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Abstract

Statistical learning relies upon data sampled from
a distribution, and we usually do not care what
actually generated it in the first place. From the
point of view of causal modeling, the structure of
each distribution is induced by physical mecha-
nisms that give rise to dependences between ob-
servables. Mechanisms, however, can be mean-
ingful autonomous modules of generative mod-
els that make sense beyond a particular entailed
data distribution, lending themselves to transfer
between problems. We develop an algorithm to re-
cover a set of independent (inverse) mechanisms
from a set of transformed data points. The ap-
proach is unsupervised and based on a set of
experts that compete for data generated by the
mechanisms, driving specialization. We analyze
the proposed method in a series of experiments on
image data. Each expert learns to map a subset of
the transformed data back to a reference distribu-
tion. The learned mechanisms generalize to novel
domains. We discuss implications for transfer
learning and links to recent trends in generative
modeling.

1. Introduction
Humans are able to recognize objects such as handwritten
digits based on distorted inputs. They can correctly label
translated, corrupted, or inverted digits, without having to re-
learn them from scratch. The same applies for new objects,
essentially after having seen them once. Arguably, human
intelligence utilizes mechanisms (such as translation) that
are independent from an input domain and thus generalize
across object classes. These mechanisms are modular, re-
usable and broadly applicable, and the problem of learning
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Figure 1. An overview of the problem setup. Given a sample from
a canonical distribution P , and one from a mixture of transformed
distributions Qi obtained by mechanisms Mi on P , we want to
learn inverse mechanisms Ei as independent modules. Modules (or
experts) compete amongst each other for data points, encouraging
specialization.

them from data is fundamental for the study of transfer
and domain adaptation.

In the field of causality, the concept of independent mech-
anisms plays a central role both on the conceptual level
and, more recently, in applications to inference. The inde-
pendent mechanisms (IM) assumption states that the causal
generative process of a system’s variables is composed of
autonomous modules that do not inform or influence each
other (Schölkopf et al., 2012; Peters et al., 2017).

If a joint density is Markovian with respect to a directed
graph G, we can write it as

p(x) = p(x1, . . . , xd) =

d∏
j=1

p(xj |pajG), (1)

where pajG denotes the parents of variable xj in the graph.
For a given joint density, there are usually many decompo-
sitions of the form (1), with respect to different graphs. If
G is a causal graph, i.e., if its edges denote direct causa-
tion (Pearl, 2000), then the conditional p(xj |paG

j) can be
thought of as physical mechanism generating xj from its
parents, and we refer to it as a causal conditional. In this
case, we consider the factorization (1) a generative model
where the term “generative” truly refers to a physical gen-
erative process. As an aside, we note that in the alternative
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view of causal models as structural equation models, each of
the causal conditionals corresponds to a functional mapping
and a noise variable (Pearl, 2000).

By the IM assumption, the causal conditionals are au-
tonomous modules that do not influence or inform each
other. This has multiple consequences. First, knowledge
of one mechanism does not contain information about an-
other one (Appendix D). Second, if one mechanism changes
(e.g., due to distribution shift), there is no reason that other
mechanisms should also change, i.e., they tend to remain
invariant. As a special case, it is (in principle) possible to
locally intervene on one mechanism (for instance, by setting
it to a constant) without affecting any of the other modules.
In all these cases, most of (1) will remain unchanged. How-
ever, since the overall density will change, most generic
(non-causal) conditionals would change.

The IM assumption can be exploited when performing
causal structure inference (Peters et al., 2017). However, it
also has implications for machine learning more broadly. A
model which is expressed in terms of causal conditionals
(rather than conditionals with respect to some other factor-
ization) is likely to have components that better transfer or
generalize to other settings (Schölkopf et al., 2012), and its
modules are better suited for building complex models from
simpler ones. Independent mechanisms as sub-components
can be trained independently, from multiple domains, and
are more likely to be re-usable. They may also be easier to
interpret and provide more insight since they correspond
to physical mechanisms.

