Appendix for:
Efficient Neural Architecture Search via Parameters Sharing

A. Details on Penn Treebank Experiments

Computations in an RNN Cell. We think of the cell at
time step ¢ as a DAG with /N computational nodes, indexed
by hgt), hgt), hg\t,). Node hﬁt) receives two inputs: 1) the
RNN signal x® at its current time step; and 2) the output
hgfl) from the cell at the previous time step. The following
computations are performed:
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where f; is an activation function that the controller will
decide. For ¢/ = 2,3,..., N, node h, receives its input
from a layer j, € {hy,...,h,_1}, which is specified by the
controller, and then performs the following computations:
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Therefore, the shared parameters w among different recur-
rent cells consist of all the matrices W 5¢) W Gh)| Wéc} ,

Wg}), word embeddings, and the softmax weights if they
are not tied with the word embeddings. The controller de-
cides the connection j, and the activation function f, for
each ¢ € {2,3, ..., N}. The layers that are never selected by
any subsequent layers are averaged and sent to a softmax

head, or to higher recurrent layers.

Parameters Initialization. Our controller’s parameters
6 are initialized uniformly in [—0.1,0.1]. We find that for
Penn Treebank, ENAS quite insensitive to its initialization
than for CIFAR-10. Meanwhile, the shared parameters w are
initialized uniformly in [—0.025, 0.025] during architecture
search, and [—0.04, 0.04] when we train a fixed architecture
recommended by the controller.

Stabilizing the Updates of w. To stabilize the updates of
w, during the architectures search phase, a layer of batch
normalization (Ioffe & Szegedy, 2015) is added immediately
after the average of these layers, before the average are sent
out of the cell as its output. When a fixed cell is sampled
by the controller, we find that we can remove the batch
normalization layer without any loss in performance.

B. Details on CIFAR-10 Experiments

We find the following tricks crucial for achieving good per-
formance with ENAS. Standard NAS (Zoph & Le, 2017;
Zoph et al., 2018) rely on these and other tricks as well.

Structure of Convolutional Layers. Each convolu-
tion in our model is applied in the order of relu-conv-
batchnorm (loffe & Szegedy, 2015; He et al., 2016b). Addi-
tionally, in our micro search space, each depthwise separable
convolution is applied twice (Zoph et al., 2018).

Stabilizing Stochastic Skip Connections. If a layer re-
ceives skip connections from multiple layers before it, then
these layers’ outputs are concatenated in their depth dimen-
sion, and then a convolution of filter size 1 x 1 (followed
by a batch normalization layer and a ReLU layer) is per-
formed to ensure that the number of output channels does
not change between different architectures. When a fixed
architecture is sampled, we find that one can remove these
batch normalization layers to save computing time and pa-
rameters of the final model, without sacrificing significant
performance.

Global Average Pooling.  After the final convolutional
layer, we average all the activations of each channel and
then pass them to the Softmax layer. This trick was intro-
duced by (Lin et al., 2013), with the purpose of reducing
the number of parameters in the dense connection to the
Softmax layer to avoid overfitting.

The last two tricks are extremely important, since the gra-
dient updates of the shared parameters w, as described in
Eqn 1, have very high variance. In fact, we find that without
these two tricks, the training of ENAS is very unstable.



