
Theoretical Analysis of Image-to-Image Translation with Adversarial Learning

Xudong Pan 1 Mi Zhang 1 Daizong Ding 1

Abstract
Recently, a unified model for image-to-image
translation tasks within adversarial learning
framework (Isola et al., 2017) has aroused
widespread research interests in computer vision
practitioners. Their reported empirical success
however lacks solid theoretical interpretations for
its inherent mechanism. In this paper, we refor-
mulate their model from a brand-new geometrical
perspective and have eventually reached a full
interpretation on some interesting but unclear em-
pirical phenomenons from their experiments. Fur-
thermore, by extending the definition of general-
ization for generative adversarial nets (Arora et al.,
2017) to a broader sense, we have derived a con-
dition to control the generalization capability of
their model. According to our derived condition,
several practical suggestions have also been pro-
posed on model design and dataset construction
as a guidance for further empirical researches.

1. Introduction
Generative adversarial nets (GAN) (Goodfellow et al., 2014)
have been a trending topic in machine learning community
recent years, leading to a number of derived models (Mirza
& Osindero, 2014; Arjovsky et al., 2017) and related theoret-
ical works (Arjovsky & Bottou, 2017; Lei et al., 2017). With
wide and fruitful applications in various scenarios such as
speech synthesis (Saito et al., 2018), text generation (Zhang
et al., 2017) and a considerable amount of visual tasks (Den-
ton et al., 2015; Wu et al., 2016; Kataoka et al., 2017), the
idea behind GAN and its derivations is relatively simple and
intuitive. It aims at learning a mapping from an artificial dis-
tribution, usually priorly known gaussian for original GAN
and an unknown distribution of labels for conditional GAN
(Mirza & Osindero, 2014), to a real one. Via attaining an
equilibrium of the minimax game (Aumann, 1989) between
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a generator (i.e. an adaptive model that maps a gaussian
noise to a fake sample) and a discriminator (i.e. an adaptive
model to distinguish a fake sample from a real distribution),
the adversarial learning models will finally learn a realistic
distribution for further generative tasks (Arora et al., 2017).

Noticeably, last year has also witnessed an empirical success
on traditional image-to-image translation tasks with the aid
of a model under conditional GAN paradigm (Isola et al.,
2017), arousing widespread research interest in computer
vision practitioners (Zheng et al., 2017; Choi et al., 2017).
Image-to-image translation, as a generic name for various
specific tasks in image processing, includes tasks such as
facial expression transfer (e.g. poker face → smile face),
artistic style transfer (e.g. Van Gogh’s→Monet’s). Gener-
ally speaking, the goal of image-to-image translation is to
process an image from a source collection to make it indis-
tinguishable among a target collection of images. Although
related models and methods abound in literature (Reinhard
et al., 2001; Gatys et al., 2016; Zeiler et al., 2011), the first
attempt to tackle image-to-image translation as a whole in-
stead of focusing on one of its specific tasks exclusively,
ought to be attributed to the pioneering work of Isola et al.
(2017), where the powerfulness of adversarial learning with
conditional GAN has been once again exhibited sufficiently.
We briefly review Isola’s original model as the optimization
problem below,

min
G

max
D
LcGAN(G,D) + λLL1

(G) (1)

with LcGAN the conditional GAN-loss (or generally, adver-
sarial loss) defined as

LcGAN(G,D) = Ex,y∼pr(x,y)[logD(x, y)]

+ Ex∼pr(x)[1− logD(x,G(x))] (2)

and LL1
the L1 loss (or identity loss) as

LL1
(G) = Ex,y∼pr(x,y)[‖y −G(x)‖1] (3)

where pr(x, y) denotes the distribution of paired images
(e.g. in facial expression transfer, Bob’s poker face and
his ground-truth smile face) and pr(x) the distribution of
images over the source collection, with G,D respectively
the generator and the discriminator, λ the regularization
factor.
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As reported in their experiments (Isola et al., 2017), several
interesting but theoretically unclear results have attracted
our attentions,

• Omitting the adversarial loss, i.e. solving LL1
(G)

alone, will ”lead to reasonable but blurry results” (i.e.
generated related target images, however with details
hard to recognize), which we refer to as Blurry versus
Sharp.

• Omitting the identity loss, i.e. setting the regularization
factor λ to 0, ”gives much sharper results, but results in
some artifacts” (i.e. generated realistic images however
unrelated to the given source image), which we refer
to as Source of Artifacts.

