three kinds of edits, namely deletions, which remove a
certain label from a forest; insertions, which insert a certain
label into a forest; and replacements which remove a certain
label from a forest and put another label in its place. For
example, deleting x from a tree x(y,z) results in the forest
y,z. Inserting x into this forest as parent of y results in
the forest x(y),z. Finally, replacing z with q in this forest
results in the forest x(y),q.

We associate each edit with a cost via a function c : (X ∪
{−})2 → R. In particular, we define the cost of a deletion
of label x as c(x,−), the cost of an insertion of label y
as c(−, y), and the cost of a replacement of label x with
label y as c(x, y). We define the cost of a sequence of edits
δ1, . . . , δT as the sum over the costs of all edits.

Finally, we define the tree edit distance dc(x̄, ȳ) between any
two trees x̄ and ȳ according to c as the cost of the cheapest
sequence of edits that transforms x̄ to ȳ. For example, if all
edits have a cost of 1, the edit distance dc(x(y,z),q(z(q)))
between the trees x(y,z) and q(z(q)) is 3 because the
cheapest sequence of edits is to replace x with q, delete y,
and insert q.

Zhang & Shasha (1989) showed that the tree edit distance
can be computed efficiently using a dynamic programming
algorithm if c is a pseudo-metric, meaning that c is a non-
negative and symmetric function, such that c(x, x) = 0
for any x ∈ X , and such that the triangular inequality is
fulfilled.

Theorem 1. Let c be a pseudo-metric onX∪{−}. Then, the
corresponding tree edit distance dc(x̄, ȳ) can be computed
in O(|x̄|2 · |ȳ|2) using a dynamic programming scheme.

Conversely, if c violates the triangular inequality, the dy-
namic programming scheme overestimates the tree edit dis-
tance.

Proof. Refer to Zhang & Shasha (1989) for a proof of the
first claim, and refer to the supplementary material (Paaßen,
2018b) for a proof of the second claim.

Beyond enabling us to compute the tree edit distance effi-
ciently, pseudo-metric cost functions c also ensure that the
resulting tree edit distance dc is a pseudo-metric itself.

Theorem 2. Let c be a pseudo-metric on X ∪ {−}. Then,
the corresponding tree edit distance dc is a pseudo-metric
on the set of possible trees over X .

However, if c violates any of the pseudo-metric properties
(except for the triangular inequality), we can construct ex-
amples such that dc violates the same pseudo-metric prop-
erties.

Proof. Refer to the supplementary material (Paaßen, 2018b).

Both of these theorems make a pseudo-metric cost function
c desirable. However, ensuring pseudo-metric properties on
c may be challenging in metric learning, which is one of our
key motivations for vectorial embeddings.

3.2. Tree Edit Distance Learning

Tree edit distance learning essentially means to adapt the
cost function c, such that the resulting tree edit distance
dc is better suited for the task at hand. Following Bellet
et al. (2012; 2014), we frame tree edit distance learning as
minimizing some loss function over a set of positive pairs of
trees P ⊂ T (X)2 and negative pairs of trees N ⊂ T (X)2,
that is, trees which should be close and far away respectively.
In particular, given a loss function E we wish to solve the
optimization problem:

min
c
E(dc, P,N) (1)

In our contribution, we build upon the good edit similar-
ity learning (GESL) approach of Bellet et al. (2012), who
propose the loss function

E(dc, P,N) =β · ‖c‖2 +
∑

(x̄,ȳ)∈P

[dc(x̄, ȳ)− η]+ (2)

+
∑

(x̄,ȳ)∈N

[log(2) + η − dc(x̄, ȳ)]+

Tree Edit Distance Learning via Adaptive Symbol Embeddings

where [µ]+ = max{0, µ} denotes the hinge loss, η ∈
[0, log(2)] is a slack variable permitting higher distances
between positive pairs if negative pairs are further apart,
β is a scalar regularization constant, and ‖c‖2 denotes∑
x∈X∪{−}

∑
y∈X∪{−} c(x, y)2. As positive and negative

pairs, Bellet et al. (2012) propose to use theK closest neigh-
bors in the same class and the K furthest data points from
a different class respectively, where “closeness” refers to
the tree edit distance obtained via some initial, default cost
function c0 (Bellet et al., 2012).

Note that minimizing the loss function 2 is infeasible be-
cause changing the parameters c may change other edit
sequences to become the cheapest option which in turn in-
duces non-differentiable points in the loss function (Mokbel
et al., 2015). Therefore, Bellet et al. (2012) suggest to com-
pute the cheapest edit scripts according to a default cost
function c0 and keep them fixed for the optimization. More
precisely, let Pc0(x̄, ȳ) be a matrix of size |x̄|+ 1× |ȳ|+ 1,
such that Pc0(x̄, ȳ)i,j is 1 if and only if the cheapest edit
script that transforms x̄ to ȳ according to the cost func-
tion c0 contains a replacement of node xi with node yj ,
where xi is the ith node in tree x̄ according to pre-order
and yj is the jth node in tree ȳ according to pre-order.
Further, if the cheapest edit script deletes xi, we define
Pc0(x̄, ȳ)i,|ȳ|+1 = 1 and if the cheapest edit script inserts
yj , we define Pc0(x̄, ȳ)|x̄|+1,j = 1. We define all other
entries of Pc0(x̄, ȳ) as zero. We can compute the matrix
Pc0(x̄, ȳ) in O(|x̄|2 · |ȳ|+ |x̄| · |ȳ|2) via backtracing (refer
to the supplementary material (Paaßen, 2018a) for details).

