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Detailed proofs for all the theorems, lemmas and propositions omitted from our paper
will be given here in a rigorous form. We provide them as a supplementary because we
would like the audience of our paper to focus more on the development of our theory,
and limit of space. Our proofs are mainly based on the texts of Chung [1], Rudin [2] and
Nakahara [3].

1. Introduction

[No Theorems or Lemmas]

2. Preliminaries

Lemma 2.1. Given a smooth manifold M = {(Ui,'i)}Ki=1
with pairwise disjointness and

{µk}
K
k=1

as the probability measures supported on {'i(Ui)}Ki=1
correspondingly, a function

µM : B(M) ! [0, 1] is defined by

(1) dµM(s) =
1

K

KX

i=1

1s2Uidµi � 'i(s)

Then µM is a probability measure defined on M.

Proof. First claim µi�'i is a measure, which comes from the easy observation that for each
i 2 [K], and countably many disjoint sets {An}

1
n=1

⇢ B(M), the Borel sets constructed
over M as a topological space.

'i([
1
n=1An) = [

1
n=1'i(An)

and since 'i itself is a homeomorphism, which indicates the one-to-one property, we
have the disjointness of sets {'i(An)}1n=1

.
Thus from the assumption that µi is a probability measure, the countable additivity of

µi � 'i on B(M) is thus proved as
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µi � 'i([
1
n=1An) =

1X

i=1

µi('i(An))

, which directly leads to the assertion that µi � 'i is a measure.
Next, we would like to prove it is indeed a probability measure, which needs to prove

the normalization condition.
We directly take integral over the manifold M with the derivative form of measure µM,

as is defined.

Z

M
dµM(2)

substitute
=

1

K

Z

M

KX

i=1

1s2Uidµi � 'i(s)(3)

exchange
=

1

K

KX

i=1

Z

Ui

dµi � 'i(s)(4)

change of variable
=

1

K

KX

i=1

Z

'i(Ui)

dµi(s)(5)

= 1(6)

Thus we have checked the normalization condition, which in turn proves the lemma. ⇤

3. Natural Localization of cWGAN-Loss

Lemma 3.1. Consider Riemmanian manifold (N , ⌧) with curvature locally bounded above
and below, ⌧ 2 C

1 and its induced distance function denoted as dN , then for any path-
independent function f : N ⇥N ! R+

[ {0}, there exists a Riemmanian metric ⌧
0
on N ,

induced by the distance function

d
0
N (x, y) = f(x, y)dN (x, y) 8x, y 2 N

Proof. The proof is mainly based on a previous result in [4, 5], which asserts certain su�-
cient conditions for a synthetic distance function d

0
N : N ⇥N ! R+

[ {0} on Riemmanian
manifold (N , ⌧) to be compatible with some Riemmanian metric on N . That is, besides
the conditions innate to the manifold

• curvature locally bounded above and below, i.e. 8s 2 N , 9c1, c2, 0 < c1 < c2 < 1

and c1 < �k
ij(s) < c2.

• ⌧ 2 C
1, which means it is infinitely di↵erentiable locally. In fact, the assumption

can be relaxed to ⌧ 2 C
1,↵, for any ↵ > 0.

, the condition imposed on the synthetic distance function is



APPENDIX A: OMITTED PROOFS IN PAPER FOR ICML2018 3

• d
0
N is a path-metric, i.e. 8s1, s2 2 N , consider the set of paths connecting s1, s2,

that is, the set of curves Ps1!s2 = {p : [0, 1] ! M|p(0) = s1, p(1) = s2}, there
exists an functional L : Ps1!s2 ! R+

[ {0}, s.t.

d
0
N (s1, s2) = inf

p2Ps1!s2

L(p)

Thus let us turn back to our case, the synthetic distance function is actually
expanded from an existing distance function on N , induced by Riemmanian metric
⌧ . As is well known, the induced distance dN itself has the form

dN (s1, s2) = inf
p2Ps1!s2

L(p)

where L is called the length of curve p, defined as

L(p)
.
=

Z
1

0

vuut
X

i,j

gij(p(t))
@xi

@t

@xj

@t
dt

Since from the assumption that f(•, •) is path-independent, we are able to define
the following functional Lf (easy to check its well-definedness),

Lf (p)
.
= f(p(0), p(1)) 8p 2 Ps1!s2

Thus it is obvious that, by constructing L
0
as

L
0
(p) = Lf (p) • L(p) 8p 2 Ps1!s2

, our synthetic distance function d
0
N is a path metric thus induced from some

Riemmian metric on N , which finishes our proof.