Despite a number of studies devoted to analyzing and im-
proving the training dynamics and generalization capability
of GAN (Arjovsky & Bottou, 2017; Arora et al., 2017),
there is rarely applicable theoretical results for analyzing
conditional GAN, thus Isola’s original model and its empiri-
cal results. The inappropriateness mainly comes from Eq.
2, where the model generates fake images directly from a
given image of intensively high dimension (Lu et al., 1998),
instead of a low-dimensional gaussian noise in GAN. In
fact, the simple violation of the low-dimensional assump-
tion would immediately invalidate most of the previously
obtained theoretical results for GAN. Considering the wor-
thiness of obtaining reasonable theoretical interpretations
as guidance for further researches, we formulate this non-
standard model from a geometrical perspective, propose an
extended definition of generalization for conditional GAN
and have eventually reached some inspiring theoretical re-
sults.

In this paper, for the convenience of mathematical manip-
ulation, we will study a slightly different objective from
Isola’s original model (Eq. 1), by substituting the ordinary
conditional GAN loss (Eq. 2) with the Wasserstein GAN
(WGAN) loss below as Eq. 4. As is well known, such a
replacement is usually adopted by experimenters to stabilize
the model’s training dynamics (Arjovsky & Bottou, 2017).

Ladv(G) = inf
γ∈Π(pr,pg)

E(x,y)∼γ [‖G(x)− y‖] (4)

where pg denotes the distribution of images over the target
collection, with Π(pr, pg) the set of joint distributions for
pairs of images (x, y) s.t. the marginal distributions are
equal to pr, pg. Note the explicit term of discriminator
in GAN (Eq. 2) is actually replaced by the inner optimal
transport task (Villani, 2008) implicitly in WGAN loss (Eq.
4).

Therefore, the corresponding objective can be formulated as

target model︷ ︸︸ ︷
min
G
Ladv(G)︸ ︷︷ ︸

adversarial loss

+λ LL1(G)︸ ︷︷ ︸
identity loss

(5)

Aiming at exploring the intrinsic mechanism of our target
model, we first formulate the image-to-image translation
task with adversarial learning from a geometrical viewpoint
(Section 2). With some basic results from topology and
analysis, we have proved that the adversarial loss has an
equivalent form (Eq. 16), degenerated as a set of individual
learning tasks between paired charts (i.e. local neighbor-
hoods homeomorphism to Euclidean space). We call such a
result as natural localization of adversarial loss (Theorem
3.1). As a direct application of our theorem, theoretical in-
terpretations has been presented fully for Source of Artifacts
and partially for Blurry versus Sharp (Section 3.3).

In order to explore the properties of our target model more
quantitatively, we have extended the definition of generaliza-
tion for GAN proposed by Arora et al. (2017) to a broader
case for analysis of conditional GAN (Definition 4.2). We
have then pointed out the relation between generalizations in
different senses with a generic inequality for the first time as
far as we know (Theorem 4.1) and have finally obtained the
full picture of the mechanism behind Blurry versus Sharp
(Section 5.1).

As a step further, we have derived a condition on controlling
generalization for our target model with additional statis-
tical settings (Theorem 5.1). As we will see, the derived
inequality (Eq. 27) imposes concrete constraints on both the
sample complexity and model complexity, which provides
practical guidance on model design and dataset construc-
tion for further applications (Section 5.2). Conclusions and
future directions are provided in Section 6.

Generally, our contributions are outlined as follows,

1. A proposed geometrical formulation of image-to-
image translation task with adversarial learning (Sec-
tion 2)

2. Reduction of the adversarial loss to a set of independent
learning tasks between paired charts (Theorem 3.1)

3. An extended definition of generalization for condi-
tional GAN (Definition 4.2) and a derived condition on
generalization (Theorem 5.1) for our target model

4. Theoretical interpretations for several unclear empiri-
cal phenomenons reported in previous works (Section
3.3 & 5.1), together with a practical guidance on model
design and dataset construction for practitioners (Sec-
tion 5.2)
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2. Preliminaries
In Section 2.1 & 2.2, we equip a set of images with addi-
tional geometrical structures. In Section 2.3, we correspond-
ingly reformulate image-to-image translation with adver-
sarial learning by extending the concept of generator and
discriminator. A reformulation of our target model will thus
be given in Eq. 7 & 8 as a basis for analysis in the remainder
of this paper.

2.1. Set of Images as Smooth Manifold

Without loss of generality, we mainly focus on the image-to-
image translation task from a source set of RGB images IS
to a target set IT , with images of the same resolution w×h.
As is well-known, an image can always be considered as an
element in an ambient Euclidean space (here, specifically
R3×w×h). In fact, there also exists an intrinsic structure
over the image set alongside with the ambient space, as is
validated by various empirical works previously (Lu et al.,
1998; Zhu et al., 2016). Such an intrinsic structure is usually
formulated as a smooth manifold mathematically (Arjovsky
& Bottou, 2017; Lei et al., 2017). For the basics of intrinsic
geometry, see standard texts such as Lee’s (2010).