Using this matrix, we can define the pseudo edit distance
d̃c(x̄, ȳ), which we define as follows.

d̃c(x̄, ȳ) =

|x̄|+1∑
i=1

|ȳ|+1∑
j=1

Pc0(x̄, ȳ)i,j · c(xi, yj) (3)

where we define x|x̄|+1 = y|ȳ|+1 := −. GESL now min-
imizes the loss function 2 with respect to the pseudo-edit
distance, which is a quadratic optimization problem.

Bellet et al. (2012) show that GESL optimizes the
“goodness” of the similarity measure k(x̄, ȳ) = 2 ·
exp(−d̃c(x̄, ȳ)) − 1. The concept of goodness has been
introduced by Balcan et al. (2008) and quantifies how well
a given similarity measure lends itself for binary classifi-
cation. In particular, assume trees x̄1, . . . , x̄m with class
assignments `(x̄1), . . . , `(x̄m). Then, we wish to learn pa-
rameters ~α ∈ Rm, such that we can classify a new tree x̄
via the predictive function f(x̄) = sign(

∑m
i=1 αi ·k(x̄, x̄i)).

We can learn the parameters ~α by solving the linear mini-
mization problem:

min
~α

m∑
i=1

[
1− `(x̄i) ·

m∑
j=1

αj · k(x̄i, x̄j)
]

+
+ λ · ‖~α‖1

where λ is a hyper-parameter regulating the L1 regulariza-
tion, and hence the sparsity, of ~α.

Recall that GESL optimizes the pseudo edit distance
d̃c(x̄, ȳ) instead of the edit distance dc(x̄, ȳ), and that the
theory provided by Bellet et al. (2012) does not guarantee
the goodness of the actual edit distance dc(x̄, ȳ). Indeed, it
may occur that the loss E(dc, P,N) for the actual tree edit
distance dc is considerably larger than the loss E(d̃c, P,N).

Theorem 3. There exists combinations of an alphabet X ,
positive pairs P , negative pairsN , a default cost function c0,
and a regularization constant β, such that the cost function
c1 learned by GESL is not a pseudo-metric, and yields a loss
E(dc1 , P,N) > E(d̃c1 , P,N), as well as E(dc1 , P,N) >
E(dc0 , P,N).

Proof. Refer to the supplementary material (Paaßen, 2018b).

Overall, we identify three key points in GESL we would
like to address. First, we would like to select positive and
negative pairs in a principled fashion, in contrast to the ad-
hoc scheme of choosing the closest trees from the same
class and the furthest trees from another class. Second, we
would like to enhance the coupling between the pseudo tree
edit distance d̃c to the actual tree edit distance dc. Third, we
would like to ensure pseudo-metric properties on c.

4. Method
In this section we introduce a novel method for tree edit
distance learning. We start by selecting positive and neg-
ative pairs for metric learning via median learning vector
quantization. Then, we introduce metric learning using the
generalized learning vector quantization cost function. Fi-
nally, we propose a novel parameterization of the edit cost
function c via symbol embeddings.

4.1. Median Learning Vector Quantization

To facilitate fast metric learning, we would like to limit
ourselves to as few positive and negative pairs as possi-
ble. We propose to select positive and negative pairs via
prototypical data points which represent the classes well.
In particular, assume we have data points x̄1, . . . , x̄m with
class assignments `(x̄1), . . . , `(x̄m). We propose to select
a small sample of prototypes w̄1, . . . , w̄K ⊂ {x̄1, . . . , x̄m}
with K � m, and to construct positive pairs for all x̄i as
(x̄i, w̄

+
i), where w̄+

i is the closest prototype to x̄i according
to dc0 from the same class; and negative pairs as (x̄i, w̄

−
i),

where w̄−i is the closest prototype to x̄i according to dc0
from a different class.

In our approach, we select these prototypical data points
such that they help us to discriminate between the classes.

Tree Edit Distance Learning via Adaptive Symbol Embeddings

More precisely, we aim for prototypes w̄1, . . . , w̄K which
can classify as many data points correctly as possible by
assigning the class of the closest prototype. One way to ob-
tain such prototypes is to optimize the generalized learning
vector quantization (GLVQ) cost function (Sato & Yamada,
1995):

E =

m∑
i=1

Φ
(d+

i − d
−
i

d+
i + d−i

)
(4)

where d+
i is the distance of x̄i to w̄+

i , d−i is the distance
of x̄i to w̄−i , and Φ(µ) = log(4 + µ) (Nebel et al., 2015).
Note that the fraction (d+

i − d
−
i)/(d+

i + d−i) is positive if
and only if x̄i is misclassified, such that the cost function is
related to the classification error.

Note that optimizing the GLVQ cost function in this case
requires a discrete optimization scheme because the pro-
totypes w̄k are limited to be training data points, which is
called median learning vector quantization (Nebel et al.,
2015). We follow the suggestion of Nebel et al. (2015) and
apply a generalized expectation maximization (EM) scheme
to maximize

∑m
i=1 log(g−i +g+

i), where g−i = 2+d−i /(d
+
i +

d−i), and g+
i = 2 − d+

i /(d
+
i + d−i). The expectation step

of the EM scheme consists of computing the quantities
γ+
i = g+

i /(g
+
i +g−i) as well as γ−i = g−i /(g

+
i +g−i) for all

i, and the maximization step consists of finding a prototype
w̄k which can be set to a different data point x̄i such that the
likelihood L =

∑m
i=1 γ

+
i · log(g+

i /γ
+
i) + γ−i · log(g−i /γ

−
i)

is improved, assuming fixed γ+
i and γ−i . The EM scheme

stops if it is not possible to improve L for any prototype
anymore.

