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Abstract

We investigate a projection free optimization
method, namely non-convex conditional gradi-
ent sliding (NCGS) for non-convex optimiza-
tion problems on the batch, stochastic and finite-
sum settings. Conditional gradient sliding (CGS)
method, by integrating Nesterov’s accelerated gra-
dient method with Frank-Wolfe (FW) method in
a smart way, outperforms FW for convex opti-
mization, by reducing the amount of gradient
computations. However, the study of CGS in
the non-convex setting is limited. In this paper,
we propose the non-convex conditional gradient
sliding (NCGS) methods and analyze their con-
vergence properties. We also leverage the idea of
variance reduction from the recent progress in con-
vex optimization to obtain a new algorithm termed
variance reduced NCGS (NCGS-VR), and obtain
faster convergence rate than the batch NCGS in
the finite-sum setting. We show that NCGS algo-
rithms outperform their Frank-Wolfe counterparts
both in theory and in practice, for all three set-
tings, namely the batch, stochastic and finite-sum
setting. This significantly improves our under-
standing of optimizing non-convex functions with
complicated feasible sets (where projection is pro-
hibitively expensive).

1. Introduction

This paper studies non-convex optimization problems with
complicated feasible sets. Specifically, we consider the
following problem
in F'(6 1
min F(6), (D
where the objective function F'(6) is non-convex and L
smooth, and €2 is a convex compact set.
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Besides this general form, we also consider a stochastic
setting and a finite-sum setting. In the stochastic setting,
we assume F'(0) = E¢ f(0, &), where f(6,£) is smooth and
non-convex. In the finite-sum case, we study the following
problem

1 n

min F'(0) := — (6

min F(0) = > fi(0).
i=1

where each f;(#) is non-convex and L smooth, {2 is a convex

compact set. Here, we are interested in the case where n,

i.e., the number of training examples, is very large.

We focus on the case where the feasible set €2 is compli-
cated, in the sense that projection onto {2 is expensive (for
instance, the projection on the trace norm ball), or even
computationally intractable (Collins et al., 2008). To al-
leviate such difficulty, the Frank-Wolfe method (Frank &
Wolfe, 1956) (a.k.a. conditional gradient method ), which
was initially developed for the convex problem in 1950s,
has attracted much attention again in machine learning com-
munity recently, due to its projection free property (Jaggi,
2013). In each iteration, the Frank-Wolfe algorithm calls a
first-order oracle to get V F'(#), and then calls a linear oracle
in the form arg minge (4, g), which avoids the projection
operation.

This setup is motivated by several popular problems in ma-
chine learning, wherein the above linear optimization is easy
but the projection is much more computationally demanding.
The example par excellence is the nuclear norm constraint
which is widely used in multi-task learning, mutli-class clas-
sification, recommendation systems and matrix learning.
We briefly explain some of them: Suppose there are m tasks
and each column ¢ of a matrix © represents a task ¢, one
popular multi-task learning formulation proposed by Pong
et al. (2010) has the following form.

mip DD (0w b 2)
=1 j=1
subjectto  ||O]. < R,

where £(-, -) is the loss function which can be potentially
non-convex, n; is the number of samples in each task,
© = [0y,...,0,], and || - ||« is the nuclear norm constraint
to encourage the low rank property. In the multiclass clas-
sification problem, suppose there are n training examples
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(x4, Yi)i=1,...n,» Where x; is a feature vector and y; is the
label. The goal is to find an accurate linear predictor with pa-
rameter © = [y, ..., 6;]. In Zhang et al. (2012) and Dudik
et al. (2012), multivariate logistic loss with nuclear norm
regularization is proposed with the following form

fi(©) =log(1 + Z exp(0F x; — 05%)),
LAy,

and Q = ||O]|. < R. The logistic loss can be replace by a
non-convex loss function due to the superior robustness and
classification accuracy of the non-convex loss (Mei et al.,
2016).

Apart from the nuclear norm constraint, other examples
of complicated feasible sets include polytopes with expo-
nentially many facets, often resulted from combinatorial
problems (e.g., the convex hull of all spanning trees). We
refer reader to Garber & Hazan (2013) and Lacoste-Julien
& Jaggi (2015) for details.

