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Abstract
We propose and analyze an adaptive step-size
variant of the Davis-Yin three operator split-
ting. This method can solve optimization prob-
lems composed of a sum of a smooth term for
which we have access to its gradient and an ar-
bitrary number of potentially non-smooth terms
for which we have access to their proximal opera-
tor. The proposed method sets the step-size based
on local information of the objective –hence al-
lowing for larger step-sizes–, only requires two
extra function evaluations per iteration and does
not depend on any step-size hyperparameter be-
sides an initial estimate. We provide an itera-
tion complexity analysis that matches the best
known results for the non-adaptive variant: sub-
linear convergence for general convex functions
and linear convergence under strong convexity of
the smooth term and smoothness of one of the
proximal terms. Finally, an empirical compar-
ison with related methods on 6 different prob-
lems illustrates the computational advantage of
the proposed method.

1 Introduction
Minimizing the sum of a smooth and a non-smooth term
is at the core of many optimization problems that arise in
machine learning and signal processing (Rudin et al., 1992;
Candès et al., 2006; Chambolle & Pock, 2016). In a few but
important cases, such as �1 or group lasso regularization,
the non-smooth term is simple enough so that its proximal
operator is available in closed form or at least fast to com-
pute. In this case, highly scalable methods such as proximal
gradient descent (Beck & Teboulle, 2009; Nesterov et al.,
2013) or proximal coordinate descent (Richtárik & Takáč,
2014) have shown state of the art performance. However,
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the desire to model increasingly complex phenomena has
led to the development of a flurry of penalties with costly
to compute proximal operator. Examples are the overlap-
ping group lasso (Jacob et al., 2009), multidimensional to-
tal variation (Barbero & Sra, 2014) or trend filtering (Kim
et al., 2009), to name a few.

A key observation is that, despite the difficulty in comput-
ing its proximal operator, many of these penalties can be
decomposed as a sum of terms for which we have access to
their proximal operator. Proximal splitting methods like the
three operator splitting (Davis & Yin, 2017) offer a princi-
pled way to incorporate these penalties into the optimizer.
In this work we will describe a method to solve optimiza-
tion problems of the form

minimize
x∈Rp

f(x) + g(x) + h(x) , (OPT)

where f is convex and Lf -smooth (i.e., differentiable with
Lf -Lipschitz gradient) and g, h are both convex but poten-
tially non-smooth. We further assume g and h are proximal,
i.e., we have access to the proximal operator.

This formulation allows to express a broad range of prob-
lems arising in machine learning and signal processing: the
smooth term includes the least squares or logistic loss func-
tions; the two proximal terms can be extended to an arbi-
trary number via a product space formulation and as we
will see in §4.1 include many important penalties such as
the group lasso with overlap, total variation, �1 trend fil-
tering, etc. Furthermore, the penalties can be extended-
valued, thus allowing an intersection for convex constraints
through the use of the indicator function.

The three operator splitting (TOS) method (Davis & Yin,
2017) is a recently proposed method for problems of the
form (OPT). At each iteration, it only requires to evaluate
once the gradient of f and the proximal operator of g and
h. It also relies on one step-size parameter, and while it can
be set based on the Lipschitz constant of the gradient of f ,
this is not entirely satisfactory for two reasons. First, this
constant is often costly to compute. Second, this constant
is a global upper bound on the Lipschitz constant, while
locally the Lipschitz constant might be smaller, allowing
for larger step-sizes.
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Adaptive step-size methods, also known as inexact and
backtracking line search, instead choose the step-size by
verifying a sufficient decrease condition at each iteration.
This allows to take larger step-sizes and has proven to be
an important ingredient in the practical implementation of
first and second-order methods (Nocedal & Wright, 2006).

Outline and main contributions. Our main contribution
is the development and analysis of an adaptive variant of
the TOS algorithm. The proposed algorithm does not de-
pend on any step-size hyperparameter (besides an initial
estimate) and enjoys similar convergence guarantees as the
non adaptive variant. The paper is organized as follows:

• Methods. §2 describes the proposed algorithm, extended
in §2.1 to an arbitrary number of proximal terms.

• Analysis. §3 provides a convergence analysis based on
an interpretation of the algorithm as a saddle-point op-
timization method. This significantly departs from the
analysis of Davis & Yin (2017) for the non adaptive vari-
ant and results in improved and more general rates.