4.2. Metric Learning via Learning Vector Quantization

Recall that the GLVQ cost function in Equation 4 quantifies
how well our prototypes classify the training data. Fol-
lowing the recommendation of Mokbel et al. (2015), we
can not only use this cost function for learning the proto-
types, but also for learning the metric. In particular, we can
minimize the GLVQ loss with respect to the cost function
c using any unconstrained gradient-based solver, such as
the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) algorithm (Liu & Nocedal, 1989). For the gradient
∇cE we obtain:

m∑
i=1

Φ′
(d+

i − d
−
i

d+
i + d−i

)
· d
−
i · ∇cd

+
i − d

+
i · ∇cd

−
i

(d+
i + d−i)2

(5)

where Φ′(µ) = 1/(4 + µ).

Following the GESL approach of Bellet et al. (2012), we op-
timize the pseudo tree edit distance d̃c instead of the tree edit
distance itself, which yields the gradient ∇cd̃(x̄i, w̄k) =
Pc0(x̄i, w̄k). However, we improve upon GESL by not
only considering one cheapest edit script, but instead the

average over all cheapest edit scripts. In particular, we con-
sider Pc0(x̄i, w̄k) to be the average over the matrices for all
cheapest edit scripts.

Considering all co-optimal scripts permits us to exploit addi-
tional information, with which we can prevent many degen-
erate cases in which d̃c underestimates dc. In particular, the
counter example in the proof of Theorem 3 does not hold
in this case. Computing this average over all cheapest edit
scripts is possible efficiently via a novel forward-backward
algorithm which we developed for this contribution (refer
to the supplementary material; Paaßen (2018a)).

We further note that changes to the metric may also enable
us to optimize the prototype locations further. Therefore, we
employ an alternating optimization scheme where we first
learn the prototype positions according to median GLVQ,
then adapt the metric, and repeat until either the prototype
positions do not change anymore or the solver is not able to
improve the metric anymore.

Until now, we have addressed the selection of positive and
negative pairs, as well as a closer coupling between pseudo
edit distance and edit distance. However, we still have to
ensure pseudo-metric properties on the learned cost function.
For this purpose, we introduce vectorial embeddings.

4.3. Tree Label Embeddings

Let X be a finite set with U elements. Then, a vector embed-
ding of X is a matrix A ∈ RV×U with V ≤ U , where each
column is a vector ~a(x) for one x ∈ X . Further, we define
~a(−) := ~0, i.e. the origin of the V -dimensional Euclidean
space. We define the cost function corresponding to an em-
bedding as the Euclidean distance between the embedding
vectors, that is: cA(x, y) := ‖~a(x)− ~a(y)‖.

Because the cost function is the Euclidean distance, it is
guaranteed to be a pseudo-metric, irrespective of the choice
of the embedding A. Furthermore, cA is differentiable
with respect to the embedding vectors with the gradient
∇~a(x)cA(x, y) = (~a(x)−~a(y))/‖~a(x)−~a(y)‖. Using this
gradient and Equation 3, we can also obtain a gradient of
the pseudo-edit distance d̃c(x̄, ȳ) with respect to ~a(x):

∇~a(x)d̃cA(x̄, ȳ) = (6)
|x̄|∑
i=1

δ(x, xi) ·
[|ȳ|+1∑
j=1

Pc0(x̄, ȳ)i,j ·
~a(x)− ~a(yj)

‖~a(x)− ~a(yj)‖

]

+

|ȳ|∑
j=1

δ(x, yj) ·
[|x̄|+1∑
i=1

Pc0(x̄, ȳ)i,j ·
~a(x)− ~a(xi)

‖~a(x)− ~a(xi)‖

]
where δ is the Kronecker-Delta, i.e.: δ(x, y) = 1 if x = y
and 0 otherwise.

Finally, we can plug this result into Equation 5, which yields
a gradient ∇~a(x)E, such that we can learn the vectorial em-

Tree Edit Distance Learning via Adaptive Symbol Embeddings

bedding of X via gradient techniques. Note that prior theory
on metric learning on the GLVQ cost function suggests that
the learned embedding will degenerate to a very low rank-
matrix such that the model may become overly simplistic
(Biehl et al., 2015). To prevent such a degeneration, we fol-
low the regularization recommendation of Schneider et al.
(2010) and add the term β · log(det(AT ·A)) to the GLVQ
loss 4, which adds the gradient β · 2 · A†T where A† is
the Moore-Penrose-Pseudoinverse of A. Additionally, we
follow the regularization approach of good edit similarity
learning (Bellet et al., 2012) and add the Frobenius-norm
β · ‖A‖2F to the loss, which adds the gradient β · 2 ·A.

As initialization of the vectorial embedding we use a U -
dimensional simplex with side length 1, which leads to
c0(x, y) = 0 if x = y and 1 otherwise (refer to the supple-
mentary material for a more detailed look into this initial-
ization (Paaßen, 2018b)).

Regarding computational complexity, we can analyze the
gradient computation. To compute a gradient, we first need
to select the closest correct and closest wrong prototype
for every data point, which is possible in O(m ·K). Then,
we need to compute the gradient for each data point via
Equation 6, which is possible inO(m·n2 ·V) where n is the
largest tree size in the data set. Computing the regularization
requiresO(V 3) due to the Pseudoinverse, resulting inO(m·
K+m ·n2 ·V +V 3) overall. How often the gradient needs
to be computed depends on the optimizer, but can typically
be regarded as a constant. In our experiments, we limit the
number of gradient computations to 200.