In the convex case, it is well known that for the Frank-Wolfe
method to achieve e-solution, O (%) iterations are required,
if F(0) is convex and smooth. This rate is significantly
worse than the optimal rate O(1/,/€) for smooth convex
problems (Nesterov, 2013), which raises a question whether
this complexity bound (9(%) is improvable. Unfortunately,
the answer is no in the general setting (Lan, 2013; Guzmén
& Nemirovski, 2015) and improved results can only be
obtained under stronger assumptions, see e.g., Garber &
Hazan (2013; 2015); Lacoste-Julien & Jaggi (2015). Lan
& Zhou (2016) proposed the conditional gradient sliding
method (CGS) which combines the idea of Nesterov’s ac-
celerated gradient with the Frank-Wolfe method. While the
number of linear oracle calls remains same, the number of
gradient computations (the first order oracle) is significantly
improved from O(%) to O(ﬁ) Under the strongly convex

assumption, this can be further improved to O(log(1/¢)) by
using the restarting techniques (Lan & Zhou, 2016).

Recently, non-convex optimization has attracted lots of at-
tentions and becomes the frontier of the machine learning,
where a partial list of applications includes robust regres-
sion and classification (Mei et al., 2016), dictionary learning
(Mairal et al., 2009), phase retrial (Candes et al., 2015) and
training the neural network (Goodfellow et al., 2016). There-
fore, the convergence on non-convex Frank-Wolfe method
has been studied, under the batch, stochastic and finite-sum
setting (Lacoste-Julien, 2016; Reddi et al., 2016b). A natu-
ral question arises: can we use similar technique of convex
conditional gradient sliding in the non-convex conditional
gradient sliding and improve the complexity on the first
order oracle? This paper provides an affirmative answer.

Summary of contributions: We propose the non-convex
conditional gradient sliding (NCGS) method and provides a
convergence analysis in the batch and the stochastic setting.

Compared to the convex CGS, the difficulty comes from
the analysis of non-convexity. In the finite-sum setting, we
propose the variance reduction non-convex gradient slid-
ing method (NCGS-VR) which achieves faster convergence
than the batch one. We need carefully balance the number
of call on the linear oracle and first order oracle. All result
are summarized in Table 1,2, 3 (with red color). Table 1
compares the result of non-convex conditional gradient slid-
ing with the non-convex Frank-Wolfe method in the batch
setting. Table 2 compares our method with SAGAFW and
SVFW (Reddi et al., 2016b) in the stochastic setting. In Ta-
ble 3, our method leverages the popular stochastic variance
reduction technique. We compare it with the stochastic vari-
ance reduction Frank-Wolfe method in (Reddi et al., 2016b).
To the best of our knowledge, our algorithms outperform
Frank-Wolfe method in all corresponding setting. We de-
fer the detailed comparison to the related work subsection.
Please see Section 2 for the formal definition of first order
oracle (FO), stochastic first order oracle (SFO), Incremental
First Order Oracle (IFO) and linear oracle (LO).

We remark that the convergence criterion used in paper is
different from that in Frank-Wolfe. In our paper, we fol-
low the criterion ||V E(6)||* < € ( See section 2.3 for more
precise definition on convergence criteria), as that in most
non-convex optimization work (Lan, 2013; Allen-Zhu &
Hazan, 2016; Reddi et al., 2016c¢; Nesterov, 2013), while
the Frank-Wolfe method uses the Frank-Wolfe gap. Under-
standing the precise relationship between these convergence
criteria is an important direction for future research.

Algorithm | FO complexity | LO complexity
NCGS O(1/e) O(1/€?)
FW O(1/€%) O(1/€?)

Table 1. Comparison of complexity of algorithms in the batch set-
ting.

Algorithm | SFO complexity | LO complexity
NCGS O(1/€%) O(1/€%)
SAGAFW | O(1/e3) O(1/€?)
SVFW O(1/e%) O(1/€?)

Table 2. Comparison of complexity of algorithms in the stochastic
setting.

Related work

The classical Frank-Wolfe method considers optimizing a
smooth convex function F'(#) over a polyhedral set and
enjoys O(1/€) convergence rate (Frank & Wolfe, 1956;
Jaggi, 2013). Recent work (Garber & Hazan, 2013; 2015)
proves faster convergence rate under additional assumptions.
Conditional gradient sliding was proposed in (Lan & Zhou,
2016), aiming at minimizing a convex objective function.
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Algorithm | IFO complexity | LO complexity
NCGS O(n/e) O(1/€e?)
FW O(n/€?) O(1/€%)
NCGS-VR | O(n + %) O(1/€)
SVFW O(n+ %y) O(1/€?)