Animate intelligence cannot afford to learn new models
from scratch for every new task. Rather, it is likely to rely
on robust local components that can flexibly be re-used
and re-purposed. It also requires local mechanisms for
adapting and training modules rather than re-training the
whole brain every time a new task is learned. Currently,
machine learning excels at optimizing well-defined tasks
from large i.i.d. datasets. However, if we want to move
towards life-long learning and generalization across tasks,
then we need to understand how modules can be learnt from
data and shared between tasks.

In the present paper, we focus on a class of such modules,
and on algorithms to learn them from data. We describe
an architecture using competing experts that automatically
specialize on different image transformations. The resulting
model is attractive for lifelong learning, with the possibility
of easily adding, removing, retraining, and re-purposing its
components independently. It is unsupervised in the sense
that the images are not labelled by the transformations they
have undergone. We only need a sample from a reference
distribution and a set of transformed images. The trans-
formed images are based on another sample, and no pairing
or information about the transformations is available.

We test our approach on MNIST digits which have under-
gone various transformations such as contrast inversion,
noise addition and translation. Information about the na-
ture and number of such transformations is not known at
the beginning of training. We identify the independent
mechanisms linking the reference distribution to a distri-
bution of modified digits, and learn to invert them with-
out supervision.

The inverse mechanisms can be re-purposed as preproces-
sors, to transform modified digits which are subsequently
classified using a standard MNIST classifier. The trained
experts also generalize to Omniglot characters, none of
which were seen during training. These are promising re-
sults pointing towards a form of robustness that animate
intelligence excels at.

2. Related work
Our work mainly draws from mixtures of experts, domain
adaptation, and causality.

Early works on mixture of experts date back to the early
nineties (Jacobs et al., 1991; Jordan & Jacobs, 1994), and
since then the topic has been subject of extensive research.
Recent work includes that of Shazeer et al. (2017), suc-
cessfully training a mixture of 1000 experts using a gating
mechanism that selects only a fraction of experts for each
example. Aljundi et al. (2017) train a network of experts
on multiple tasks, with a focus on lifelong learning; au-
toencoders are trained for each task and used as gating
mechanisms. (Lee et al., 2016) propose Stochastic Multiple
Choice Learning, an algorithm which resembles the one we
describe in Section 3, aimed at training mixture of experts
to propose a diverse set of outputs. The main differences
are that our model is trained jointly with a learned selection
system which is valid also at test time, that our trained ex-
perts learn independent mechanisms and can be combined
(cf. Figure 8), and in the way experts are initialized.

Another research direction that is relevant to our work is
unsupervised domain adaptation (Bousmalis et al., 2017).
These methods often use some supervision from labeled
data and/or match the two distributions in a learned feature
space (e.g. Tzeng et al., 2017).

The novelty of our work lies in the following aspects: (1)
we automatically identify and invert a set of independent (in-
verse) causal mechanisms; (2) we do so using only data from
an original distribution and from the mixture of transformed
data, without labels; (3) the architecture is modular, can be
easily expanded, and its trained modules can be reused; and
(4) the method relies on competition of experts.

Ideas from the field of causal inference inspire the present
work. Understanding the data generating mechanisms plays
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a key role in causal inference, and goes beyond the sta-
tistical assumptions usually exploited in machine learning.
Causality provides a framework for understanding how a
system responds to interventions, and causal graphical mod-
els as well as structural equation models (SEM) are common
ways of describing causal systems (Pearl, 2000; Peters et al.,
2017). The IM assumption discussed in the introduction can
be used for identification of causal models (Daniušis et al.,
2010; Zhang et al., 2015), but causality has also proven
a useful tool for discussing and understanding machine
learning in the non-i.i.d. regime. Recent applications in-
clude semi-supervised learning (Schölkopf et al., 2012) and
transfer learning (Rojas-Carulla et al., 2015), in which the
authors focus only on linear regression models. We seek
to extend applications of causal inference to more complex
settings and aim to learn causal mechanisms and ultimately
causal SEMs without supervision.

On the conceptual level, our setting is related to recent
work on deep learning for disentangling factors of varia-
tion (Chen et al., 2016; Higgins et al., 2017) as well as
non-linear ICA (Hyvarinen & Morioka, 2016). In our work,
causal mechanisms play the role of factors of variation. The
main difference is that we recover mechanisms as inde-
pendent modules.