• Applications. §4 discusses the application to different
penalties and presents an empirical comparison on 6 dif-
ferent problems and 5 different penalties.

Notation. We denote vectors with boldface lower case
letters (i.e., x), and matrices and vector-valued functions
in boldface upper case (i.e., X , T (·)). � · � denotes the eu-
clidean vector norm. Given a matrix X ∈ Rn×p, we denote
by X the average along rows, that is, X = 1/n

�n
i=1 Xi.

We make extensive use of the proximal operator, defined
for a convex function ϕ and γ > 0 as

proxγϕ(x)
def
= argmin

z∈Rp

�
ϕ(z) +

1

2γ
�x− z�2

�
. (1)

The domain of a function f : Rp →]−∞,∞] is dom f
def
=

{x ∈ Rp | f(x) < ∞}. The indicator function is denoted
ı{condition}, which is 0 if condition is verified and +∞
otherwise. Basic properties and definitions of convex func-
tions are provided for convenience in Appendix A.

1.1 Related work

Proximal splitting methods that can solve problems involv-
ing a sum of terms by accessing the proximal operators of
their constituents can be traced back to the 1970s in the
works of Glowinski & Marroco (1975); Gabay & Mercier
(1976); Lions & Mercier (1979). There has been a surge in
interest in these methods in the last years due to their appli-
cability in machine learning (Parikh & Boyd, 2013), signal
processing (Combettes & Pesquet, 2011) and parallel opti-
mization (Boyd et al., 2011).

Algorithms to solve problems of the form (OPT) with
two or more proximal terms and a smooth term accessed
via its gradient have recently been proposed. Examples
are the generalized forward-backward splitting (Raguet
et al., 2013), the three operator splitting (TOS) (Davis
& Yin, 2017), the primal-dual hybrid gradient (PDHG)
method, proposed in (Condat, 2013b; Vũ, 2013) and an-
alyzed by Chambolle & Pock (2015) and the very recent
primal-dual three operator splitting (Yan, 2018). We note
that the last two methods can optimize a more general ob-
jective function in which h(x) is replaced with h(Kx) for
an arbitrary matrix K. The original formulation of these
methods requires to set the step-size based on criteria such
as the Lipschitz constant of the gradient of the smooth term,
but variants with adaptive step-size have recently emerged.

An adaptive step-size variant of the PDHG algorithm has
recently been proposed by Malitsky & Pock (2018, §5).
Compared to the proposed method, it requires one less
function evaluation per iteration but since the original al-
gorithm has two step-sizes, it still relies on one step-size
hyperparameter. Convergence rates are not derived.

A different adaptive step-size strategy was proposed by
Giselsson et al. (2016) as a general scheme for averaged
operators. TOS is averaged for step-sizes < 2/Lf , and we
denote the combination of both methods LSAO-TOS. An
O(1/

√
t) convergence rate in terms of the operator resid-

ual norm is derived. Unfortunately, this quantity is difficult
to relate to the more common objective function subopti-
mality used in the other contributions.

Another adaptive step-size variant of TOS was proposed
without proof in the technical report Davis & Yin (2015,
Algorithm 3). It uses the same sufficient decrease inequal-
ity as our method, although the iterates are defined differ-
ently. We found the algorithm sometimes non-convergent
and did not consider it further.

In contrast, we provide a convergence analysis for our
method that achieves a O(1/t) convergence rate for the er-
godic (i.e., averaged) iterate, and linear convergence under
stronger assumptions, matching and in some cases even im-
proving the best known rates of the non adaptive variant.

Method Adaptive Sublinear rate Linear rate
Adaptive TOS

(this work) ✓ ✓ ✓
TOS

(Davis & Yin, 2017) ✗ ✓ ✓
LSAO-TOS

(Giselsson et al., 2016) ✓ ✓1 ✗

PDHG
✗ ✓ ✗

(Condat, 2013b; Vũ, 2013)
PDHG-LS

(Malitsky & Pock, 2018) ✓ ✗ ✗

1Convergence rate in terms of operator residuals.
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2 Methods
In this section we present our main contribution, a three op-
erator splitting method with adaptive step-size. The method
is detailed in Algorithm 1 and requires at each iteration to
evaluate once the gradient of f and the proximal operators
of g and h, and perform two function evaluations of f . At
iteration t the candidate step-size γt is chosen as to ver-
ify the following sufficient decrease condition between the
iterates zt and xt+1 (Line 4):

f(xt+1) ≤ Qt(xt+1, γt) , with Qt defined as

Qt(x, γ)
def
= f(zt) + �∇f(zt),x−zt�+

1

2γ
�x−zt�2.