Table 3. Comparison of complexity of algorithms in the finite-sum
setting. Since we need to evaluate n gradients each iteration in
NCGS and FW, the IFO complexity of NCGS and FW are nx
results in table 1.

While our high level algorithmic idea is the same, the anal-
ysis differs significantly due to the non-convexity of the
objective function.

Most existing works on analyzing non-convex optimization
solve the problem with the projection or the proximal op-
eration. Hence we list some representative works below.
Ghadimi & Lan (2013) investigate SGD in the non-convex
setting. They extend Nesterov’s acceleration method in the
constrained stochastic optimization. The performance on
non-convex stochastic variance reduction method is ana-
lyzed in Reddi et al. (2016a); Allen-Zhu & Hazan (2016);
Shalev-Shwartz (2016); Allen-Zhu & Yuan (2016). Note
that the stochastic variance reduction techniques are first
introduced for solving convex optimization problems (Xiao
& Zhang, 2014; Johnson & Zhang, 2013; Xiao & Zhang,
2014).

There are very few work on projection free methods for
non-convex optimization. The early work in Bertsekas
(1999) proves the asymptotic convergence of the Frank-
Wolfe method to a stationary point, but the convergence
rate is not studied. Lacoste-Julien (2016) establishes the
convergence rate of O(1/¢?) for the Frank-Wolfe method in
the (batch) non-convex setting, under the criteria of Frank-
Wolfe gap. In his work, both FO and LO complexity are
shown to be O(1/€?). In contrast, for our proposed NCGS,
the FO complexity is O(1/¢) and the LO complexity is
O(1/€?). Recent work on Frank-Wolfe method for non-
convex, stochastic setup shows that the SFO complexity
and the LO complexity are O(1/e= ) and O(1/€2) respec-
tively for SVFW, and O(1/€5) and O(1/€2) for SAGAFW
(Reddi et al., 2016b). Our SFO and LO on the same setting
are O(1/€2) and O(1/€?) respectively. In the finite sum
setting, our variance r2educti0n NCGS(NCGS-VR) has IFO

complexity O(n + ), while the state of the art variance

2
reduced FW has IFO complexity O(n + Z—f) and the same
LO complexity (Reddi et al., 2016b). Thus, it is clear that
for all three settings, we improved upon the best known
results in literature in terms of reducing computation for
gradient evaluation.

2. Preliminary
2.1. Oracle model

We consider the following set of Oracles:

e First Order Oracle (FO): given a 6, the FO returns
VoF(0).

e Stochastic First Order Oracle (SFO): For a function
F(0) = E¢f(6,€) where £ ~ P, a SFO returns the
stochastic gradient G(0, &) = Vo f (0k, &) where &,
is a sample drawn i.i.d. from P in the k-th call.

e Incremental First Order Oracle (IFO): For the setting
F(0) = L5 | fi(6), an IFO samples i € [n] and

T n

returns Vg f;(6).

e Linear oracle (LO): the LO solves the following prob-
lem arg mingeq (6, g) for a given vector g.

Thought out the paper, the complexity of F'O, SFO, IFO,
LO denotes the number of call of them to obtain a solution
with “e accuracy” (see Section 2.3 for details).

2.2. Assumptions
F(0) is L smooth, if |[VF(01) — VF(02)|| < L||61 — 62]|.
This definition is equivalent to the following form:
L 2
= 5161 = 6a|" < F(01) = F(62) = (VE(02), 61 — 02)
L
< 5”91 — (92”2, V91,02 c 0.

We say F(0) is £ lower smooth if it satisfies

l
= 5l0 02| < F(61) — F(82) — (VF(62),61 — 02),
VO,05 € Q.

Intuitively, the lower smoothness quantified the amount
of “non-convexity” of the function. Clearly, the L smooth
assumption trivially implies [ lower smoothness for [ = L.
However, in some cases, the non-convexity / is much smaller
than L and we will show how it affects some results in our
theorem.

We then define prox-mapping type functions ¢ (x, w,):
U( ) in(w, ) + ! 16 — =||®
=a —1|0 — z||°.
T,w, Y rg grggle w, o x

It is closely related to the projected gradient by setting
w = VF(0), v by the stepsize and x = 0. We assume
[ (z,w,v)|]| < M for all v € (0,00) and z € € and
w € RP following that in (Lan, 2013). Since in our work {2
is compact and convex, this assumption is satisfied.
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For the stochastic setting, we make the following additional
assumptions: For any € R? and k£ > 1, we have

(1. EG(0,&) = VF(9)
(2).  E|G(6.&) - VF@O)]* <2,

i.e., the stochastic gradient G(0, ) is unbiased and has
bounded variance.