3. Learning causal mechanisms as
independent modules

The aim of this section is twofold. First, we describe the
generative process of our data. We start with a distribu-
tion P that we will call “canonical” and an a priori unknown
number of independent mechanisms which act on (exam-
ples drawn from) P . At training time, a sample from the
canonical distribution is available, as well as a dataset ob-
tained by applying the mechanisms to (unseen) examples
drawn from P . Second, we propose an algorithm which
recovers and learns to invert the mechanisms in an unsu-
pervised fashion.

3.1. Formal setting

Consider a canonical distribution P on Rd, e.g., the empir-
ical distribution defined by MNIST digits on pixel space.
We further consider N measurable functions M1, . . . ,MN :
Rd → Rd, called mechanisms. We think of these as inde-
pendent causal mechanisms in nature, and their number is
a priori unknown. A more formal definition of indepen-
dence between mechanisms is relegated to Appendix D. The
mechanisms give rise to N distributions Q1, . . . , QN where
Qj =Mj(P ).1 This setup is illustrated in Figure 1. In the
MNIST example, we consider translations or adding noise

1Each distribution Qj is defined as the pushforward measure
of P induced by Mj .

as mechanisms, i.e., the corresponding Q distributions are
translated and noisy MNIST digits.

At training time, we receive a dataset DQ = (xi)
n
i=1 drawn

i.i.d. from a mixture of Q1, . . . , QN , and a dataset DP sam-
pled independently from the canonical distribution P . Our
goal is to identify the underlying mechanisms M1, . . . ,MN

and learn approximate inverse mappings which allow us to
map the examples from DQ back to their counterpart in P .

If we were given distinct datasets DQj
each drawn from

Qj , we could individually learn each mechanism, result-
ing in independent (approximations of the) mechanisms
regardless of the properties of the training procedure. This
is due to the fact that the datasets are drawn from inde-
pendent mechanisms in the first place, and the separate
training procedure cannot generate a dependence between
them. This statement does not require that the procedure is
successful, i.e., that the obtained mechanisms approximate
the true Mj in some metric.

In contrast, we do not require access to the distinct datasets.
Instead we construct a larger setDQ by first taking the union
of the sets DQj

, and then applying a random permutation.
This corresponds to a dataset where each element has been
generated by one of the (independent) mechanisms, but we
do not know by which one. Clearly, it should be harder
to identify and learn independent mechanisms from such a
dataset. We next describe an approach to handle this setting.

3.2. Competitive learning of independent mechanisms

The training machine is composed of N ′ parametric
functions E1, . . . , EN ′ with distinct trainable parameters
θ1, . . . , θN ′ . We refer to these functions as the experts. Note
that we do not require N ′ = N , since the real number of
mechanisms is unknown a priori. The goal is to maximize
an objective function c : Rd → R with the key property
that c takes high values on the support of the canonical dis-
tribution P , and low values outside. Note that c could be a
parametric function, and its parameters could be jointly op-
timized with the experts during training. Below, we specify
the details of this rather general definition.

During training, the experts compete for the data points.
Each example x′ from DQ is fed to all experts indepen-
dently and in parallel. Comparing the outputs of all ex-
perts cj = c(Ej(x

′)), we select the winning expert Ej∗ ,
where j∗ = argmaxj(cj). Its parameters θj∗ are updated
such as to maximize c(Ej∗(x′)), while the other experts
remain unchanged. The motivation behind competitively
updating only the winning expert is to enforce specializa-
tion; the best performing expert becomes even better at
mapping x′ back to the corresponding example from the
canonical distribution. We will describe below that along-
side with the expert’s parameters, we train parameters of
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Figure 2. We show how a transformed example, here a noisy digit,
is processed by a competition of experts. Only Expert 3 is spe-
cializing on denoising, it wins the example and gets trained on it,
whereas the others perform translations and are not updated.

c (which in our experiments will be carried in an adver-
sarial fashion). Figure 2 depicts this procedure. Overall,
our optimization problem reads:

θ∗1 ,...,θ
∗
N ′=argmax

θ1 ,...,θN′

Ex′∼Q
(

max
j∈{1,...,N ′}

c(Eθj (x
′))

)
. (2)

The training described above raises a number of questions,
which we address next.

