
Supplement: Selecting Representative Examples for Program Synthesis

Yewen Pu 1 Zachery Miranda 1 Armando Solar-Lezama 1 Leslie Pack Kaelbling 1

Checking Representativeness
The following algorithm verifies whether a subset D′ is
representative of D, i.e. ∀s ∈ SD′(s)⇒ D(s)

Algorithm 1 Is Representative

Input: data D, subset D′

Output: boolean
for d ∈ D \D′ do

if synthesize(D′ ∪ {¬d} then
return false

end if
end for
return true

Proof: For simplicity let us consider D as a set of con-
straints {d1, d2, ..., dn}. If the synthesizer can find some s
that satisfies [D′ ∧ ¬di](s), then we have found a solution
s ∈ S which is consistent with D′ but contradicts di ∈ D.
Therefore D′ is not a representative subset of D. If no
solution can be found for any [D′∧¬di](s), then every di is
consistent with D′ which means that D′(s)⇒ D(s) .

Selection Heuristic for DFA Synthesis
We constructed a sample heuristic function for DFAs using
the power of suffixes in DFAs. Suffixes are powerful be-
cause they are the reverse path from potentially the accept
state of the DFA if the value is true. The heuristic’s process
is shown on an example in Figure 1. We realized that the
suffix of a string has a lot to do with whether a string was
accepted so first we reverse all of the strings. Then we cre-
ate a binary search tree using the values in the strings. In
each node, we keep track of how many children examples
(including that node) have each corresponding truth value.
For selection, you start at the root and look at every node’s
truth values to see if all children of that node are all true or
all false. If the truth is absolute, then you take a random

1Massachusetts Institute of Technology. Correspondence to:
Yewen Pu <yewenpu@mit.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

child of the node and add it as an example, otherwise you
analyze both children of that node. Once all nodes are ana-
lyzed that need to be analyzed, then the resulting examples
are returned as the subset.

Figure 1. The process of our DFA selection heuristic on a sample
of data.

Synthesized Drawing Programs
Figure 2 shows some synthesized drawing programs. Each
cell consists of: The target rendering, the subset of selected
examples, the neural-network estimation of the rendering,
and the synthesized parameters for the draw function.

Neural Network Architectures
Order Synthesis Figure 3 shows the architecture used
for the ordering domain, as the domain is small n = 10
there can only be as many as 100 pair-wise relationships.
Therefore, we encode the neural network without any neigh-
borhood structure but takes in the entire subset D′ at once.
Each i, j element in the input denotes whether i < j or
i ≥ j or that it is undefined in D′. The new query is two
1-hot encoded vectors asking if x < y conditioned on the
subset D′. This architecture was trained on 1000000 ran-
domly generated (D′, x < y) pairs from randomly sampled
permutations. Learning rate of 0.0001 with AdamOptimizer.



Supplement: Selecting Representative Examples for Program Synthesis

Figure 2. Sample pictures generated using the drawing DSL.

DFA Synthesis Figure 4 shows the architecture used for
the DFA synthesis task. The top-10 closest strings in terms
of prefix and suffix, along with whether that string was
accept / rejected was encoded into a hidden representation.

A new string is concatenated with this hidden representation
to output whether that new string should be accepted or
rejected. This architecture was trained on 100000 randomly
generated D′, newstr, acceptnewstr pairs from randomly
sampled strings on a randomly sampled DFA. Learning rate
of 0.0001 with AdamOptimizer.

Programmatic Drawing Synthesis Figure 5 shows the
architecture used for the drawing synthesis task. We simply
use a 7 × 7 convolutional neural network with 20 hidden
units. This architecture was trained on 20000 randomly
sampled renderings. Learning rate of 0.001 with AdamOpti-
mizer.

Figure 3. The neural network architecture for the ordering prob-
lem.

Figure 4. The neural network architecture for the DFA problem.

Figure 5. The neural network architecture for the drawing problem.