5. Experiments
In our experiment, we investigate whether our proposed
metric learning scheme, embedding edit distance learning
(BEDL), is able to improve classification accuracy beyond
the default initialization, whether BEDL improves upon the
accuracy obtained by good edit similarity learning (Bellet
et al., 2012), and whether the resulting embedding yields
insight regarding the classification task in question. In par-
ticular, we evaluate on the following data sets, including a
variety of domains and data set sizes.

Strings: A two-class data set of 200 strings of length 12,
adapted from Mokbel et al. (2015). Strings in class 1 consist
of 6 a or b symbols, followed by a c or d, followed by
another 5 a or b symbols. Which of the two respective
symbols is selected is chosen uniformly at random. Strings
in class 2 are constructed in much the same way, except
that they consist of 5 a or b symbols, followed by a c
or d, followed by another 6 a or b symbols. Note that
the classes can be neither discriminated via length nor via
symbol frequency features. The decisive discriminative
feature is where a c or d is located in the string.

MiniPalindrome and Sorting: Two data sets of Java pro-
grams, where classes represent different strategies to solve
a programming task. The MiniPalindrome data set contains
48 programs implementing one of eight strategies to detect
whether an input string contains only palindromes (Paaßen,
2016a), and the Sorting data set contains 64 programs im-
plementing either a BubbleSort or an InsertionSort strategy
(Paaßen, 2016b). The programs are represented by their
abstract syntax tree where the label corresponds to one of
24 programming concepts (e.g. class declaration, function
declaration, method call, etc.).

Cystic and Leukemia: Two data sets from KEGG/Glycan
data base (Hashimoto et al., 2006) adapted from Gallicchio
& Micheli (2013), where one class corresponds to benign
molecules and the other class corresponds to molecules as-
sociated with cystic fibrosis or leukemia respectively. The
molecules are represented as trees, where the label corre-
sponds to mono-saccharide identifiers (one of 29 and one of
57 for Cystic and Leukemia, respectively), and the roots are
chosen according to biological meaning (Hashimoto et al.,
2006). The cystic data set contains 160, the Leukemia data
set 442 molecules.

Sentiment: A large-scale two-class data set of 9613 sen-
tences from movie reviews, where one class (4650 trees)
corresponds to negative and the other class (4963 trees) to
positive reviews. The sentences are represented by their
syntax trees, where inner nodes are unlabeled and leaves
are labeled with one of over 30, 000 words (Socher et al.,
2013). Note that GESL is not practically applicable for
this data set, as the number of parameters to learn scales
quadratically with the number of words, i.e. > 30, 0002.
To make BEDL applicable in whis case, we initialize the
vectorial embedding with the 300-dimensional Common
Crawl GloVe embedding (Pennington et al., 2014), which
we reduce via PCA, retaining 95% of the data variance
(V = 16.4± 2.3 dimensions on average ± standard devia-
tion). We adapt this initial embedding via a linear trans-
formation Ω ∈ RV×V which we learn vie BEDL. Fur-
ther, we replace the cost function with the cosine distance
cΩ(~x, ~y) = 1

2 −
1
2 · ((Ω · ~x)

T · Ω · ~y)/(‖Ω · ~x‖ · ‖Ω · ~y‖),
which is the recommended distance measure for the GloVe
word embedding (Pennington et al., 2014) (refer to the sup-
plementary material for the gradient; Paaßen (2018b)).

On each data set, we perform a crossvalidation1 and com-
pare the average test error across folds. In particular, we

1We used 20 folds for Strings and Sentiment, 10 for Cystic
and Leukemia, 8 for Sorting and 6 for MiniPalindrome. For the
programming data sets, the number of folds had to be reduced to
ensure that each fold still contained a meaningful number of data
points. For the Cystic and Leukemia data set, our ten folds were
consistent with the paper of Gallicchio & Micheli (2013). In all
cases, folds were generated such that the label distribution of the
overall data set was maintained.

Tree Edit Distance Learning via Adaptive Symbol Embeddings

compare the error when using the initial tree edit distance
with the error when using the pseudo-edit distance learned
via good edit similarity learning (GESL), and the tree edit
distance learned via our proposed approach (BEDL).

In general, we would expect that a discriminative metric
learned for one classifier also facilitates classification us-
ing other classifiers. Therefore, we report the classification
error for four classifiers, namely the median generalized
learning vector quantization classifier (MGLVQ) for which
our method is optimized, the goodness classifier for which
GESL is optimized (Bellet et al., 2012), the K-nearest neigh-
bor (KNN) classifier, and the support vector machine (SVM)
based on the radial basis function kernel. In order to ensure
a kernel matrix for SVM, we set negative eigenvalues to
zero (clip Eigenvalue correction). Note that this eigenvalue
correction requires cubic runtime in terms of the number
of data points and is thus prohibitively slow for large data
set sizes. Therefore, for the Sentiment data set, we trained
the classifiers on a randomly selected sample of 300 points
from the training data.

We optimized all hyper-parameters in a nested 5-fold cross-
validation, namely the number of prototypesK for MGLVQ
and LVQ metric learning in the range [1, 15], the number
of neighbors for KNN in the range [1, 15], the kernel band-
width for SVM in the range [0.1, 10], the sparsity parameter
λ for the goodness classifier in the range [10−5, 10], and the
regularization strength β for GESL and BEDL in the range
2 ·K ·m · [10−6, 10−2]. We chose the number of prototypes
for BEDL, as well as the number of neighbors for GESL as
the optimal number of prototypes K for MGLVQ.