1. Selecting the appropriate number of experts. Gen-
erally, the number of mechanisms N which generated the
dataset DQ is not available a priori. Therefore, we require
an adaptive procedure to choose the number of experts N ′.
This is one of the challenges shared with most clustering
techniques. Given the modular behavior of the procedure,
experts may be added or removed during or after training,
making the framework very flexible. Assuming however
that the number of experts is fixed, the following behav-
iors could occur.

If N ′ > N (too many experts): a) some of the experts do
not specialize and do not win any example in the dataset;
or b) some tasks are divided between experts (for instance,
each expert can specialize in a mode of the distribution

of the same task). In a), the inactive experts can be re-
moved, and in b) experts sharing the same task can be
merged into a wider expert.2

If N ′ < N (too few experts): a) some of the experts special-
ize in multiple tasks or b) some of the tasks are not learned
by the experts, so that data points from such tasks lead to
a poor score across all experts. We provide experiments
substantiating these claims in appendix A.1.

2. Convergence criterion. Since the problem is unsuper-
vised, there is no straightforward way of measuring conver-
gence, which raises the question of how to choose a stopping
time for the competitive procedure. As an example, one may
act according to one of the following: a) fix a maximum
number of iterations or b) stop if each example is assigned
to the same experts for a pre-defined number of iterations
(i.e., each expert consistently wins the same data points).

3. Time and space complexity. Each example has to be
evaluated by all experts in order to assign it to the winning
expert. While this results in a computational cost that de-
pends linearly on the number of experts, these evaluations
can be done in parallel and therefore the time complexity
of a single iteration can be bounded by the complexity to
compute the output of a single expert. Moreover, as each
expert will in principle have a smaller architecture than a
single large network, the committee of experts will typi-
cally be faster to execute.

Concrete protocol for neural networks. One possible
model class for the experts are deep neural networks. Train-
ing using backpropagation is particularly well suited for the
online nature of the training proposed: after an expert wins a
data point x′, its parameters are updated by backpropagation,
while the other experts remain untouched. Moreover, recent
advances in generative modeling give rise to natural choices
for the loss function c. For instance, through adversarial
training (Goodfellow et al., 2014), one can use as objec-
tive function the output of a discriminator network trained
on the canonical sample DP and against the outputs of the
experts. In the next section we introduce a formal descrip-
tion of a training procedure based on adversarial training in
Algorithm 1, and empirically evaluate its performance.

While in this work we focus on adversarial training, pre-
liminary experiments have shown that similar results can
be achieved for example with variational autoencoders
(VAE) (Kingma & Welling, 2013). Given a VAE trained
on the canonical distribution P , one may define c(x′) as
the opposite of the VAE loss.

2However, note that in order to do this, it is necessary to first
acknowledge that the two experts have learned part of the same
task, which would require extra information or visual inspection.
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4. Experiments
In this set of experiments we test the method presented in
Section 3 on the MNIST dataset transformed with the set
of mechanisms described in detail in the Appendix C, i.e.
eight directions of translations by 4 pixels (up, down, left,
right, and the four diagonals), contrast inversion, addition
of noise, for a total of 10 transformations. We split the
training partition of MNIST in half, and transform all and
only the examples in the first half; this ensures that there is
no matching ground truth in the dataset, and that learning
is unsupervised. As a preprocessing step, the digits are
zero-padded so that they have size 32 × 32 pixels, and
the pixel intensities are scaled between 0 and 1. This is
done even before any mechanism is applied. We use neural
networks for both the experts and the selection mechanism,
and employ an adversarial training scheme.