This inequality can be in-
terpreted as a quadratic up-
per bound condition on f at
xt+1: the right-hand side is
a quadratic Qt which is tan-
gent to f at zt with ampli-
tude (2γt)−1, and both sides
are evaluated at xt+1, de-
fined in Line 3. The under- xzt xt+1

Qt(x)

f(x)

lying principle of choosing the step-size based on the min-
imization of a quadratic upper bound has already been suc-
cessful for the proximal-gradient method, where it is also
referred to as backtracking (Beck & Teboulle, 2009) or full
relaxation (Nesterov et al., 2013). In fact, the proposed
method coincides with the aforementioned when one of the
proximal terms is constant.

By the properties of Lf -smooth functions, the sufficient de-
crease condition is verified for any γt ≤ 1/Lf . Hence
the step-size search loop always has a finite terminationand
the step-size is lower bounded by γt ≥ min{τ/Lf , γ0}.
The practical advantage of this strategy is that it allows to
consider a step-size potentially larger than 1/Lf and ver-
ify whether the above is verified at each iteration. If it is,
then the algorithm uses the current step-size, and if not, it
decreases the step-size by a factor which we denote τ .

Growing step-size strategies. We consider two different
strategies to initialize next iterate step-size. The first strat-
egy (Variant 1) is the simplest and consists in initializing
the next step-size with the current one (Line 12). In this
variant, the step-size is only allowed to decrease.

The second strategy (Variant 2) allows the step-size to in-
crease but in exchange requires the proximal term h to be
Lipschitz continuous (note, not smooth as f but only Lip-
schitz). This is the case of most penalties (i.e., �1, group
lasso, total variation, etc.) but not of indicator functions
and so is less general than the first variant. As we will see
in the applications section, the ability to grow the step-size
has an important effect on its empirical performance.

Algorithm 1: Adaptive Three Operator Splitting
Input: z0 ∈ Rp, u0 ∈ Rp, γ0 > 0, τ ∈ (0, 1)

1 for t = 0, 1, 2, . . . do
2 repeat � step-size search loop
3 xt+1 = proxγtg(zt − γtut − γt∇f(zt))

4 if f(xt+1) ≤ Qt(xt+1, γt) then
5 break � sufficient decrease verified
6 else
7 γt = τγt � decrease step-size

8 zt+1 = proxγth(xt+1 + γtut)

9 ut+1 = ut + (xt+1 − zt+1)/γt
10 � choose step-size for next iteration, two variants
11 Variant 1
12 γt+1 = γt

13 Variant 2 � only if h is βh-Lipschitz
14 δt = Qt(xt+1, γt)− f(xt+1)

15 Choose any γt+1 ∈ [γt,
�
γ2
t + γtδt(2βh)−2]

16 return xt+1, ut+1

Initial and default values. The proposed method takes
as input 4 parameters, which we briefly discuss, together
with a growing step-size heuristic for Variant 2:

• Initial guess z0 and u0. z0 is an initial guess of the
primal problem (OPT), while u0 is an initial guess for a
minimizer of a (yet to be defined) dual function (11). In
practice, we initialize both variables to zero.

• Initial step-size γ0. To estimate a starting value for the
step-size, we start with ε = 10−3, �z = z0 − ε∇f(z0)
and divide ε by 10 until f(�z) ≤ f(z0). Then we solve
f(�z) = Q0(�z) for γ0 and double that estimate, giving

γ0 = 4(f(z0)− f(�z))�∇f(z0)�−2 . (2)

• The line search decrease parameter τ regulates the fac-
tor by which the step-size is decreased each time the
line search condition is unsuccessful. This is a param-
eter that is common to all line search methods and can
be set to any value τ ∈ (0, 1). Following (Malitsky &
Pock, 2018) we set it to τ = 0.7.

• step-size growth. Variant 2 allows the step-size to grow
by an amount that depends on β−2

h . This quantity can be
arbitrarily large (e.g., vanishing regularization), and so
choosing the largest admissible step-size might result in
too many decrease corrections. This can be avoided e.g.
by limiting its growth to double every 20 iterations. Line
15 then becomes:

γt+1 = min{γt20.05,
�
γ2
t + γtδt(2βh)−2} . (3)



Adaptive Three Operator Splitting

Upon termination, the algorithm returns two vectors. The
first vector is an approximate solution to (OPT), while the
second vector is an approximate minimizer of a dual objec-
tive which we will detail in §3.