⇤
3.1. Omitted Steps for Renormalization to Obtain Eq. 14. After we rearrange
dN (G(s), t)d� as d

0
N (G(s), t)d�0, the boundary condition

R
M

R
N d�

0
= 1 requires renormal-

ization. By introducing an additional matrix A 2 H(K) s.t. H(K)
.
= {A 2 RK⇥K

|8j 2

K,
P

iA
ij = K; 8i, j 2 [K], Aij

� 0}, the cWGAN-loss minG L
0
adv(G) can be reformulated

as

min
G

min
A2H(K)

KX

i=1

KX

j=1

Z

Ui

Z

Vj

A
ij
d
0
N (G(s), t)dµ̃i(s)d⌫̃j(t)(7)

Proof. We start from the form,

min
G

inf
�2⇧(µM,⌫N )

KX

i=1

KX

j=1

Z

Ui

Z

Vj

dN (G(s), t)d�(s, t)(8)

when we rearrange the form with

d�(s, t) = d�(t|s)dµM(s) = �(f�(s), t)dµM(s)d⌫N (t)



4 APPENDIX A: OMITTED PROOFS IN PAPER FOR ICML2018

, we obtain

min
G

min
f�

KX

i=1

KX

j=1

Z

Ui

Z

Vj

�(f�(s), t)dN (G(s), t)dµM(s)d⌫N (t)(9)

And since we apply the equivalence of minGminf� and minG, the boundary conditionR
M

R
N d�

0
= 1 may be broken. Thus we introduce additional variable A 2 H(K) to

maintain the normalization condition, as can be checked by

Z

M
d�

0
(10)

=
1

K2

KX

j=1

Z

Ui

(

Z

Vj

KX

i=1

A
ij
d⌫j)dµi(11)

= 1(12)

Note here we have applied the formulae for constructed probability measures on mani-
folds as

(13) dµM(s)
.
=

1

K

KX

i=1

1s2Uidµi � 'i(s)

(14) d⌫N (t)
.
=

1

K

KX

i=1

1t2Uid⌫i �  i(t)

Finally, by inserting the A
ij term into the original optimization problem above, we will

obtain the final form as follows,

min
G

min
A2H(K)

KX

i=1

KX

j=1

Z

Ui

Z

Vj

A
ij
d
0
N (G(s), t)dµ̃i(s)d⌫̃j(t)(15)

⇤
Theorem 3.1. [Natural Localization of Adversarial Loss] For any p 2 Sym(K), the opti-
mization problem below

min
G2Fp

min
A2H(K)

KX

i=1

KX

j=1

Z

Ui

Z

Vj

A
ij
d
0
N (G(s), t)dµ̃i(s)d⌫̃j(t)(16)

is equivalent to

min
G2Fp

KX

i=1

Z

Ui

Z

Vp(i)

d
0
N (G(s), t)dµ̃i(s)d⌫̃p(i)(t)(17)
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In other words, the optimal A⇤
2 H(K) has the closed form as

(A⇤)ij = K�
p(i)
j(18)

where �p(i)j is the Kronecker delta function.

Proof. Fix i, j 2 [K], s.t. j 6= p(i) and arbitrary G 2 Fp. We first compare the following
two terms

Tnon-paired =

Z

Ui

Z

Vj

d
0
N (G(s), t)dµ̃i(s)d⌫̃j(t)

and

Tpaired =

Z

Ui

Z

Vp(i)

d
0
N (G(s), t)dµ̃i(s)d⌫̃p(i)(t)

Notice, for any s 2 Ui, G(s) 2 Vp(i) \ Vj = ?, which comes from the assumption that

G 2 Fp and j 6= p(i), which thus leads to 8t 2 Vp(i), t
0
2 Vj , dN (G(s), t)  dN (G(s), t

0
),

according to the compatibility of distance function with the assumed inner-relatedness.
And thus Tnon-paired � Tpaired. Then we relieve the fixation of j. It is easy to see,

KX

j=1

A
ij
Z

Ui

Z

Vj

d
0
N (G(s), t)dµ̃i(s)d⌫̃p(i)(t) � K

Z

Ui

Z

Vp(i)

d
0
N (G(s), t)dµ̃i(s)d⌫̃p(i)(t)

, which is equivalent to say the optimal (Aij)⇤ = K�
j
p(i) for each j 2 [K].