Each expert Ei can be seen as a generator from a GAN con-
ditioned on an input image rather than (as usually) a noise
vector. A discriminatorD provides gradients for training the
experts and acts also as a selection mechanism c: only the
expert whose output obtains the higher score from D wins
the example, and is trained on it to maximize the output ofD.
We describe the exact algorithm used to train the networks
in these experiments in Algorithm 1. The discriminator is
trained to maximize the following cross-entropy loss:

max
θD

(
Ex∼P log(DθD (x))

+
1

N ′

N ′∑
j=1

Ex′∼Q
(
log(1−DθD (Eθj (x

′)))
)) (3)

For simplicity, we assume for the rest of this section that the
number of expertsN ′ equals the number of true mechanisms
N . Results where N 6= N ′ are relegated to Appendix A.1.

Neural nets details. Each expert is a CNN with five con-
volutional layers, 32 filters per layer of size 3 × 3, ELU
(Clevert et al., 2015) as activation function, batch normal-
ization (Ioffe & Szegedy, 2015), and zero padding. The
discriminator is also a CNN, with average pooling every
two convolutional layers, growing number of filters, and
a fully connected layer with 1024 neurons as last hidden
layer. Both networks are trained using Adam as optimizer
(Kingma & Ba, 2014), with the default hyper-parameters.3

Unless specified otherwise, after a random weight initial-
ization we first train the experts to approximate the identity
mapping on our data, by pretraining them on predicting iden-
tical input-output pairs randomly selected from the trans-
formed dataset. This makes the experts start from similar

3For the exact experimental parameters and architectures see
the Appendix B or the PyTorch implementation we will release.

Algorithm 1 Learning independent mechanisms using com-
petition of experts and adversarial training

Precondition: X: data sampled from P ; X ′: data sampled
from DQ; D discriminator; N ′: number of experts; T :
maximum number of iterations;
(p) highlights that the steps in the instruction can be
executed in parallel

. Initialize experts as approximately identity (p):
1 {Ei ← TrainAsIdentityOn(X ′)}N ′j=1

2 for t← 1 to T do
. Sample minibatches:

3 x, x′ ← Sample(X), Sample(X ′)
. Scores from D for all outputs from the experts (p):

4 {cj ← D(Ej(x
′))}N ′j=1

. Update D (p):
5 θt+1

D ← Adam
(
θtD,∇ logD(x)

+∇(1/N ′
∑N ′

j=1 log(1− cj))
)

. Update experts (p):
6 {θt+1

Ej
←Adam(θtEj

,∇maxj∈1,...,N ′ log(cj))}N
′

j=1

Figure 3. The top row contains 16 random inputs to the networks,
and the bottom row the corresponding outputs from the highest
scoring experts against the discriminator after 1000 iterations.

grounds, and we found that this improved the speed and
robustness of convergence. We will refer to this as approx-
imate identity initialization for the rest of the paper.

A minibatch of 32 transformed MNIST digits, each trans-
formed by a randomly chosen mechanism, is fed to all
experts Ei. The outputs are fed to the discriminator D,
which computes a score for each of them. For each exam-
ple the cross entropy loss in Equation (3) and the resulting
gradients are computed only for the output of the highest
scoring expert, and they are used to update both the dis-
criminator (when 0 is the target in the cross entropy) and
the winning expert (when using 1 as the target). In order
to further support the winning expert, we punish the losing
experts by training the discriminator against their outputs as
well. Then, a minibatch of canonical MNIST digit is used
in order to update the discriminator with ‘real’ data. We
refer to the above procedure as one iteration.

We ran the experiments 10 times with different random
seeds for the initializations. Each experiment is run for
2000 iterations.
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Figure 4. Experts’ performance, measured by discriminator scores. Each line color/style represents one expert. For each of ten different
mechanisms (top left to bottom right), the experts are being fed transformed digits. Each expert learns to specialize on a different
mechanism, as shown by the score approaching 1. Each curve is smoothed with a moving average of 50 iterations.

5. Results
The experts correctly specialized on inverting exactly one
mechanism each in 7 out of the 10 runs; in the remaining 3
runs the results were only slightly suboptimal: one expert
specialized on two tasks, one expert did not specialize on
any, and the remaining experts still specialized on one task
each, thus still covering all the existing tasks. In Figure 3 we
show a randomly selected batch of inputs and corresponding
outputs from the model. Each independent mechanism was
inverted by a different expert.