Special cases and related methods. We mention two no-
table special cases of this algorithm. First, for any step-size
γt ≤ 1/Lf , the line search condition will always succeed
by the properties of Lf -smooth functions and so the step-
size in Variant 1 is constant. Defining yt = xt+γtut−1, it
is easy to verify that Algorithm 1 (Variant 1) can be written
with a constant step-size γ = γt as an iteration of the form

zt = proxγh(yt)

xt+1=proxγg(2zt − yt − γ∇f(zt))

yt+1 = yt − zt + xt+1 ,

(4)

which is the standard (non-overrelaxed) form of the three
operator splitting (Davis & Yin, 2017, Algorithm 1). The
adaptive variant requires two extra function evaluations
f(zt) and f(xt+1) for the line search condition in Line 4,
but as we will see in the experimental section, most often
the ability to take larger step outweighs this extra cost.

Second, for h = 0, we have from lines 8 and 9 that ut = 0
and in this case (ignoring growing step-size strategies), this
algorithm simplifies to the proximal gradient descent with
line search of (Beck & Teboulle, 2009).

Algorithm 1 can be written equivalently in a way that
highlights similarities and differences with the PDHG
method. Using Moreau’s decomposition proxγh(x) =
x− γ proxγh∗(x/γ) yields the following recurrence

ut+1 = proxh∗/γ(ut + xt/γ) , (5)

xt+2 = proxγg(xt+1− γ(∇f(zt+1) + 2ut+1− ut)) .

This form is almost identical to Algorithm 3.2 in (Condat,
2013b), but with a different step-size and the gradient eval-
uated at the extrapolated zt+1 = xt+1 − γ(ut+1 − ut)
instead of the previous iterate xt+1 in PDHG.

2.1 Extension to multiple proximal terms

We now consider the problem of minimizing an objective
of the form:

minimize
x∈Rp

ϕ(x) +
�k

j=1 hj(x) , (OPT-k)

where ϕ is Lϕ-smooth and each hj is proximal. The adap-
tive three operator splitting can be used to solve prob-
lems of this form by reducing them to a problem of the
form (OPT) in an enlarged space. Consider consider the

following problem in Rk×p,

minimize
X∈Rk×p

ϕ(X)� �� �
=f(X)

+
�k

j=1 hj(Xj)� �� �
=h(X)

+ ı{X1= · · ·=Xk}� �� �
=g(X)

.

It is easy to see that this problem shares the same set of so-
lutions as (OPT-k) with the correspondence x = X , as the
last term forces all the Xi terms to be equal. In this formu-
lation the first term is smooth, the second term is proximal
(variables in hi are separated) and the proximal operator of
the last term is given by X 1T . Hence Algorithm 1 can be
applied to this problem. Deriving the complete algorithm is
now merely a matter of replacing f, g, h by its appropriate
values in Algorithm 1 and is specified in Appendix B. The
resulting adaptive algorithm seems to be new also in this
extended formulation.

It is also possible to swap the definitions of g and h, which
results in a different algorithm that can be seen as an adap-
tive variant of the Generalized Forward-Backward splitting
of Raguet et al. (2013). However, this formulation is less
convenient for our purpose, since in this case the h term is
always an indicator function and so it would not be possible
to apply variant 2 of our algorithm.

3 Analysis
In this section we provide a convergence rate analysis of
the proposed method. We start by a characterization the
set of fixed points of the algorithm, followed by a discus-
sion on the gap function used to measure suboptimality. Fi-
nally, we present convergence rates for two different func-
tion classes. All proofs can be found in Appendix C.

Assumption 1: Regularity. We assume that f is convex
and Lf -smooth in Rp and that g and h are proper (i.e.,
have nonempty domain), lower semicontinuous (i.e., its
sublevel sets are closed) convex functions. We note that
lower semicontinuity is a weak form of continuity that al-
lows extended-valued functions (such as the indicator func-
tion) over a closed domain.

Assumption 2: Qualification conditions. We assume the
relative interior of dom g and domh have a non-empty in-
tersection. This is a weak and standard assumption that,
together with the regularity assumption, guarantees strong
(also known as total) duality (Bertsekas, 2015, Prop. 5.3.8).