In this work, we make a similar assumption as follows,
Assumption 2.1. There exist smooth, locally compact d-
dimensional manifoldsM,N embedded in Rw×h, with con-
structed atlas as {(Ui, ϕi)}Ki=1, {(Vi, ψi)}Ki=1, respecting
pairwise disjointness property, i.e. ∀i, j ∈ [K], Ui ∩ Uj =
∅, Vi∩Vj = ∅ if i 6= j, such that IS ⊂M, IT ⊂ N . ([K]
denotes the set {1, 2, . . . ,K} and K a natural number)

As a comment, the assumption of equal dimensions con-
tained above is only for the convenience of notation simpli-
fication. Results presented in the remainder of this paper
can be directly extended to the situation when source and
target image manifolds are of different dimensions.

2.2. Induced Probability Measure on Image Manifold

With Assumption 2.1, we are able to divide the image sets
IS ⊂ M, IT ⊂ N into finer subsets, formally, that is
IS = ∪Kk=1IkS , IT = ∪Kk=1IkT , where ∀k ∈ [K], IkS

.
=

{sik}
mk
i=1 ⊂ Uk and IkT

.
= {tik}

nk
i=1 ⊂ Vk.

In order to describe the relatedness of images from the same
chart, the following assumption is imposed.
Assumption 2.2. For each k ∈ [K], there exists probability
measures µk, νk : B(Rd) → [0, 1], supported on ϕk(Uk)

and ψk(Vk) respectively, such that {ϕk(sik)}mki=1
i.i.d.∼ µk,

{ψk(tik)}nki=1
i.i.d.∼ νk, where B(Rd) denotes the Borel set

over Rd.

With probability measures defined on each chart (precisely,
its homeomorphism as Rd), we would like to ”glue” them

together to induce a unified probability measure (denoted
respectively as µM, νN ) globally over the underlying mani-
fold structure, with the aid of the following lemma.
Lemma 2.1. Given a smooth manifoldM = {(Ui, ϕi)}Ki=1

with pairwise disjointness and {µi}Ki=1 as the probabil-
ity measures supported on {ϕi(Ui)}Ki=1 correspondingly, a
function µM : B(M)→ [0, 1] is defined by

dµM(s) =
1

K

K∑
i=1

1s∈Uidµi ◦ ϕi(s) (6)

Then µM is a probability measure defined onM.

Proof. See Appendix A. Although Definition 6 seemingly
contains some notation abusing (consider if s /∈ Ui, ϕi(s)
is not defined), we can actually avoid this awkwardness
according to the pairwise disjointness assumption, that is, all
except one 1{s ∈ Ui} is non-vanishing for any s ∈M.

2.3. A Geometrical Formulation of Image-to-Image
Translation with Adversarial Learning

After assuming additional geometrical structure on image
set, the definition of generator and discriminator in our target
model requires slight modifications correspondingly.

On Generator In our context, the generator should be re-
defined as a mapping between manifolds instead of flat
Euclidean spaces. Formally, we denote the generator as
G :M→N , a measurable mapping w.r.t.M, N .

On Discriminator As we have pointed out, within the
WGAN setting, the role of discriminator is correspondingly
abdicated to the set of joint distributions Π(pr, pg) and the
norm ‖ • ‖ contained in Eq. 4. However, the latter is usually
not well-defined in manifold settings. As a natural way
to make Eq. 4 & 5 proper, we further equip the manifold
structure N underlying the target set with a Riemmanian
metric τ (Jost, 2008), with a little more technical conditions
for regularity. Eventually it comes to our formulation of the
adversarial loss and the corresponding identity loss, with
relatively minor modifications compared with Eq. 3 & 5.

L
′

adv(G) = inf
γ∈Π(µM,νN )

E(s,t)∼γdN (G(s), t) (7)

L
′

L1
(G) = Es,t∼pr(s,t)dN (G(s), t) (8)

where dN (•, •) denotes the τ -induced geodesic distance on
N (Jost, 2008). For compatibility with inner-relatedness,
we further assume ∀i 6= j ∈ [K], ∀x, y ∈ Vi, z ∈ Vj ,
dN (x, y) ≤ dN (x, z).

3. Natural Localization of Adversarial Loss
A widely recognized difficulty for obtaining analytic solu-
tions for adversarial loss lies in the nested optimization prob-
lem (Goodfellow et al., 2014) (here, specifically minG Ladv).
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In order to avoid such an obstacle, we will prove in this sec-
tion that, within our proposed framework above, the inner
infimum term in Eq. 7 could be solved in closed form with
non-trivial constraints on candidate set of generator G (The-
orem 3.1). Furthermore, we have observed that the closed
form has a decomposition as a set of independent learning
tasks on paired charts (i.e. a tuple of charts respectively
of M,N , such as (Ui, Vj)), with the relations uniquely
determined by the candidate sets (Eq. 16). This result di-
rectly leads to theoretical interpretations fully for Source of
Artifacts and partially for Blurry versus Sharp (Section 3.3).