We first discuss our three main findings, and then move
on to additional experiments.

1. The experts specialize w.r.t. c . In Figure 4, we plot the
scores assigned by the discriminator for each expert on each
task in a typical successful run. Each expert is represented
with the same color and linestyle across all tasks. The
figure shows that after an initial phase of heavy competition,
the experts exhibit the desired behavior and obtain a high
score on D on one mechanism each. Note how the green
expert tries to learn two similar tasks until iteration 750 (left
and left-down translation), at which point the red expert
takes over one of the tasks. Subsequently, both specialize

rapidly. Figure 5 provides further evidence, by visualizing
that the assignments of data points to experts induced by c
are meaningful. We report the proportion of examples from
each task assigned to each expert at the beginning and at
the end of training: at first, the assignment of experts to
tasks by the discriminator is almost uniform; by the end of
the training, each expert wins almost all examples coming
from one transformation, and no others.

2. The transformed outputs improve a classifier. In or-
der to test if the committee of experts can recover a good
approximation of the original digits, we test the output of
our experts against a pretrained standard MNIST classifier.
For this, we use the test partition of the data. We compare
the accuracy for three inputs: a) the test digits transformed
by the mechanisms, b) the transformed digits after being pro-
cessed by the highest scoring experts (which tries to invert
the mechanisms), c) the original test digits. The latter can be
seen as an upper bound to the accuracy that can be achieved.

As shown by the two dashed horizontal lines in Figure 6,
the transformed test digits achieve a 40% accuracy when
tested directly on the classifier, while the untransformed
digits would achieve ≈ 99% accuracy. The accuracy for the
output digits starts at 40% — due to the identity initialization



Learning Independent Causal Mechanisms

(a) Before training

(b) After 1000 iterations
Figure 5. The proportion of data won by each expert for each trans-
formation on the digits from the test set.

of the experts — but it subsequently quickly approaches the
performance on the original digits as it is trained. Note that
after about 600 iterations, i.e., once the networks have seen
about one third of the whole dataset once, the accuracy has
almost reached the upper bound.

3. The experts learn mechanisms that generalize. Given
that towards the end of training, each expert Ei is updated
only on data points from Qi, one could imagine that they
will not perform well on data points from other distributions.
In fact this is not the case. Not only do all experts Ei gener-
alize to all other transformed distributions Qj , but also to
different datasets all together. To show this, we use the Om-
niglot dataset of letters from different alphabets (Lake et al.,
2015) and rescale them to 46×46 pixels (instead of 32×32
of MNIST, which is not an issue since the experts are fully
convolutional). We transform a random sample with all
mechanisms Mi and test each on all experts Ei, which have
only been trained on MNIST. As shown in Figure 7, each net-
work consistently applies the same transformation also on
inputs outside of the domain they have specialized on. They
indeed learn a mechanism that is independent of the input.

Having made our main points, we continue with a few
more observations.

Figure 6. Accuracy of a pretrained CNN MNIST classifier on trans-
formed test digits DQ, on the same digits after going through our
model, and on the original digits. Our system manages to invert the
transformations, with the classifier accuracy quickly approaching
the optimum. Note that 600 iterations correspond to having seen
about a third of the dataset.

The learned inverse mechanisms can be combined. We
test whether the trained experts could in principle be used to
undo several transformations applied at once, even though
the training set consisted only of images transformed by
a single mechanism. For simplicity, we assume we know
which transformations were used. In Figure 8, we test on
Omniglot letters transformed with three consecutive trans-
formations (noise, up left translation, contrast inversion) by
applying the corresponding experts previously trained on
MNIST, and correctly recover the original letters.

Effect of the approximate identity initialization. For
the same experiments but without the approximate iden-
tity initialization, several experts fail to specialize. Out of
10 new runs with random initialization, only one experiment
had arguably good results, with eight experts specializing
on one task each, one on two tasks, and the last one on none.
The performance was worse in the remaining runs. The
problem was not that the algorithm takes longer to converge
following a random initialization, as with an additional ex-
periment for 10 000 iterations the results did not improve.
Instead, the random initialization can lead to one expert win-
ning examples from many tasks at the beginning of training,
in which case it is hard for the others to catch up.