Using the definition of Fenchel conjugate, we can can re-
formulate (OPT) as a saddle-point problem:

min
x∈Rd

f(x) + g(x) + h(x) (6)

= min
x∈Rd

f(x) + g(x) + max
u∈Rd

�
�x,u� − h∗(u)

�
(7)

= min
x∈Rd

max
u∈Rd

f(x) + g(x) + �x,u� − h∗(u)� �� �
def
=L(x,u)

. (8)
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We recall that a saddle point of L is a pair (x�,u�) such
that the following is verified for any (x,u) in the do-
main (Hiriart-Urruty & Lemaréchal, 1993, §4.1):

L(x�,u) ≤ L(x,u�) . (9)

A consequence of strong duality is the equivalence between
the saddle points of L and the minimizers of the primal and
dual objectives. Let P and D denote these primal and dual
objectives:

P (x)
def
= f(x) + g(x) + h(x) (10)

D(u)
def
= (f + g)∗(−u) + h∗(u). (11)

Then if (x�,u�) is a saddle point of L, x� is a minimizer
of P and u� is a minimizer of D. Likewise, a pair of mini-
mizers of P and D form a saddle point of L.

3.1 Fixed point characterization

A common first step in the analysis of optimization meth-
ods is the study of its set of fixed or stationary points.
While this does not necessarily imply convergence, know-
ing which elements will be left invariant by the method im-
proves our understanding and is a stepping stone for further
analysis. We will show that the set of fixed points of the al-
gorithm has a particularly simple and elegant structure: the
Cartesian product of primal and dual solutions.

For the purpose of analysis it will be useful to express
Algorithm 1 as an iteration of the form, (zt+1,ut+1) =
T γt

(zt,ut), where the operator T γ is defined as

T γ(z,u)
def
= (z+,u+), with (12)




z+ = proxγh(x(z,u) + γu)

u+ = u+ (x(z,u)− z+)/γ

x(z,u) = proxγg(z − γ(u+∇f(z))) .

The following theorem characterizes the set of fixed points
of this operator, denoted Fix(T γ).

Theorem 1. Let P� denote the set of minimizers of the
primal objective P and D� the set of minimizers of the dual
objective D . Then the fixed points of T γ are given by

Fix(T γ) = P� ×D� . (13)

3.2 Gap function

The progress of optimization methods is commonly mea-
sured in terms of a gap or merit function that is zero at
optimum and nonzero otherwise. An appropriate gap func-
tion for many first-order methods is the suboptimality of
the objective function. However, this is not an appropriate
suboptimality measure for this algorithm, as the objective

function might be +∞ at an iterate, for example when the
two proximal terms are an indicator function.

Davis & Yin (2015) avoid the issue by either evaluating h
and g at different iterates (Davis & Yin, 2015, Corollary
D.5.1) or assuming Lipschitz continuity of one of the prox-
imal terms (Davis & Yin, 2015, Corollary D.5.2).

In this work we take an alternative approach, and instead
use the following saddle point suboptimality criterion to
measure the progress of our algorithm:

L(xt+1,u)− L(x,ut+1) . (14)

From the definition of saddle point in Eq. (9), this criterion
is non-positive for all (x,u) if and only if (xt+1,ut+1) is
a saddle point, and is so an appropriate suboptimality cri-
terion. Furthermore, contrary to the primal objective func-
tion, this is defined for all iterates without further assump-
tions. Finally, we mention that this criteria has been previ-
ously used in the analysis of primal-dual methods, see e.g.,
Chambolle & Pock (2016; 2015) and Gidel et al. (2017) for
a discussion of saddle point gap functions.

This suboptimality criteria can also be related to the primal
and dual gap, as minimizing (14) over x and maximizing
over u one recovers the primal-dual gap P (xt)−D(ut) by
definition of Fenchel conjugate.

3.3 Sublinear convergence

The following theorem gives a sublinear convergence rate
for Algorithm 1. This convergence will be given in terms of
the weighted ergodic (i.e., averaged) sequence. Denoting
by st the sum of all step-sizes up to iteration t, i.e., st

def
=�t−1

i=0 γt, the ergodic iterates xt and ut are defined as

xt
def
=

� t−1�

i=0

γixi+1

�
/st , ut

def
=

�t−1�

i=0

γiui+1

�
/st . (15)

While results in this subsection will be stated in terms of
this ergodic sequence, in practice the last iterate gives most
often a better empirical convergence, see e.g., (Chambolle
& Pock, 2015, §7.2.1) for a discussion of this phenomenon.
For a more theoretically-sound algorithm, one can compare
the objective at the ergodic and last iterate, and return the
one with smallest objective.