3.1. An Equivalent Form of L′

adv

We start our derivation by giving the explicit form of the
probability measures µM, νN on manifolds, constructed
with the aid of Lemma 2.1.

dµM(s)
.
=

1

K

K∑
i=1

1s∈Uidµi ◦ ϕi(s) (9)

dνN (t)
.
=

1

K

K∑
i=1

1t∈Vidνi ◦ ψi(t) (10)

For simplicity, we denote dµ̃i = dµi◦ϕi and dν̃i = dνi◦ψi,
∀i ∈ [K].

We then expand L′

adv with assumed pairwise disjointness
property and obtain

inf
γ∈Π(µM,νN )

E(s,t)∼γ

K∑
i=1

K∑
j=1

1s∈Ui1t∈VjdN (G(s), t)

(11)

By exchanging the expectation operator with summations
according to Fubini’s theorem (Rudin, 2010) and writing
the expectation directly in integral form, we have

inf
γ∈Π(µM,νN )

K∑
i=1

K∑
j=1

∫
Ui

∫
Vj

dN (G(s), t)dγ(s, t) (12)

With a similar technique adopted in Dai et al. (2008), for
every γ ∈ Π(µM, νN ), there exist functions ∆ : N ×N →
R+ ∪ {0} and fγ :M→N , satisfying

dγ(s, t) = dγ(t|s)dµM(s) = ∆(fγ(s), t)dµM(s)dνN (t)
(13)

where ∆ has an intuitive interpretation as a metric of similar-
ity between elements on manifold N , usually independent
of the choice of path and compatible with inner-relatedness.
Recall N as a Riemmanian manifold is naturally equipped
with a ’divergence’ metric τ . We claim it is proper to absorb
the term ∆(fγ(s), t) into dN (G(s), t) with the following
observations.

a) Equivalence of optimization problems (without bound-
ary condition) (Boyd & Vandenberghe, 2004)

– minG minfγ ∆(fγ(s), t)dN (G(s), t)

– minG ∆(G(s), t)dN (G(s), t)

considering the relatively large learning capacity of
G, usually implemented as a neural network (Sontag,
1998).

b) It is possible to alter the choice of the original metric τ
to be the metric τ

′
induced by a modified distance func-

tion d
′

N (•, •) = ∆(•, •)dN (•, •), which is asserted by
the following lemma.

Lemma 3.1. Consider Riemmanian manifold (N , τ)
with curvature locally bounded above and below, τ ∈
C∞ and its induced distance function denoted as dN ,
then for any path-independent function f : N ×N →
R+ ∪ {0}, there exists a Riemmanian metric τ

′
on N ,

induced by the distance function

d
′

N (x, y) = f(x, y)dN (x, y) ∀x, y ∈ N

Proof. See Appendix A.

After we rearrange dN (G(s), t)dγ as d
′

N (G(s), t)dγ′, the
boundary condition

∫
M

∫
N dγ

′
= 1 requires renormaliza-

tion. By introducing an additional matrix A ∈ H(K)
s.t. H(K)

.
= {A ∈ RK×K |∀j ∈ K,

∑
iA

ij = K;
∀i, j ∈ [K], Aij ≥ 0}, the adversarial loss minG L

′

adv(G)
can be reformulated as (following Eq. 9, 10, 12, with details
in Appendix A)

min
G

min
A∈H(K)

K∑
i=1

K∑
j=1

∫
Ui

∫
Vj

Aijd
′

N (G(s), t)dµ̃i(s)dν̃j(t)

(14)

3.2. Closed-Form Solution as Learning Tasks on Paired
Charts

As is discussed above, the form of Eq. 14 ba-
sically comes from a re-choice of Riemmanian met-
ric on N and a reparametrization of dγ(s, t) as∑K
i=1

∑K
j=1A

ijdµ̃i(s)dν̃j(t), s.t. A ∈ H(K). Although
it is almost infeasible to obtain a closed form solution for
arbitrary mapping G, we are curious of the possibility by
imposing non-trivial constraints on the candidate set of G.
In our approach, we first propose the following definition.

Definition 3.1 (pairwise topological immersion family (PTI–
family)). Given topological manifoldsM = {(Ui, ϕi)}Ki=1

and N = {(Vi, ψi)}Ki=1, the set of mappings Fp = {G :
M → N|G(Ui) ⊂ Vp(i),∀i ∈ [K]}, where p ∈ Sym(K)
the symmetric group of [K] (Cameron, 1999), is called pair-
wise topological immersion mappings indexed by p, w.r.t
M, N .
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Postponing remarks on this definition (Section 3.3.1), a
main result of this paper will be provided subsequently,
which shows that, we can indeed obtain a meaningful closed
form of solution for the inner minimization problem, by
constraining the candidate set of G as an arbitrary PTI-
family (Def. 3.1).