A simple single-net baseline. Training a single network
instead of a committee of experts makes the problem more
difficult to solve. Using identical training settings, we
trained a single network once with 32, once with 64, and
once with 128 filters per layer, and none of them managed
to correctly learn more than one inverse mechanism.4 Note
that a single network with 128 filters per layer has about
twice as many parameters overall as the committee of 10 ex-
perts with 32 filters per layer each. We also tried a) random
initialization instead of the approximate identity, b) reducing

4Specifically, the network performs well on the contrast inver-
sion task, and poorly on all others.
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Figure 7. Each column shows how each expert transforms the input
presented on top. We arrange the tasks such that the diagonal
contains the highest scoring expert for the input given at the top
of the column. The experts have learned the inverse mechanisms,
consistently applying them to previously unseen symbols.

the learning rate of the discriminator by a factor of 10, and
c) increasing the receptive field by adding two pooling and
two upsampling layers, without any improvement. While
we do not exclude that careful hyperparameter tuning may
enable a single net to learn multiple mechanisms, it certainly
was not straightforward in our experiments.

Specialization occurs also with higher capacity experts.
While in principle with infinite capacity and data, a sin-
gle expert could solve all tasks simultaneously, in practice
limited resources and the proposed training procedure fa-
vor specialization in independent modules. Increasing the
size of the experts from 32 filters per layer to 64 or 128
filters,5 or enlarging the overall receptive field by using two
pooling and two upsampling layers, still resulted in good
specialization of the experts, with no more than two experts
specializing on two tasks at once.

Fewer examples from the canonical distribution. In
some applications, we might only have a small sample from
the original distribution. Interestingly, if we reduce the num-
ber of examples from the original distribution from 30 000
down to 64, we find that all experts still specialize and
recover good approximations of the inverse mechanisms,
using the exact same training protocol. Although the output
digits turn out less clean and sharp, we still achieve 96%
accuracy on the pretrained MNIST classifier.

5Equivalent to an increase of parameters from∼27K to∼110K
or ∼440K parameters respectively.

Figure 8. First row: input Omniglot letters that were transformed
with noise, contrast inversion and translation up left. Second to
fourth row: application of denoising, contrast inverting and right
down translating experts. Last row: ground truth. Although the
experts were not trained on a combination of mechanisms nor on
Omniglot letters, they can be used to recover the original digits.

6. Conclusions
We have developed a method to identify and learn a set
of independent causal mechanisms. Here these are inverse
mechanisms, but an extension to forward mechanisms ap-
pears feasible and worthwhile. We reported promising re-
sults in experiments using image transformations; future
work could study more complex settings and diverse do-
mains. The method does not explicitly minimize a measure
of dependence of mechanisms, but works if the data gener-
ating process contains independent mechanisms in the first
place: As the different tasks (mechanisms) do not contain
information about each other, improving on one of them
does not improve performance on another, which is exactly
what encourages specialization.

A natural extension of our work is to consider indepen-
dent mechanisms that simultaneously affect the data (e.g.
lighting and position in a portrait), and to allow multiple
passes through our committee of experts to identify local
mechanisms (akin to Lie derivatives) from more complex
datasets — for instance, using recurrent neural networks that
allow the application of multiple mechanisms by iteration.
With many experts, the computational cost (or parallel pro-
cessing) might become unnecessarily high. This could be
mitigated by hybrid approaches incorporating gated mixture
of experts or a hierarchical selection of competing experts.

We believe our work constitutes a promising connection
between causal modeling and deep learning. As discussed
in the introduction, causality has a lot to offer for crucial
machine learning problems such as transfer or composi-
tional modeling. Our systems sheds light on these issues.
Independent modules as sub-components could be learned
using multiple domains or tasks, added subsequently, and
transferred to other problems. This may constitute a step
towards causally motivated life-long learning.
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