Theorem 2 (sublinear convergence rate). For every t ≥ 0
and any (x,u) in the domain of L we have the following
convergence rate for Algorithm 1 (both variants):

L(xt+1,u)−L(x,ut+1) ≤
�z0 − x�2 + γ2

0�u0 − u�2
2st

.

Convergence in terms of function value suboptimality.
The previous result gives an O(1/t) convergence rate for
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arbitrary convex functions in terms of the saddle point sub-
optimality. As we have discussed previously, it is not possi-
ble to obtain similar rates in terms of the function subopti-
mality without further assumptions. We will now show that
it is sufficient to assume Lipschitz continuity on h to derive
from the previous theorem a convergence rate in terms of
the primal function suboptimality.

The following Corollary can be obtained by optimizing
with respect to u the bound in the previous theorem and us-
ing the Lipschitz continuity to bound �u0−u�2. This gives
an O(1/t) convergence rate for the primal function sub-
optimality, roughly matching that of Davis & Yin (2015,
Corollary D.5.2) for the non adaptive variant:

Corollary 1. Let h be βh-Lipschitz. Then, we have the fol-
lowing rate for the weighted ergodic iterate on the objective

P (x)
def
= f(x) + g(x) + h(x):

P (xt+1)− P (x�) ≤ �z0 − x��2+ 2γ2
0(�u0�2+ β2

h)

2st
.

3.4 Linear convergence

In this subsection we assume that f is µf -strongly convex
and h is Lh-smooth (with 0 < µf , 0 < Lh < +∞). We
denote by x� the minimizer of the primal loss (unique by
strong convexity of P ) and by u� the minimizer of the dual
loss (also unique by strong convexity of D, consequence of
the Lh-smoothness of h).

The convergence rates will be given in terms of the follow-
ing quantities

ρ
def
= µf min{γ0, τ/Lf} , σ def

= 1/(1 + γ0Lh)

ξ
def
= µf/(µf + Lh) .

(16)

All these belong to the interval (0, 1). Assuming γ0 ≥
τ/Lf , then ρ is the inverse of f ’s condition number, while
σ depends the smoothness of h. ξ is only used by vari-
ant 2 and is a less tight bound that σ that depends on both
the strong convexity of f and smoothness of h. Note that
by strong convexity, γ0 < 1/µf as otherwise the sufficient
decrease condition would not succeed and so σ ≥ ξ.

Theorem 3 (linear convergence rate). Let xt+1,ut+1 be
the iterates produced by Algorithm 1 after t iterations.
Then we have the following linear convergence for Variant
1 (V1) and Variant 2 (V2):

V1 : �xt+1 − x��2 ≤
�
1−min

�
ρ,σ

��t+1

D0 (17)

V2 : �xt+1 − x��2 ≤
�
1−min

�
ρ, ξ,

1

2

��t+1

E0 , (18)

with D0
def
= 6�z0 − x��2 + 6

1−σ�γ0(u0 − u�)�2 and

E0
def
= 6�z0 − x��2 + 6

1−ξ�γ0(u0 − u�)�2.

Discussion. For γt = 1/Lf , the sufficient decrease con-
dition is always verified and the algorithm can be run with
τ = 1. In this case, Variant 1 of Algorithm 1 defaults to
TOS, and we can compare the obtained rates with those in
(Davis & Yin, 2015).

While the sublinear convergence rate obtained in Corol-
lary 1 roughly matches the rate obtained in (Davis & Yin
(2015, Corollary D.5.2, see our Appendix C.5)), the linear
convergence rates are instead significantly different. The
linear convergence rate obtained in (Davis & Yin, 2015,
Theorem D.6.6), after optimizing for all parameters, yields
a rate of ρσ2, which is strictly worse than the min{ρ,σ}
rate that we obtained. This difference can be quite large,
e.g., for ρ = σ this becomes ρ versus ρ3.

Finally, we note that the number of evaluations of the suf-
ficient decrease condition can be bounded as in (Nesterov
et al., 2013, Lemma 4).