Theorem 3.1. [Natural Localization of Adversarial Loss]
For any p ∈ Sym(K), the optimization problem below (com-
pared with Eq. 14)

min
G∈Fp

min
A∈H(K)

K∑
i=1

K∑
j=1

∫
Ui

∫
Vj

Aijd
′

N (G(s), t)dµ̃i(s)dν̃j(t)

(15)

is equivalent to

min
G∈Fp

K∑
i=1

∫
Ui

∫
Vp(i)

d
′

N (G(s), t)dµ̃i(s)dν̃p(i)(t) (16)

In other words, the optimal A∗ ∈ H(K) has the closed
form as (A∗)ij = Kδ

p(i)
j , where δp(i)j is the Kronecker

delta function.

Sketch of Proof. Fix i, j ∈ [K], s.t. j 6= p(i) and arbitrary
G ∈ Fp. The key step lies in comparing the terms (remem-
ber the positiveness of Aij)

Tnon-paired =

∫
Ui

∫
Vj

d
′

N (G(s), t)dµ̃i(s)dν̃j(t)

and

Tpaired =

∫
Ui

∫
Vp(i)

d
′

N (G(s), t)dµ̃i(s)dν̃p(i)(t)

For any s ∈ Ui, G(s) ∈ Vp(i) ∩ Vj = ∅, which leads
to ∀t ∈ Vp(i), t

′ ∈ Vj , dN (G(s), t) ≤ dN (G(s), t
′
). And

thus Tnon-paired ≥ Tpaired. A rigorous proof can be found in
Appendix A.

3.3. Discussions & Interpretations

The final part of this section is devoted to a discussion
on what Definition 3.1 and Theorem 3.1 actually mean,
together with their significant roles in interpretations for the
empirical phenomenons.

3.3.1. DISCUSSION WITH AN ILLUSTRATIVE EXAMPLE

Intuitively, we may consider each chart onM,N as a cluster
of images, which has inner-relatedness imposed by {µi}Ki=1,
{νi}Ki=1. For example, in facial expression translation tasks
(Choi et al., 2017), Ui contains a set of Bob’s poker face,
while Vj , Vk are respectively sets of Alice’s and Bob’s face

with smile. A PTI-family Fp exactly characterizes the gener-
ating tendency of a given generator G. Let us come back to
the example. Fix i 6= j 6= k. Assume p, q ∈ Sym(K) with
p(i) = j while q(i) = k. Thus with the input as an image
of Bob’s poker face, generators from Fp tends to generate a
sample of Alice’s smiling face, while those from Fq prefer
a sample of smiling Bob. Note that, although it is clear to
us the latter behavior is expected, the adversarial learning
model itself however hardly has such a knowledge.

It comes to the significance of Theorem 3.1, which is not
just an intention to give a closed form for further analysis.
More essentially, such a theorem points out the role of
{Fp}p∈Sym(K) as attractors (for attractors in a general sense,
see Luenberger’s (1979)) during optimization. As we can
see, only if the optimizer chooses some generator G ∈ Fp
at some epoch, the original optimization problem (Eq. 15)
will immediately degenerate to learning tasks on paired
charts {(Ui, Vp(i))}Ki=1 (Eq. 16). The generator will thus
be trapped in the subset Fp until the end of the training.
This theorem can be considered as a support to a recent
result called imaginary adversary, which points out that
in WGAN setting, the minimax game between generator
and discriminator can be resolved under some technical
conditions (Lei et al., 2017).

3.3.2. PARTIAL INTERPRETATIONS FOR EMPIRICAL
RESULTS

Source of Artifacts Although it brings sharper results with
the adversarial loss, a non-negligible proportion of artifacts
is observed in experiments (Isola et al., 2017; Choi et al.,
2017). As a reasonable interpretation, we suggest it is
tightly related with what we have discussed above. Since
the adversarial learning model itself has no knowledge of
the expected pairing relation, or formally the ground-truth
p ∈ Sym(K). Although the choice of G (thus Fp) can be
guided by the empirical loss during the training phase, it still
has a large probability to mistake. Especially when the opti-
mal pairing it observes is different from the expected one,
a PTI-family as an attractor will let the choice irrevocable.
A clever approach is by imposing oracle as a regularization
term with L1-loss (Eq. 8), which plays the role as a rectifier
for choice of p.

Blurry versus Sharp In previous empirical studies, after
learning with identity loss (Eq. 8) alone, the final gener-
ator usually produces more blurry images compared with
the generator after learning with the adversarial loss (Eq.
7). When both of the losses are optimized w.r.t. the same
hypothesis space, the identity loss needs to learn a global
mappingG∗ :M→N , while, as a direct result of Theorem
3.1, learning with adversarial loss theoretically only requires
to learn independent local mappings {fi : Ui → Vp(i)}Ki=1

first and then gluing them into a global mapping with a
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well-known theorem from general topology called partition
of unity (Rudin, 2010). Intuitively, learning local mappings
independently requires much smaller capacity of G, com-
pared with learning a globally compatible one (a theoretical
justification, see Proposition 5.1). Recently, a model with
a similar consideration by artificially localizing the adver-
sarial loss to improve the generating quality was proposed
(Qi et al., 2017). However, their work mainly targets on
image generation (i.e. only the target manifold structure
is considered) and stays on an empirical level, with little
theoretical analysis for the inherent mechanism.

