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Supplementary material
The following section provides detail omitted in the paper
regarding the derivation of certain equations as well as addi-
tional comments.

A. Expected loss for linear DAEs

We derive the expected reconstruction loss over the noise
distribution as presented in (1) in the paper. The expected
loss can be written as

Eε[L] =
1

2N

N∑
i=1

Eε
[
||xi −W2W1x̃i||2

]
.

where x̃i = xi + εi, with ε sampled from an isotropic noise
distribution with component variance s2. Let SE(x̃i) =
||xi −W2W1x̃i||2 and M = W2W1. Then

Eε [SE(x̃i)] = Eε
[
||(I −M)xi +M(xi − x̃i)||2

]
= SE(xi) + Eε

[
||M(xi − x̃i)||2

]
because the cross product terms vanish, since Eε [x̃i] = xi:

0 = Eε
[
xTi (I −M)TM(xi − x̃i)

]
= Eε

[
(xi − x̃i)

TMT (I −M)xi
]
.

We also have that

||M(xi − x̃i)||2 = (xi − x̃i)
TMTM(xi − x̃i)

= tr
[
(xi − x̃i)

TMTM(xi − x̃i)
]

= tr
[
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TMT
]

= tr
[
Mεiε

T
i M

T
]

due to the invariance of the trace under cycle permutation of
products. Therefore, in expectation over the noise we have

Eε
[
||M(xi − x̃i)||2

]
= tr

[
M(s2I)MT

]
,

and as a result

Eε [L] =
1
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B. Learning dynamics for linear DAEs

We derive the expression for the learning dynamics of a
linear DAE as presented in (5) in the paper. As departure
point, we start by examining the expected scalar update
equations over the noise model for a small learning rate α,
which can be written as

τ
d

dt
w1 = w2(λ− w2w1λ)− εw2

2w1

τ
d

dt
w2 = w1(λ− w2w1λ)− εw2w

2
1.

where τ = N
α , with N representing the number of training

samples. Define w = w2w1 and using the product rule the
update for w then becomes

τ
d

dt
w = τ [w1

d

dt
w2 + w2

d

dt
w1]

= w2
1(λ− w2w1(λ+ ε)) + w2

2(λ− w2w1(λ+ ε))

= (λ− w(λ+ ε))(w2
1 + w2

2). (1)

Next we make the following hyperbolic change of coordi-
nates

w1 =
√
c0sinh

(
θ

2

)
, w2 =

√
c0cosh

(
θ

2

)
, for w2

1 < w2
2

w1 =
√
c0cosh

(
θ

2

)
, w2 =

√
c0sinh

(
θ

2

)
, for w2

1 > w2
2,

where θ parameterises points along the dynamics trajectory
represented by w2

2 − w2
1 = ±c0 (Saxe et al., 2013). Note

that with this change of coordinates we obtain

w = c0cosh
(
θ

2

)
sinh

(
θ

2

)
= c0

(
e
θ
2 + e−

θ
2

2

)(
e
θ
2 − e− θ

2

2

)

=
c0
2

(
eθ − e−θ

2

)
=
c0
2

sinh(θ),

so that

dw =
c0
2

cosh(θ)dθ.
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Similarly,

w2
2 + w2

1 = c0cosh2
(
θ

2

)
+ c0sinh2

(
θ

2

)

= c0

(
e
θ
2 + e−

θ
2

2

)2

+ c0

(
e
θ
2 − e− θ

2

2

)2

=
c0
4

(
eθ + 2 + e−θ + eθ − 2 + e−θ

)
= c0

(
eθ + e−θ

2

)
= c0cosh(θ)

Plugging these results into the update for w given in (1),
yields

τc0cosh(θ)

2

dθ

dt
=
(
λ− c0

2
sinh(θ)(λ+ ε)

)
c0cosh(θ),

and as a result,

τ
dθ

dt
= λ (2− βsinh(θ)) ,

where β = c0
(
1 + ε

λ

)
. To solve for t, we write

t =

∫ θf

θ0

τ

λ (2− βsinh(θ))
dθ

and integrate:

t =
τ

ζλ

[
ln

(
ζ + β + 2tanh( θ2 )

ζ − β − 2tanh( θ2 )

)]θf
θ0

where ζ =
√
β2 + 4 and initial parameter value θ0 =

sinh−1(2w/c0). Let δ0 = tanh
(
θ0
2

)
and δf = tanh

(
θf
2

)
,

then

t =
τ

λζ
ln

(ζ + β + 2δf ) (ζ − β − 2δ0)

(ζ − β − 2δf ) (ζ + β + 2δ0)
,

so that

eλζt/τ =
(ζ + β + 2δf ) (ζ − β − 2δ0)

(ζ − β − 2δf ) (ζ + β + 2δ0)
.

Multiplying by the denominator, expanding, and defining
E = eλζt/τ , we obtain

− 2Eδf (ζ + β + 2δ0)

+ E
(
ζ2 + 2ζδ0 − β2 − 2βδ0

)
= 2δf (ζ − β − 2δ0)

+
(
ζ2 − 2ζδ0 − β2 − 2βδ0

)
,

which yields

δf ((1− E) (2β + 4δ0)− 2(E + 1)ζ)

= (1− E)
(
ζ2 − β2 − 2βδ0

)
− 2(1 + E)ζδ0.

Solving for θf (t), we obtain the hyperbolic parameter equa-
tion

θf (t) = 2tanh−1

[
(1− E)

(
ζ2 − β2 − 2βδ

)
− 2(1 + E)ζδ

(1− E) (2β + 4δ)− 2(1 + E)ζ

]

where δ = tanh
(
θ0
2

)
. Using

w(t) =
c0
2

sinh (θt) ,

(where θt = θf (t)) to track the weight trajectory gives
equation (5) in the paper.