As implementations, we used custom implementations of
KNN, MGLVQ, the goodness classifier, GESL, and BEDL,
which are availabe at https://doi.org/10.4119/
unibi/2919994. For SVM, we utilized the LIBSVM
standard implementation (Chang & Lin, 2011). All experi-
ments were performed on a consumer-grade laptop with an
Intel Core i7-7700 HQ CPU.

The results of our experiments are displayed in Table 5.
In all data sets and for all classifiers, BEDL yields lower
classification error compared to GESL. For the Strings data
set we can also verify this result statistically with a one-
sided Wilcoxon signed rank test (p < 10−4). Furthermore,
in all but the Leukemia data set, BEDL yields the overall
best classification results, and is close to optimal for the
Leukemia data set (0.2% difference). In all cases, BEDL
could improve the accuracy for KNN, in five out of six cases
for SVM (the exception being the Cystic data set), in four
out of six cases for MGLVQ (in Sorting and Leukemia it
stayed equal), and in three out of six cases for the goodness
classifier. For the Strings and Sentiment data sets we can
also verify this result statistically with p < 0.05 for all
classifiers.

Table 1. The mean test classification error and runtimes for metric
learning, averaged over the cross validation trials, as well as the
standard deviation. The x-axis shows the metric learning schemes,
the y-axis the different classifiers used for evaluation. The table is
sub-divided for each data set. The lowest classification error for
each data set is highlighted via bold print.

classifier initial GESL BEDL

Strings

KNN 21.0± 10.2% 23.0± 10.8% 0.0 ± 0.0%
MGLVQ 36.0± 15.7% 34.0± 11.0% 0.0 ± 0.0%
SVM 9.0± 11.2% 10.0± 8.6% 0.0 ± 0.0%
goodness 11.5± 9.3% 0.5± 2.2% 0.0 ± 0.0%
runtime [s] 0± 0 0.030± 0.002 1.077± 0.098

MiniPalindrome

KNN 12.5± 11.2% 12.5± 7.9% 10.4± 9.4%
MGLVQ 2.1± 5.1% 4.2± 6.5% 0.0 ± 0.0%
SVM 4.2± 6.5% 20.8± 15.1% 0.0 ± 0.0%
goodness 6.2± 6.8% 14.6± 5.1% 8.3± 10.2%
runtime [s] 0± 0 0.103± 0.014 2.785± 0.631

Sorting

KNN 15.6± 8.8% 18.8± 16.4% 10.9± 8.0%
MGLVQ 14.1± 10.4% 14.1± 8.0% 14.1± 8.0%
SVM 10.9± 8.0% 9.4 ± 8.8% 9.4 ± 8.8%
goodness 15.6± 11.1% 17.2± 14.8% 17.2± 9.3%
runtime [s] 0± 0 0.352± 0.102 3.358± 0.748

Cystic

KNN 31.2± 6.6% 32.5± 10.1% 28.1± 8.5%
MGLVQ 34.4± 6.8% 33.1± 9.8% 30.0± 10.1%
SVM 28.1± 9.0% 33.1± 8.9% 29.4± 12.5%
goodness 28.1± 8.5% 26.2± 14.4% 24.4 ± 13.3%
runtime [s] 0± 0 0.353± 0.292 0.864± 0.767

Leukemia

KNN 7.5± 2.6% 8.2± 4.6% 7.3± 4.3%
MGLVQ 9.5± 4.0% 10.9± 4.7% 9.5± 3.0%
SVM 7.0± 4.1% 8.8± 2.9% 6.8± 4.7%
goodness 6.1 ± 4.3% 10.0± 4.4% 6.3± 3.8%
runtime [s] 0± 0 2.208± 0.919 6.550± 2.706

Sentiment

kNN 40.2± 2.8% − 38.2± 3.3%
MGLVQ 44.0± 2.6% − 41.3± 5.7%
SVM 34.3± 3.0% − 33.3 ± 3.6%
goodness 43.7± 1.9% − 42.5± 3.1%
runtime [s] 0± 0 − 69.385± 58.064

0 1 2 3 4
−0.1

0

0.1 a,b,− c,d

0
5

10 −5
0

5

−5

0
−

block
modifiers

while

parameterized type

Figure 1. A PCA of the learned embeddings for the Strings (top)
and the MiniPalindrome data set (bottom), covering 100% and
83.54% of the variance respectively.

https://doi.org/10.4119/unibi/2919994
https://doi.org/10.4119/unibi/2919994

Tree Edit Distance Learning via Adaptive Symbol Embeddings

Note that the focus of our work is to improve classification
accuracy via metric learning, not to develop state-of-the-art
classifiers as such. However, we note that our results for
the Sorting data set outperform the best reported results by
Paaßen et al. (2016) of 15%. For the Cystic data set we
improve the AUC from 76.93± 0.97% mean and standard
deviation across crossvalidation trials to 79.2± 13.6%, and
for the Leukemia data set from 93.8± 3.3% to 94.6± 4.5%.
Both values are competitive with the results obtained via
recursive neural networks and a multitude of graph ker-
nels by Gallicchio & Micheli (2013). For the Sentiment
data set, we obtain a SVM classification error of 27.51%
on the validation set, which is noticeably worse than the
reported literature results of around 12.5% (Socher et al.,
2013). However, we note that we used considerably less data
to train our classifier (only 500 points for the validation).