As a complement and a step further, we will provide a for-
mal analysis on the benefit of localization detailedly (Sec-
tion 5.1) to complete our interpretations. Due to the indis-
pensable role of the concept of generalization in analyzing
model’s learning capability (Vapnik & Vapnik, 1998), we
will first present an extended definition of generalization for
conditional GAN in the next section.

4. Generalization for Conditional GAN
4.1. Extension from Previous Definition

As generalization plays a central role in analyzing learning
models from a theoretical aspect, there have been previous
efforts on proposing specific definitions for GAN consider-
ing its difference from conventions. One of these definitions
is provided as follows, with our notations.

Definition 4.1. (Arora et al., 2017) [Generalization w.r.t
Divergence] A divergence D(•, •) is said to generalize with
m training samples and error ε if for the learned distribution
νN , the following inequality holds with high probability,

|D(ν̂real, ν̂G)−D(νreal, νG)| < ε (17)

where ν̂real, ν̂G are empirical versions of real and generated
distributions with νreal the real distribution as ground-truth.

Although their work marks the first attempt to study the gen-
eralization capability of GAN, such a definition has several
potential shortcomings: a) generalization is defined w.r.t
specific divergence, instead of the generator itself. From our
perspective, it is still the generator that holds the fundamen-
tal position in generative tasks. b) lack of the extensibility
to conditional GAN, which however plays an increasingly
significant role in empirical research and applications. Such
a deficiency directly makes it improper to be applied to
analyze our target model.

In order to alleviate these possible downsides, we propose
an extended version of generalization for both GAN and its
deviations with respect to a learned generator.

Definition 4.2 (Generalization w.r.t Generator). Given a
divergence D(•, •) and a generator G :M→N , we call
G generalizes with (m,n) training samples respectively

from source (or condition) and target distributions and error
ε if the following inequality holds with high probability,

D(G(µ̂mM), νN )−D(ν̂nN , νN ) < ε (18)

where µ̂mM, ν̂
n
N are estimators of source and target distribu-

tions, with µM, νN the corresponding ground-truth distri-
butions and G(µ̂mM)

.
= µ̂mM ◦G−1, the induced distribution

on N (Chung, 2001).

Compared with Definition 4.1, our extension explicitly con-
tains the generator as an essential factor for generalization.
Furthermore, instead of assuming the source distribution as
a gaussian priorly known, we depict it with an empirical
estimator fromm observed samples. Notice our definition is
actually an extension of Definition 4.1, since, by limiting m
to infinity and assuming G of sufficient learning capability
(in a classical sense), Inequality 18 will directly degenerate
to Inequality 17 in the previous definition.

4.2. Relations of Generalization in Different Senses

As an auxiliary theorem for further analysis of our target
model in the next section, we will derive the relation of
generalization in different senses as well.

We first specify the divergence D(•, •) in Definition 4.2 as
Lukaszyk-Karmowski metric (Łukaszyk, 2004)

DLK(ν, ν
′
) =

∫
Rd

∫
Rd
‖x− x

′
‖dν(x)dν

′
(x

′
) (19)

where ν, ν
′

are arbitrary probability measures supported on
Rd (compared with Eq. 16). Note the Euclidean form above
brings convenience for analysis and it actually only requires
several technical steps to extend the following result to an
intrinsic form (Lemma 5.1).

Theorem 4.1. Consider generator G : Rd → Rd satisfying
Lipschitz condition with constant MG and µX , νY are prob-
ability measures on Rd respectively with {xi}nXi=1

i.i.d.∼ µX

and {yi}nYi=1
i.i.d.∼ νY .

Assume the classical generalization bound satisfies the fol-
lowing inequality with probability 1− δ

Ex∼µX ,y∼νY ‖G(x)− y‖ −
nX∑
i=1

nY∑
j=1

‖G(xi)− yj‖
nXnY

< εclassical

(20)

where εclassical
.
= ε(nX , nY , µX , νY , δ) the upper bound

and ERM-principle (Vapnik & Vapnik, 1998) is satisfied
with η (i.e. 1

nXnY

∑nX
i=1

∑nY
j=1 ‖G(xi)− yj‖ < η), then G

generalizes with (nX , nY ) training samples and error εadv

with probability 1− δ, i.e.