4 Applications

4.1 Learning with Multiple Penalties

In this subsection we discuss how some penalties with
costly to compute proximal operator can be decomposed
as a sum of proximal terms and so fall within the current
framework. The exact expression of the proximal opera-
tors is given in Appendix D.

Group lasso with overlap. Jacob et al. (2009) general-
ized group �1 norm by allowing each variable to belong to
more than one group, thereby introducing overlaps among
groups and allowing for more complex prior knowledge on
the structure. For a set of subindices G which we will call
groups, this penalty is defined as �x�G =

�
G∈G �[x]G�2.

If each coefficient is at most in s groups, then G can be de-
composed as G = G1 ∪ . . . ∪ Gs, where the Gi are disjoint.
This allows to express the group lasso with overlap as a
sum of s non-overlapping group lasso penalties, for which
the proximal operator has a closed form expression.

Multidimensional total variation. For the task of image
restoration and denoising it is common to consider a regu-
larization term in the form of a total variation regularizer.
For an image x of size p× q, the 2-dimensional total vari-
ation norm �X�TV is defined as

p�

i=1

q−1�

j=1

|Xi,j+1 −Xi,j |
� �� �

=g(X)

+

q�

j=1

p−1�

ji=1

|Xi+1,j −Xi,j |
� �� �

=h(X)

.

From here we recognize that g and h are fused lasso
(also known as 1D-total variation) penalties acting on the
columns and rows of X respectively. Efficient methods to
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evaluate the proximal operator of the fused lasso penalty
have been developed by Condat (2013a); Johnson (2013).

Isotonic and nearly isotonic penalties. In some appli-
cations there exists a natural ordering between variables:
x1 ≤ x2 ≤ · · · ≤ xp. This can be enforced through con-
straints, and the projection onto these is known as isotonic
regression (Best & Chakravarti, 1990). The indicator func-
tion over the set of constraints can also be split into a sum
of two proximal terms (see Appendix D.2) as

ı{x1 ≤ x2 ≤ x3 ≤ x4 ≤ · · · } (19)
= ı{x1≤x2;x3 ≤ x4; · · · }� �� �

=g(x)

+ ı{x2 ≤ x3;x4 ≤ x5; · · · }� �� �
=h(x)

.

In cases in which the variables are only “mostly” non-
decreasing, the constraint can be relaxed via a nearly-
isotonic penalty (Tibshirani et al., 2011) of the form�p−1

i=1 max{xi − xi+1, 0}, in which only the non-
increasing coefficients are penalized. This penalty can be
split the same way as the isotonic constraints above.

�1 trend filtering. This penalty is defined by the abso-
lute value of the second order differences and promotes
piecewise-linear coefficients (Kim et al., 2009). It is de-
fined as �x�TF

def
=

�p−2
i=1 |xi − 2xi+1 + xi+2|. We can

split this sum into 3 proximal terms such that the result-
ing terms: the j-th term contains the factors for which i is
congruent to 3 modulo j.

Constraints over doubly stochastic matrices. Opti-
mization problems with constraints on the set of doubly
stochastic matrices appear in many convex relaxations of
combinatorial problems such as seriation (Fogel et al.,
2013), quadratic assignment (Lawler, 1963) and graph
matching (Conte et al., 2004; Aflalo et al., 2015). The set of
double stochastic matrices is composed of square matrices
with nonnegative entries, each of whose rows and columns
sum to 1, i.e., {XT1 = 1,X1 = 1,X ≥ 0}. The indica-
tor function over this set can be split as

ı{XT1 = 1,X1 = 1}� �� �
=g(X)

+ ı{X ≥ 0}� �� �
=h(X)

, (20)

and the projection onto both sets is available in closed
form (Lu et al., 2016, §4.3).

Dispersive sparsity. In some applications it is desirable
to encourage dispersion of the sparse coefficients. This
happens for example in the modeling of neural spiking, as
the spikes are assumed to be spaced across time (Hegde
et al., 2009). El Halabi & Cevher (2015) showed that this
behavior can be promoted by considering a penalty of the
form �x�1 + ı{B|x| ≤ c} for a matrix B and some pre-
defined constant c, where |x| denotes the component-wise

absolute value. This penalty can be split into three proximal
terms by the introduction of a dummy variable z, resulting
in �x�1 + ı{Bz ≤ c}+ ı{z = |x|}.