Interestingly, GESL tended to decrease classification ac-
curacy compared to the initial tree edit distance. Likely,
GESL requires more neighbors for better results (Bellet
et al., 2012). However, scaling up to a high number of
neighbors lead to prohibitively high runtimes for our experi-
ments such that we do not report these results here. These
high runtimes can be explained by the fact that the num-
ber of slack variables in GESL increases with O(m · K)
where m is the number of data points and K is the number
of neighbors. The scaling behavior is also visible in our
experimental results. For data sets with little data points and
neighbors, such as Strings, MiniPalindrome, and Sorting,
GESL is 10 to 30 times faster compared to BEDL. However,
for Cystic and Leukemia, the runtime advantage shrinks to
a factor of 2 to 3.

In ablation studies, we studied the difference between GESL
and BEDL in more detail. We observed that considering
the average over all co-optimal edit scripts, and considering
LVQ prototypes instead of ad-hoc nearest neighbors, im-
proved GESL on the MiniPalindrome data set, worsened it
for the Strings data set, and showed no remarkable differ-
ence for the Sorting, Cystic, and Leukemia data set. We
also compared BEDL without the embedding approach and
with the embedding approach. Interestingly, the pseudo-edit
distance performed worse when considering embeddings,
while the actual edit distance performed better when con-
sidering embeddings. In general, GESL variants performed
better for the pseudo-edit distance than for the actual edit
distance, and LVQ variants performed better for the actual
edit distance compared to the pseudo edit distance. We re-
port the full results in the supplementary material (Paaßen,
2018b).

Beyond classification accuracy, our metric learning ap-
proach permits to inspect the resulting embedding. Figure 1
displays a PCA of the embeddings learned for the Strings
and MiniPalindrome data set respectively. As we can see,

the embedding for the Strings data set captures the objec-
tive of the task perfectly: Both a as well as b symbols are
irrelevant for class discrimination and are thus embedded
at the origin, while c and d are embedded far from the ori-
gin, but both at the same location. For MiniPalindrome, we
also observe that most syntactic concepts are embedded at
zero, indicating that a combination of the four remaining
concepts is sufficient for class discrimination; namely the
block concept, which captures the nesting structure of the
program, the while concept, which is specific to one of the
classes, the modifiers concept, which can serve to count the
number of variables and methods in the program, and the
parametrized type concept, which distinguishes programs
with advanced data structured from programs with primitive
data structures.

6. Conclusion
In this contribution we have proposed embedding edit dis-
tance learning (BEDL) as a novel approach for edit distance
learning on trees with three distinct characteristics: First,
our objective is the generalized learning vector quantization
cost function, which pulls data points closer to the closest
prototype for their own class and pushes them away from the
closest prototype for a different class; second, we consider
not only a single optimal edit script between trees but a sum-
mary of all co-optimal edit scripts; finally, we do not learn
a cost function for the edits directly, but instead a vectorial
embedding of the label alphabet, which guarantees metric
properties and can be interpreted. In our experiments we
have shown that BEDL improves upon the state-of-the-art
of good edit similarity learning for trees on a diverse tree
data sets including Java program syntax trees, tree-based
molecule representations from a biomedical task, and syntax
trees in natural language processing.

Limitations of our work include that an improvement of the
loss function for the pseudo edit distance does not strictly
imply an improvement of the loss for the actual edit dis-
tance, and that improvements in classification accuracy are
small for some classifiers and some data sets. Future re-
search should investigate the relation between pseudo edit
distance and edit distance, as well as the relation between
the number of prototypes and metric learning performance
in more detail. It may also be worthwhile to study different
cost functions, in particular probabilistic ones, which may
be compatible with probabilistic models of the edit distance.
Still, we regard our existing contribution as a meaningful
step towards edit distances on trees which are both discrimi-
native as well as interpretable and can thus enhance accuracy
and understanding on classification tasks of structured data.

Tree Edit Distance Learning via Adaptive Symbol Embeddings

Acknowledgements
Funding by the DFG under grant number HA 2719/6-2 and
the CITEC center of excellence (EXC 277) is gratefully
acknowledged. Thanks to David Nebel and our anonymous
reviewers for helpful comments and suggestions.

References
Aiolli, F. and Donini, M. EasyMKL: A scalable multiple

kernel learning algorithm. Neurocomputing, 169:215–
224, 2015. doi:10.1016/j.neucom.2014.11.078.

Aiolli, F., Martino, G. D. S., and Sperduti, A. An efficient
topological distance-based tree kernel. IEEE Transac-
tions on Neural Networks and Learning Systems, 26(5):
1115–1120, 2015. doi:10.1109/TNNLS.2014.2329331.

Bacciu, D., Micheli, A., and Sperduti, A. Genera-
tive kernels for tree-structured data. IEEE Transac-
tions on Neural Networks and Learning Systems, 2018.
doi:10.1109/TNNLS.2017.2785292. in press.

Balcan, M.-F., Blum, A., and Srebro, N. A theory of learning
with similarity functions. Machine Learning, 72(1):89–
112, Aug 2008. doi:10.1007/s10994-008-5059-5.

Bellet, A., Habrard, A., and Sebban, M. Good edit similarity
learning by loss minimization. Machine Learning, 89(1):
5–35, Oct 2012. doi:10.1007/s10994-012-5293-8.

Bellet, A., Habrard, A., and Sebban, M. A survey on
metric learning for feature vectors and structured data.
arXiv e-prints, 2014. URL http://arxiv.org/
abs/1306.6709.

Bellet, A., Bernabeu, J. F., Habrard, A., and Seb-
ban, M. Learning discriminative tree edit similari-
ties for linear classification - application to melody
recognition. Neurocomputing, 214:155 – 161, 2016.
doi:10.1016/j.neucom.2016.06.006.