DLK(G(µ̂nXX ), νY )−DLK(ν̂nYY , νY ) < εadv (21)
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if the following condition is satisfied

εclassical−εadv +η < DLK(νY , ν̂
nY
Y )−MGDLK(µX , µ̂

nX
X )
(22)

Proof. See Appendix A.

As Theorem 4.1 indicates, unlike the classical generalization
bound (especially in VC sense (Vapnik & Vapnik, 1998)),
the generalization error in adversarial learning is also af-
fected by the variation of distributions in source and target
distributions.

5. Benefits of Localization and Conditions of
Generalization

By auxiliary of the extended definition of generalization
above, we are now able to complete our interpretations for
Blurry versus Sharp (Section 5.1). As a step further, we
will derive a concrete condition (Theorem 5.1) to control
the generalization capability of our target model, which will
directly provide practical guidance on model design and
dataset construction for practitioners.

We start by specifying some additional statistical settings,
only for the sake of concreteness. Recall in Assumption 2.2,
we have imposed abstract probability measures {µi}Ki=1,
{νi}Ki=1 on {ϕi(Ui)}Ki=1 and {ψi(Vi)}Ki=1 respectively. We
further specify such an assumption with gaussian settings
locally.

Assumption 5.1. There exist unknown mean vectors in
Rd, denoted as {xi}Ki=1, {yi}Ki=1, and known covariance
matrices ΣM,ΣN ∈ Rd×d, such that for each i ∈ [K],
µi = N (•;xi,ΣM), νi = N (•; yi,ΣN ), whereN (•;x,Σ)
denotes the normal distribution parametrized by (x,Σ).
Additionally, we set the sample sizes on charts {Ui}Ki=1,
{Vi}Ki=1 equally as m, n, without loss of generality.

It ought to be noticed that our gaussian assumption above
will not impose much limitation on our discussion, mainly
because its influence remains local (compared with origi-
nal GAN (Goodfellow et al., 2014)) and each gaussian is
partially unknown (compared with Arora et al. (2017)).

5.1. Benefits of Localization

In our previous interpretation for Blurry versus Sharp (Sec-
tion 3.3), a claim has remained unjustified that learning a set
of local mappings is much easier compared with learning
a globally compatible one. With the following observa-
tions: a) Lipschitz condition can be always satisfied with
techniques during training phase (Arjovsky et al., 2017).
b) εclassical, η,MG remain constant for the same hypothesis
space. c) The target-related term DLK(ν, ν̂) is identical in

local and global task when the pairing relation is unobserved,
we reformulate Inequality 22 as

C + λDLK(µ, µ̂) < εadv (23)

where C .
= εclassical + η −DLK(ν, ν̂) a constant and λ .

=
MG > 0.

By denoting probability measures underlying the global task
as µX = 1

K

∑K
i=1 µi and νY = 1

K

∑K
i=1 νi in Euclidean

sense, it is sufficient to compare the two terms below to
justify our previous claim.

εlocaladv =
1

K

K∑
i=1

DLK(µi, µ̂
m
i ) (24)

εglobaladv = DLK(
1

K

K∑
i=1

µi, µ̂
Km
X ) (25)

Intuitively, the term εlocaladv represents the average generaliza-
tion errors for all the local tasks (µi → νi, ∀i ∈ [K]), while
εglobaladv can be interpreted as the generalization error when
the learning process is carried out globally (µX → νY ).
Note, for convenience, we have set the pairing relation
e ∈ Sym(K) as e(i) = i, ∀i ∈ [K] (the corresponding
PTI-family denoted as Fe). With the following proposition,
we have eventually completed our unfinished interpretations
for the empirical results.

Proposition 5.1. In the settings above, we always have

εlocaladv < εglobaladv

Proof. See Appendix A. Intuitively, let us consider an ex-
tremal situation when µi = δxi , νi = δyi andm→∞ (δx is
the Dirac function as a distribution) for each i ∈ [K]. Thus
εlocaladv = 0, while εglobaladv ≥ supi,j∈[K] ‖xi − xj‖ > 0.

5.2. Conditions of Generalization

As a step further, we would like to derive some technical
conditions under which the target model will generalize
well, in the sense of adversarial learning (Definition 4.2).

In order to apply Theorem 4.1, we introduce the following
lemma which points out the equivalence between L-K metric
(Eq. 19) with assumed probability measures in Euclidean
space and each local objective defined on manifolds.

Lemma 5.1. ∀i ∈ [K], consider a measureable mapping f̃ :
Ui → Vi with f .