Similarly, we have for each A 2 H(K),

KX

i=1

KX

j=1

Z

Ui

Z

Vj

A
ij
d
0
N (G(s), t)dµ̃i(s)d⌫̃j(t) �

KX

i=1

Z

Ui

Z

Vp(i)

d
0
N (G(s), t)dµ̃i(s)d⌫̃p(i)(t)

, which brings the equivalence between optimization problems above. ⇤

4. Generalization for Conditional GAN

Theorem 4.1. Consider generator G : Rd
! Rd satisfying Lipschitz condition with con-

stant MG and µX , ⌫Y are probability measures on Rd respectively with {xi}
nX
i=1

i.i.d.
⇠ µX and

{yi}
nY
i=1

i.i.d.
⇠ ⌫Y .

Assume the classical generalization bound satisfies the following inequality with proba-
bility 1� �

Ex⇠µX ,y⇠⌫Y kG(x)� yk �

nXX

i=1

nYX

j=1

kG(xi)� yjk

nXnY
< ✏classical(19)

where ✏classical
.
= ✏(nX , nY , µX , ⌫Y , �) the upper bound and ERM-principle [6] is satisfied

with ⌘ (i.e. 1

nXnY

PnX
i=1

PnY
j=1

kG(xi)� yjk < ⌘), then G generalizes with (nX , nY ) training
samples and error ✏adv with probability 1� �, i.e.

(20) DLK(G(µ̂nX
X ), ⌫Y )�DLK(⌫̂nY

Y , ⌫Y ) < ✏adv
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if the following condition is satisfied

(21) ✏classical � ✏adv + ⌘ < DLK(⌫Y , ⌫̂
nY
Y )�MGDLK(µX , µ̂

nX
X )

Proof. Let us start by bounding the term DLK(G(µ̂nX
X ), ⌫Y ),

DLK(G(µ̂nX
X ), ⌫Y )(22)

by def.
=

Z

Rd

Z

Rd
kG(x)� ykdµ̂

nX
X (x)d⌫Y (y)(23)

norm ineq.



Z Z
kG(x)�G(x

0
)kdµ̂nX

X (x)dµX(x
0
) +

Z Z
kG(x)� ykdµX(x)d⌫Y (y)(24)

Lip.

 MG

Z Z
k(x)� x

0
kdµ̂

nX
X (x)dµX(x

0
) +

Z Z
kG(x)� ykdµX(x)d⌫Y (y)(25)

gen. bound, with probability 1-�
 MGDLK(µX , µ̂

nX
X ) +

nXX

i=1

nYX

j=1

kG(xi)� yjk

nXnY
+ ✏classical(26)

ERM

 MGDLK(µX , µ̂
nX
X ) + ⌘ + ✏classical(27)

And the definition of generation in adversarial learning sense requires

DLK(G(µ̂nX
X ), ⌫Y )�DLK(⌫̂nY

Y , ⌫Y ) < ✏adv

By direct inserting the last expressions during the estimation above, we have obtained
the generic inequality to guarantee generalization su�ciently,

✏classical � ✏adv + ⌘ < DLK(⌫Y , ⌫̂
nY
Y )�MGDLK(µX , µ̂

nX
X )

⇤

5. Benefits of Localization and Conditions of Generalization

Proposition 5.1. Consider the probability measure underlying the global task as µX =
1

K

PK
i=1

µi and ⌫Y = 1

K

PK
i=1

⌫i in Euclidean sense and

(28) ✏
local
adv =

1

K

KX

i=1

DLK(µi, µ̂
m
i )

✏
global
adv = DLK(

1

K

KX

i=1

µi, µ̂
Km
X )(29)

, if the compatibility with inner-relatedness (8i, j 2 [K], DLK(µi, µj) � DLK(µi, µi)) is
satisfied, then

✏
local
adv < ✏

global
adv
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Proof. First let us consider the situation when m ! 1, which correspondingly leads to
µ̂
Km
X !

1

K

PK
i=1

µi and 8i 2 [K], µ̂m
i ! µi.