Biehl, M., Hammer, B., Schleif, F.-M., Schneider, P., and
Villmann, T. Stationarity of matrix relevance LVQ. In
Proceedings of the 2015 International Joint Confger-
ence on Neural Networks (IJCNN 2015), pp. 1–8, 2015.
doi:10.1109/IJCNN.2015.7280441.

Boyer, L., Habrard, A., and Sebban, M. Learning met-
rics between tree structured data: Application to image
recognition. In Kok, J. N., Koronacki, J., Mantaras, R.
L. d., Matwin, S., Mladenič, D., and Skowron, A. (eds.),
Proceedings of the 18th European Conference on Ma-
chine Learning (ECML 2007), pp. 54–66. Springer, 2007.
doi:10.1007/978-3-540-74958-5_9.

Chang, C.-C. and Lin, C.-J. LIBSVM: A library
for support vector machines. ACM Transactions

on Intelligent Systems and Technology, 2(3):27:1–
27:27, 2011. doi:10.1145/1961189.1961199. Soft-
ware available at http://www.csie.ntu.edu.
tw/~cjlin/libsvm.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F.,
Schwenk, H., and Bengio, Y. Learning phrase represen-
tations using RNN encoder-decoder for statistical ma-
chine translation. In Moschitti, A., Pang, B., and Daele-
mans, W. (eds.), Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing
(EMNLP 2014), pp. 1724–1734, 2014. URL https:
//www.aclweb.org/anthology/D14-1179.

Cover, T. M. and Hart, P. E. Nearest neighbor pattern classi-
fication. IEEE Transactions on Information Theory, 13
(1):21–27, 1967. doi:10.1109/TIT.1967.1053964.

Da San Martino, G. and Sperduti, A. Mining structured data.
Computational Intelligence Magazine, 5(1):42–49, Feb
2010. doi:10.1109/MCI.2009.935308.

Gallicchio, C. and Micheli, A. Tree echo state
networks. Neurocomputing, 101:319–337, 2013.
doi:10.1016/j.neucom.2012.08.017.

Gisbrecht, A., Schulz, A., and Hammer, B. Para-
metric nonlinear dimensionality reduction using ker-
nel t-SNE. Neurocomputing, 147:71–82, 2015.
doi:10.1016/j.neucom.2013.11.045.

Hammer, B., Micheli, A., and Sperduti, A. Adaptive Contex-
tual Processing of Structured Data by Recursive Neural
Networks: A Survey of Computational Properties, pp. 67–
94. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.
doi:10.1007/978-3-540-73954-8_4.

Hashimoto, K., Goto, S., Kawano, S., Aoki-Kinoshita, K. F.,
Ueda, N., Hamajima, M., Kawasaki, T., and Kanehisa, M.
KEGG as a glycome informatics resource. Glycobiology,
16(5):63R–70R, 2006. doi:10.1093/glycob/cwj010.

Kohonen, T. Learning Vector Quantization, pp. 175–189.
Springer Berlin Heidelberg, 1995. doi:10.1007/978-3-
642-97610-0_6.

Kulis, B. Metric learning: A survey. Foundations
and Trends in Machine Learning, 5(4):287–364, 2013.
doi:10.1561/2200000019.

Liu, D. C. and Nocedal, J. On the limited mem-
ory BFGS method for large scale optimization.
Mathematical Programming, 45(1):503–528, 1989.
doi:10.1007/BF01589116.

Mokbel, B., Paaßen, B., Schleif, F.-M., and Ham-
mer, B. Metric learning for sequences in rela-
tional LVQ. Neurocomputing, 169:306–322, 2015.
doi:10.1016/j.neucom.2014.11.082.

http://dx.doi.org/10.1016/j.neucom.2014.11.078
http://dx.doi.org/10.1109/TNNLS.2014.2329331
http://dx.doi.org/10.1109/TNNLS.2017.2785292
http://dx.doi.org/10.1007/s10994-008-5059-5
http://dx.doi.org/10.1007/s10994-012-5293-8
http://arxiv.org/abs/1306.6709
http://arxiv.org/abs/1306.6709
http://dx.doi.org/10.1016/j.neucom.2016.06.006
http://dx.doi.org/10.1109/IJCNN.2015.7280441
http://dx.doi.org/10.1007/978-3-540-74958-5_9
http://dx.doi.org/10.1145/1961189.1961199
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1109/MCI.2009.935308
http://dx.doi.org/10.1016/j.neucom.2012.08.017
http://dx.doi.org/10.1016/j.neucom.2013.11.045
http://dx.doi.org/10.1007/978-3-540-73954-8_4
http://dx.doi.org/10.1093/glycob/cwj010
http://dx.doi.org/10.1007/978-3-642-97610-0_6
http://dx.doi.org/10.1007/978-3-642-97610-0_6
http://dx.doi.org/10.1561/2200000019
http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/10.1016/j.neucom.2014.11.082

Tree Edit Distance Learning via Adaptive Symbol Embeddings

Nebel, D., Hammer, B., Frohberg, K., and Villmann, T.
Median variants of learning vector quantization for learn-
ing of dissimilarity data. Neurocomputing, 169:295–305,
2015. doi:10.1016/j.neucom.2014.12.096.

Paaßen, B., Mokbel, B., and Hammer, B. Adaptive struc-
ture metrics for automated feedback provision in intelli-
gent tutoring systems. Neurocomputing, 192:3–13, 2016.
doi:10.1016/j.neucom.2015.12.108.

Paaßen, B., Hammer, B., Price, T. W., Barnes, T., Gross,
S., and Pinkwart, N. The Continuous Hint Factory -
providing hints in vast and sparsely populated edit dis-
tance spaces. Journal of Educational Datamining, 2018.
URL http://arxiv.org/abs/1708.06564. ac-
cepted.