Combination by addition. A popular method to promote
the joint behavior of different penalties is by adding them.
This has been used to successfully learn models with sparse
and nonnegative coefficients (Yuan & Lin, 2007), sparse
and low rank matrices (Richard et al., 2012), sparse and
piecewise constant (Gramfort et al., 2013), to name a few.

4.2 Benchmarks

In this subsection we provide an empirical evaluation of the
proposed method. Due to space constraints we only give
here a high level overview, deferring details as well as an
extended set of experiments to Appendix E. We consider
the following methods:

• The proposed Adaptive TOS method (Algorithm 1), in
its both variants.

• The TOS method of Davis & Yin (2015), with step-sizes
1/Lf and 1.99/Lf (the method is convergent for step-
sizes < 2/Lf ).

• The PDHG or Condat-Vũ algorithm (Condat, 2013b;
Vũ, 2013), with step-sizes τ and β/τ , where β was cho-
sen as the one giving the best overall performance over
the grid β = 0.9, 0.5, 0.1 (giving it a slight advantage).

• The adaptive PDHG of Malitsky & Pock (2018), with
step-size hyperparameter β chosen by the same tech-
nique as for PDHG.

• The averaged operator line search method of Giselsson
et al. (2016) combined with TOS, named TOS-AOLS.

We compared these methods on 4 different problems and
show the results in Figure 1. In the first row we show the
benchmarks on a logistic regression problem with overlap-
ping group lasso penalty that we apply to two text datasets
(RCV1 and real-sim). Subfigures A and C were run
with the regularization parameter chosen to give 50% of
sparsity, while B, E are run with higher levels of sparsity,
chosen to give 5% of sparsity.

In the second and third row we considered a battery
of inverse problems with different penalties on synthetic
datasets. These consists of a least squares (G, H, I, J) or lo-
gistic regression (rest) smooth term and 4 different penal-
ties specified in the title of each plot (overlapping group
lasso, total variation, trace norm �1 and nearly isotonic, see
Appendix E for a precise formulation). For each problem,
we show 2 different benchmarks, corresponding to the low
and high regularization regimes (denoted low reg and high
reg). We comment on a few trends from Fig. 1:
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Figure 1: Comparison of different proximal splitting methods. The top row gives result for two real datasets with an
overlapping group lasso penalty. The second and third row show results on synthetic datasets for 4 different penalties:
overlapping group lasso (E, F), 2-dimensional total variation (G, H), trace norm + �1 (I, J) and nearly isotonic (K, L). The
Adaptive TOS (Variant 2, i.e., with growing step-sizes) is the best performing method on 10 out of 12 experiments, and
roughly equivalent to the best performing method in the other 2 cases (G, J).

• Best performing method. On 10 out of 12 experiments,
the adaptive TOS algorithm (Variant 2) is the best per-
forming method, and in the other cases (E, H) its perfor-
mance is roughly the same as that of the best performing
method. In contrast, on 3 instances (A, I, K) it is an order
of magnitude faster than the next method.

• Low vs high regularization regime. The advantage of
the adaptive method is highly correlated with the amount
of regularization: in the low regularization regime, on
3 out of 6 the adaptive TOS is an order of magnitude
faster then the fixed step-size method, while in the high
regularization regime the difference shrinks and in the
same problems is never more than a factor 2.6.

• Uniform curvature. The problems (G, H, I, J) in Fig. 1
use as smooth term a quadratic loss (i.e., constant Hes-
sian), while the other methods use a logistic loss (non-
constant Hessian). This suggests that the use of the adap-
tive step-size strategy (and in particular Variant 2 with its
growing step-size) is more beneficial for smooth terms
with non-uniform curvature.

5 Conclusion and Future Work
We have presented and analyzed an adaptive step-size
method to solve optimization problems consisting in a sum
of a smooth term accessed through its gradient and two or
more potentially non-smooth terms accessed through their
proximal operator. The method does not rely on any step-
size hyperparameter (except for an initial estimate) and
extensive empirical evaluation has showed computational
gains on a variety of problems. We mention two possible
extensions of this work.

First, existing convergence results fail to fully explain their
surprisingly good empirical convergence. To the best of our
knowledge, no work so far has derived linear convergence
rates in absence of strong convexity and smoothness of one
of the proximal terms for these methods (as is however em-
pirically observed, see e.g. Figure 1).

Second, it is an open question whether this or other adap-
tive step-size methods can be accelerated, as is the case
of proximal gradient descent, which admits the adaptive
FISTA variant (Beck & Teboulle, 2009).
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