Thus by honestly inserting the term into the definition of DLK , we have

✏
global
adv, nX ! 1 = DLK(

1

K

KX

i=1

µi,
1

K

KX

i=1

µi)(30)

=
1

K2

KX

i=1

DLK(µi, µi) +
1

K(K � 1)

X

i<j2[K]

DLK(µi, µj)(31)

>
1

K

KX

i=1

DLK(µi, µi) = ✏
local
adv, nX ! 1(32)

The last inequality comes from the observation that, 8i, j 2 [K]

DLK(µi, µi) = kµi � µik+ 2tr(⌃M)  kµi � µjk+ 2tr(⌃M) = DLK(µi, µj)

Next, we would like to consider the case for arbitrary m and the inequality with cor-
responding optimal empirical estimators {µ̂

m
i }

K
i=1

. Thus with Kn samples, the optimal
estimator for the global distribution as a mixture of gaussians with the mixture coe�cients
priorly known is 1

K

PK
i=1

µ̂
m
i . With a similar procedure as above,

✏
global
adv

= DLK(
1

K

KX

i=1

µi,
1

K

KX

i=1

µ̂
m
i )(33)

=
1

K2

KX

i=1

DLK(µi, µ̂
m
i ) +

1

K(K � 1)

X

1i<jK

DLK(µi, µ̂
m
j )(34)

� ✏
local
adv(35)

with the following observation

DLK(µi, µ̂
m
j ) = kµi � µ̂j + µ̂j � µ̂

m
j k(36)

consider µi � µ̂j white noise

= kµi � µ̂jk+ kµ̂j � µ̂
m
j k(37)

> kµ̂j � µ̂
m
j k = DLK(µj , µ̂

m
j )(38)

⇤
Lemma 5.1. 8i 2 [K], consider a measureable mapping f̃ : Ui ! Vi with f

.
=  i � f̃ �

'
�1

i satisfies Lipschitz condition, then
R
Ui

R
Vi
d
0
N (f̃(s), t)dµ̃i(s)d⌫̃i(t) ' DLK(f(µi), ⌫i), i.e.

there exists constants 0 < Cl < Cu < 1 such that

(39) Cl <

R
Ui

R
Vi
d
0
N (f̃(s), t)dµ̃i(s)d⌫̃i(t)

DLK(f(µi), ⌫i)
< Cu
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Proof. With the measureability of f̃ and smoothness of 'i, i, the induced mapping ⌫̃
0
=

1

Ẽ
f̃(µi) and ⌫

0
= 1

E ( i � f̃)(µi) are also probability measures respectively on f̃(Ui) ⇢ Vi

and ( i � f̃)(Ui) ⇢  i(Vi) (with Ẽ, E some normalizing factor).
Observe the following bounds, which comes from the inclusion relations above,

Z

f̃(Ui)

Z

Vi

d
0
N (f̃(s), t)dµ̃i(s)d⌫̃i(t) 

Z

Vi

Z

Vi

d
0
N (t

0
, t)d⌫̃

0
(t

0
)d⌫̃i(t)

Z

( i�f̃)(Ui)

Z

 i(Vi)

kf(s)� tkdµi(s)d⌫i(t) 

Z

 i(Vi)

Z

 i(Vi)

kt
0
� tkd⌫

0
(t

0
)d⌫i(t)

With the Lipschitz condition of f , it can be asserted that supp(⌫̃
0
) and supp(⌫

0
(t

0
)) is

bounded by a finite disk respectively on Vi, i(Vi). Together with the gaussian assumption,
we have tr(⌃M), tr(⌃N ) < 1, which leads to the boundedness of supp(⌫i), supp(⌫̃i) as
well.