Paaßen, B. MiniPalindrome, 2016a. Bielefeld University,
doi:10.4119/unibi/2900666.

Paaßen, B. Java Sorting Programs, 2016b. Bielefeld Uni-
versity, doi:10.4119/unibi/2900684.

Paaßen, B. Revisiting the tree edit distance and its back-
tracing: A tutorial. ArXiv e-prints, 2018a. URL https:
//arxiv.org/abs/1805.06869.

Paaßen, B. Tree edit distance learning via adaptive symbol
embeddings: Supplementary materials and results. ArXiv
e-prints, 2018b. URL https://arxiv.org/abs/
1805.07123.

Pennington, J., Socher, R., and Manning, C. D. GloVe:
Global vectors for word representation. In Moschitti,
A., Pang, B., and Daelemans, W. (eds.), Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2014), pp.
1532–1543, 2014. URL http://www.aclweb.org/
anthology/D14-1162.

Sato, A. and Yamada, K. Generalized learning vector
quantization. In Tesauro, G., Touretzky, D., and
Leen, T. (eds.), Proceedings of the 7th conference
on Advances in Neural Information Processing Sys-
tems (NIPS 1995), pp. 423–429. MIT Press, 1995.
URL https://papers.nips.cc/paper/
1113-generalized-learning-vector-
quantization.

Schleif, F.-M. and Tino, P. Indefinite proximity learning: A
review. Neural Computation, 27(10):2039–2096, 2015.
doi:10.1162/NECO_a_00770.

Schneider, P., Biehl, M., and Hammer, B. Adap-
tive relevance matrices in learning vector quantiza-
tion. Neural Computation, 21(12):3532–3561, 2009.
doi:10.1162/neco.2009.11-08-908.

Schneider, P., Bunte, K., Stiekema, H., Hammer, B., Vill-
mann, T., and Biehl, M. Regularization in matrix rele-
vance learning. IEEE Transactions on Neural Networks,
21(5):831–840, 2010. doi:10.1109/TNN.2010.2042729.

Shervashidze, N., Schweitzer, P., Leeuwen, E. J. v.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-Lehman
graph kernels. Journal of Machine Learning Research,
12(Sep):2539–2561, 2011. URL http://www.jmlr.
org/papers/v12/shervashidze11a.html.

Smith, T. F. and Waterman, M. S. Identification of
common molecular subsequences. Journal of Molec-
ular Biology, 147(1):195–197, 1981. doi:10.1016/0022-
2836(81)90087-5.

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Baldwin, T. and Korhonen, A. (eds.), Proceedings of the
2013 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2013), pp. 1631–1642, 2013.
URL http://www.aclweb.org/anthology/D/
D13/D13-1170.pdf.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., and Weinberger,
K. Q. (eds.), Proceedings of the 27th Conference on Ad-
vances in Neural Information Processing Systems (NIPS
2014), pp. 3104–3112. Curran Associates, Inc., 2014.
URL https://papers.nips.cc/paper/5346-
sequence-to-sequence-learning-with-
neural-networks.

Yanardag, P. and Vishwanathan, S. Deep graph kernels.
In Proceedings of the 21th International Conference on
Knowledge Discovery and Data Mining (KDD 2015),
pp. 1365–1374, New York, NY, USA, 2015. ACM.
doi:10.1145/2783258.2783417.

Zeng, Z., Tung, A. K. H., Wang, J., Feng, J., and Zhou, L.
Comparing stars: On approximating graph edit distance.
Proceedings of the VLDB Endowment, 2(1):25–36, 2009.
doi:10.14778/1687627.1687631.

Zhang, K. and Shasha, D. Simple fast algorithms for
the editing distance between trees and related problems.
SIAM Journal on Computing, 18(6):1245–1262, 1989.
doi:10.1137/0218082.

Zhang, K., Statman, R., and Shasha, D. On the editing dis-
tance between unordered labeled trees. Information Pro-
cessing Letters, 42(3):133–139, 1992. doi:10.1016/0020-
0190(92)90136-J.

http://dx.doi.org/10.1016/j.neucom.2014.12.096
http://dx.doi.org/10.1016/j.neucom.2015.12.108
http://arxiv.org/abs/1708.06564
http://dx.doi.org/10.4119/unibi/2900666
http://dx.doi.org/10.4119/unibi/2900684
https://arxiv.org/abs/1805.06869
https://arxiv.org/abs/1805.06869
https://arxiv.org/abs/1805.07123
https://arxiv.org/abs/1805.07123
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://papers.nips.cc/paper/1113-generalized-learning-vector-quantization
https://papers.nips.cc/paper/1113-generalized-learning-vector-quantization
https://papers.nips.cc/paper/1113-generalized-learning-vector-quantization
http://dx.doi.org/10.1162/NECO_a_00770
http://dx.doi.org/10.1162/neco.2009.11-08-908
http://dx.doi.org/10.1109/TNN.2010.2042729
http://www.jmlr.org/papers/v12/shervashidze11a.html
http://www.jmlr.org/papers/v12/shervashidze11a.html
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://www.aclweb.org/anthology/D/D13/D13-1170.pdf
http://www.aclweb.org/anthology/D/D13/D13-1170.pdf
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
http://dx.doi.org/10.1145/2783258.2783417
http://dx.doi.org/10.14778/1687627.1687631
http://dx.doi.org/10.1137/0218082
http://dx.doi.org/10.1016/0020-0190(92)90136-J
http://dx.doi.org/10.1016/0020-0190(92)90136-J