C. Learning dynamics for linear WDAEs

We derive the expression for the learning dynamics of a lin-
ear WDAE as presented in (7) in the paper. Reconstruction
loss with weight decay gives the scalar loss associated with
an eigenvalue λ as

`γ =
λ

2τ
(1− w2w1)2 +

Nγ

2τ
(w2

1 + w2
2),

where γ is the penalty parameter that controls the amount
of regularisation that is being applied. The update equations
for the weights then follow as

τ
d

dt
w1 = w2(λ− w2w1λ)−Nγw1

τ
d

dt
w2 = w1(λ− w2w1λ)−Nγw2,

assuming the initial w2 = w1 (which holds approximately
for small initial values), we have for w = w2w1 that

τ
d

dt
w = 2w(λ− wλ)− 2Nγw

= 2w(λ−Nγ − wλ).

Thus,

t =

∫ wf

w0

τ

2w(λ−Nγ − wλ)
dw

=
τ

2

[
ln(w)− ln(λ−Nγ − wλ)

λ−Nγ

]wf
w0

=
τ

2(λ−Nγ)
ln
(
wf (λ−Nγ − w0λ)

w0(λ−Nγ − wfλ)

)
.

Then solving for wf gives

wf (t) =
ξEγ

Eγ − 1 + ξ/w0
,

where Eγ = e2ξt/τ and ξ = (1−Nγ/λ).
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D. Optimal learning rates

We derive expressions for the optimal learning rates for
linear DAEs and WDAEs as presented in (8) in the paper.
First, consider the expected scalar DAE loss

`ε =
λ

2τ
(1− w2w1)2 +

ε

2τ
(w2w1)2.

The Hessian of `ε is given by

H =

[
∂2`ε
∂w2

1

∂2`ε
∂w1w2

∂2`ε
∂w2w1

∂2`ε
∂w2

2

]
,

where

∂2`ε
∂w2

1

=
w2

2

τ
(λ+ ε),

∂2`ε
∂w2

2

=
w2

1

τ
(λ+ ε),

∂2`ε
∂w1w2

=
∂2`ε
∂w2w1

=
2w2w1

τ
(λ+ ε)− λ

τ
.

Now, if we assume w2 = w1, and let a = ∂2`ε
∂w2

1
= ∂2`ε

∂w2
2

and

b = ∂2`ε
∂w2w1

, the eigenvalues for the Hessian can be shown
to be λH = a− b or λH = a+ b. The second order update
for a single weight w at time t is then given by

wt+1 = wt −
(
∂`ε
∂wt

)
/λH ,

where the maximum λH , is when w2 = w1 = 1, such that

λH =
1

τ
(λ+ ε) +

2

τ
(λ+ ε)− λ

τ

=
2λ+ 3ε

τ
.

Therefore, the optimal learning rate is

αε = 1/λH =
τ

2λ+ 3ε
.

For WDAEs with penalty parameter γ, a very similar deriva-
tion gives

αγ =
τ

2λ+ γ
.

Taking the ratio of the optimal DAE rate to that for the
WDAE gives

R =
αε
αγ

=
2λ+ γ

2λ+ 3ε
.

E. Equivalent scalar solutions

In Section 4 of the paper, the DAE fixed point solution is
shown to be

w∗
ε =

λ

λ+ ε
.

Now if w = w2w1 and w2 = w1, then for WDAE we have
that the scalar loss is given by

`γ =
λ

2τ
(1− w)2 +

γ

τ
w,

and

∂`γ
∂w

= −λ
τ

(1− w) +
γ

τ
.

Setting the above equal to zero and solving gives

w∗
γ = 1− γ/λ.

To obtain the value of γ for which the two fixed points are
equal, we set w∗

γ = w∗
ε and solve for γ to find

γ =
λε

λ+ ε
.

F. Estimated dynamics for nonlinear networks

The dynamics for the nonlinear networks trained in Figure
6 in the paper were estimated using the following approach.
First, compute

Σxx =

N∑
i=1

xix
T
i = V ΛV T ,

using an eigen-decomposition giving eigenvalues λj , j =
1, ..., D. Then at regular intervals compute

Σ̂xx(t) =

N∑
i=1

xix̂i(t)
T ,

where x̂(t) is the estimated reconstruction of input at time
t generated by the autoencoder network. Finally, using the
following rotation to obtain the diagonal matrix

Λ̂(t) = V T Σ̂xx(t)V,

where the diagonal contains the estimated eigenvalues λ̂j(t),
we can compute an estimate for the identity mapping asso-
ciated with each eigenvalue as λ̂j(t)/λj ∈ [0, 1].

G. Learning dynamics for tanh autoencoder networks

We investigated the dynamics of learning for nonlinear AEs,
WDAEs and DAEs, using tanh activations.
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Figure 1. Learning dynamics for nonlinear networks using tanh
activation. AE (blue), WDAE (orange) and DAE (green). Left:
MNIST Right: CIFAR-10.

Figure 1 shows the dynamics for these networks trained on
MNIST (N = 50000) and CIFAR-10 (N = 30000) with
equal learning rates. For the DAE, the input was corrupted
using sampled Gaussian noise with mean zero and σ2 = 2.
For the WDAE, the amount of weight decay was set to
γ = 0.0045. During the course of training, the identity
mapping associated with each eigenvalue was estimated
using the approach described in Section F, at equally spaced
intervals of size 100 epochs.
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