Thus we have Z

Vi

Z

Vi

d
0
N (t

0
, t)d⌫̃

0
(t

0
)d⌫̃i(t) < 1

Z

 i(Vi)

Z

 i(Vi)

kt
0
� tkd⌫

0
(t

0
)d⌫i(t) < 1

With the finiteness of right side, we are able to claim
Z

f̃(Ui)

Z

Vi

d
0
N (f̃(s), t)dµ̃i(s)d⌫̃i(t) '

Z

Vi

Z

Vi

d
0
N (t

0
, t)d⌫̃

0
(t

0
)d⌫̃i(t)

Z

( i�f̃)(Ui)

Z

 i(Vi)

kf(s)� tkdµi(s)d⌫i(t) '

Z

 i(Vi)

Z

 i(Vi)

kt
0
� tkd⌫

0
(t

0
)d⌫i(t)

, which directly leads to the lemma since

R
Vi

R
Vi

d
0
N (t

0
,t)d⌫̃

0
(t

0
)d⌫̃i(t)

R
 i(Vi)

R
 i(Vi)

kt0�tkd⌫0 (t0 )d⌫i(t)
< 1 ⇤

Theorem 5.1. Under the assumptions above, consider a generator G 2 Fe and a hypothesis
space H with VC-dimension bound by constant ⇤. Assume for each i 2 [K], the restriction
of G to a pair of charts fi

.
= G#(Ui,Vi)

2 H with ( i �G � '
�1

i ) satisfies Lipschitz condition
with constant MG, then G generalizes globally with (Kn,Km) samples only if the following
inequality is satisfied with probability 1� C(✏,⇤)(nm✏2)⌧(⇤)e�nm↵✏2,

✏+
1

nm
max{

nX

i=1

mX

j=1

dN (G(sik), t
j
k)}

K
k=1 <

1
p
m

p
tr(⌃N ) + 2tr(⌃N )�MG(

1
p
n

p
tr(⌃M ) + 2tr(⌃M ))(40)

where C(✏,⇤) and ⌧(⇤) are positive functions independent from n,m and ↵ 2 [1, 2] a
constant.
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Proof. For K independent local tasks, with Lma. 5.1, the global generalization condition
in Thm. 4.1 will thus be written as

max{✏iclassical � ✏
i
adv + ⌘

i
}
K
i=1 < min{DLK(⌫i, ⌫̂

n
i )�MGDLK(µi, µ̂

m
i )}Ki=1

, which serves as a su�cient condition (note it is not a necessary condition) in the worst
case.

We would like to consider the situation when ✏
i
adv

= 0 and since the classical general-
ization error is equivalent with the assumption that the observed samples on each pair of
charts are identical, we can reformulate the inequality as

✏classical +max{⌘i}Ki=1 < min{DLK(⌫i, ⌫̂
n
i )�MGDLK(µi, µ̂

m
i )}Ki=1

Apply the result from [7], we could bound the left side by ✏ with probability 1 �

C(✏,⇤)(nm✏2)⌧(⇤)e�nm↵✏2 , that is

✏classical +max{⌘i}Ki=1 < ✏+
1

nm
max{

nX

i=1

mX

j=1

dN (G(sik), t
j
k)}

K
k=1

The next step is to deal with the right side, with a honest calculation, we could deduce

min{DLK(⌫i, ⌫̂
n
i )�MGDLK(µi, µ̂

m
i )}Ki=1(41)

= min{Ek⌫i � ⌫
n
i k �MGEkµi � µ

n
i k}

K
i=1 + 2tr(⌃N )� 2tr(⌃M )(42)

In order to write the first minimization term in a closed form, we use the following
theorem from the theory of information geometry of Amari [8]

Theorem 1. [8, Theorem 4.4] The mean square error of a biased-corrected first-order
e�cient estimator is given asymptotically by the expansion (with N observed samples):

E[(ûa � u
a)(ûb � u

b)] =
1

N
g
ab +O(

1

N2
)

where g
ab denotes the Fisher metric on the manifold constructed from a parametrized

family of probability.
We thus apply such an estimation to figure out Ek⌫i � ⌫

n
i k and Ekµi � µ

n
i k. As is well

known, the matrix of fisher metric for a gaussian N (x,⌃) is directly ⌃, the covariance
matrix itself.

By observing Ek⌫i�⌫̂ni k =
p
tr(E[(⌫i � ⌫̂ni )(⌫i � ⌫̂ni )

T ]) and Ekµi�µ̂
m
i k =

p
tr(E[(µi � µ̂n

i )(µi � µ̂n
i )

T ]),
we have (with O(N�2) term omitted)

min{DLK(⌫i, ⌫̂
n
i )�MGDLK(µi, µ̂

m
i )}Ki=1 =

1
p
m

p
tr(⌃N )+2tr(⌃N )�MG(

1
p
n

p
tr(⌃M )+2tr(⌃M ))

, which thus gives the condition for generalization above. ⇤
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