= ψi ◦ f̃ ◦ϕ−1
i satisfies Lipschitz condition,

then
∫
Ui

∫
Vi
d

′

N (f̃(s), t)dµ̃i(s)dν̃i(t) ' DLK(f(µi), νi),
i.e. there exists constants 0 < Cl < Cu <∞ such that

Cl <

∫
Ui

∫
Vi
d

′

N (f̃(s), t)dµ̃i(s)dν̃i(t)

DLK(f(µi), νi)
< Cu (26)
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Sketch of Proof. The key observation lies in, with the mea-
sureability of f̃ and smoothness of ϕi, ψi, the induced
mapping ν̃

′
= 1

Ẽ
f̃(µi) and ν

′
= 1

E (ψi ◦ f̃)(µi) are
also probability measures respectively on f̃(Ui) ⊂ Vi
and (ψi ◦ f̃)(Ui) ⊂ ψi(Vi) (with Ẽ, E some normalizing
factor), with bounded range a.e., which basically comes
from the Lipschitz condition. We also use the assumption
f̃(Ui) ⊂ Vi and tr(ΣN ) < ∞. For the rest of the proof,
see Appendix A.

We are now able to instantiate the generic inequality on
generalization in the form of the following theorem. Note
we depict the classical generalization error term in VC sense
and study the condition for εadv = 0, which means the
generated distribution is even better than an estimated target
distribution from m real samples.

Theorem 5.1. Under the assumptions above, consider a
generator G ∈ Fe and a hypothesis space H with VC-
dimension bound by constant Λ. Assume for each i ∈ [K],
the restriction of G to a pair of charts fi

.
= G↓(Ui,Vi) ∈ H

with ψi ◦G◦ϕ−1
i satisfies Lipschitz condition with constant

MG, then G generalizes globally with (Kn,Km) samples
only if the following inequality is satisfied with probability
1− C(ε,Λ)(nmε2)τ(Λ)e−nmαε

2

,

ε+
1

nm
max{

n∑
i=1

m∑
j=1

dN (G(sik), tjk)}Kk=1 <

1√
m

√
tr(ΣN ) + 2tr(ΣN )−MG(

1√
n

√
tr(ΣM) + 2tr(ΣM))

(27)

where C(ε,Λ) and τ(Λ) are positive functions independent
from n,m and α ∈ [1, 2] a constant.

Proof. See Appendix A. Besides Theorem 4.1 & Lemma
5.1, we have applied a general form of Vapnik-Chervonenkis
theorem (Vayatis & Azencott, 1999) for worst case analysis
and a non-asymptotic theorem from information geometry
as follows,

Theorem 5.2. (Amari & Nagaoka, 2007) The mean square
error of a biased-corrected first-order efficient estimator û
to µ is given by the expansion (with N observed samples):

E[(ûa − ua)(ûb − ub)] =
1

N
gab +O(

1

N2
)

where gab denotes the Fisher metric on the statistical mani-
fold underlying a parametrized family of probability.

Discussions & Guidance for Practitioners A brief discus-
sion on Theorem 5.1 and its possible guidance on practice

will serve as the last topic. As we can see, generalization
happens with a higher probability when the right side of
Inequality 27 yields larger and the left side becomes smaller.
The former situation corresponds to a smaller variance of
each local source distribution, especially when MG the Lip-
schitz constant lets the tr(ΣM) term dominate. The latter
situation corresponds to a uniformly lower empirical risk.
As each local chart has an intuitive interpretation as a set
of related images, it is reasonable to make the following
suggestions on dataset construction and model design.

• The source set of images should be of lower inner-
similarity, i.e. a set of N different individuals’ poker
face will give a better generator rather than a set of N
different photos of the same person’s poker face.

• A blind increase in total number of images will hardly
help generalization, while the balancedness in numbers
of different objects is what actually matters.

• Classical generalization capacity (Vapnik & Vapnik,
1998) and smoothness of learning model w.r.t. data
manifolds (Belkin et al., 2006) should be considered
equivalently important in model design for such tasks.

6. Conclusion and Further Directions
In this paper, we have focused on providing a solid theoret-
ical interpretations for some critical but unclear empirical
phenomenons reported in Isola et. al (2017). Via reformu-
lating Isola’s model within a brand-new geometrical frame-
work (Section 2), we have proved that the target model has
a natural localized form as independent learning tasks on
paired charts (Theorem 3.1), which directly provides a can-
didate interpretation for their experimental results (Section
3.3). Furthermore, with our extension of the generalization
concept for GAN to conditional GAN case (Definition 4.2),
we have successfully described the inherent mechanism of
the target model in a full picture (Section 5.1). Our de-
rived generalization condition (Theorem 5.1) also provides
constructive guidance for further empirical studies (Section
5.2).

Actually, our theoretical results can be easily decoupled
from the image-to-image translation setting to a much gen-
eral case, that is, learning translation from a source manifold
structure to a target one via adversarial learning. Further
directions in applications, such as applying our theoretical
results for improving the current models or devising new
architectures for better generating and translation perfor-
mance, are potentially fruitful. For theorists, our framework
for analysis can be considered as an attempt to understand
the far-more complicated mechanism behind adversarial
learning models in a specific context. More exciting the-
oretical results based on our theoretical framework awaits
further dedications.
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