In the finite-sum setting, we assume each f;(6) is L smooth.

2.3. Convergence criteria

Conventionally, the convergence criterion in non-convex
optimization defines a solution with € accuracy as
[VE(0)||* < e (Lan & Zhou, 2016; Nesterov, 2013). How-
ever when the problem has constraints, it needs a different
termination criterion based on the gradient mapping (Lan &
Zhou, 2016). This is a natural extension of gradient, since
if there is no constraint, it reduces to the gradient. The
gradient mapping is defined as follows

90, VF(0),7) = —(0 = 4(0,VF(0),7)).

1
~
Through out the paper, we use g(6, VF(6),~) as the con-

vergence criterion, i.e., we want to find the solution § such
that [|g(6, VF(6),7)]* < e.

Notice there is another criterion, called Frank-Wolfe gap
maxzeq(r — 0k, —VF(0;)), in some recent analysis of
non-convex Frank-Wolfe methods (Lacoste-Julien, 2016;
Reddi et al., 2016a), which was initially used in the convex
Frank-Wolfe method. However, in this paper, we follow
the definition on gradient mapping, since it is a natural
generalization of gradient.

3. Batched non-convex conditional gradient
sliding
3.1. Algorithm

Before we present the algorithm of non-convex conditional
gradient sliding, we present a procedure condg in Algorithm
1, which will be used as a subroutine in all three (i.e., batch,
stochastic and finite-sum) settings.

Algorithm 2 presents the non-convex conditional gradient
sliding in the batch setting. Notice it needs to call the
procedure condg. There are two options to update %9,
and we provide the theoretical guarantees for both of them
in Theorem 1.

3.2. Theoretical result

Theorem 1. Suppose the objective function F(0) satisfies
the assumption in section 2, where L is the smoothness
parameter and | is the lower smoothness parameter, then if

Algorithm 1 Procedure of ut = condg(l, u,~,n)

l.uy =uwandt = 1.
2.v; be an optimal solution for the subproblem

1
V(u) = Ifélé(a + ;(ut —u), U — )

3.if V(uy) <, set u™ = u; and terminate the procedure
dupyr = (1 — &ug + &ue with & =

. (l(ufut)fl,vtfut)
min{l, *———75—
{ ) %||Ut—ut\|2 }

Sett <— t+ 1 and go to step 2.
end procedure

Algorithm 2 Non-convex conditional gradient sliding
(NCGS)

Input: Step size ay, Ag, Bk, smoothness parameter L.
Initialization: 657 = 6y, k=1.
fork=1,...,N do
update: 67" = (1 — )0 | + arbr_1
update: 0, = condg(VF(0?), 0k 1, M, k)
update:
option I: 67 = ;" — g (01, VF(OF), e, i)
where §(0k—1, VF(0)'0), Ay, i) 1= =08
option II: 6, = condg(VF(07*4), 0%, By, x).
end for

we set ay, = kL-H Br = ﬁ e = B, Mk = % in option I
of Algorithm 2, we have

5 12L(F(8) — F(6*)) + 16L 3)
— N )

where 0* is the optimal solution of equation 1.

. 2 1
In option II, we set oy, = 737, Br = sp. A = kBr/2,
Nk = %,Xk = % M is the positive constant defined in our
section 2.2, then we have

min _|g(0r—1, VF(OF), Bi) |

k=1,...,N
19212160 — 6| 48IL, . 5. 96L
< * ]
= T N2(N 1) N I+ 200 +
4)

Some remarks are in order:

e Notice in the procedure of condg, we solve the sub
problem with accuracy 1. The choice of 7 is important:
If 7 is chosen too small, we need too many calls on LO.
On the other hand, if 7 is too large, the algorithm may
not converge.
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e The FO complexities of option I and II are order wise
equivalent, namely, O(1/¢).

e We now examine each terms of the convergence

guarantee of Option II: the term %
sponds to the convex part of the function. The term
LL(]|6* || + 2M?) corresponds to the non-convex part
of the function. And the last term L/N corresponds to

the procedure of condg.

corre-

e When the objective function a has finite-sum form with
n term, the IFO complexity of NCGS is O(%). We
will improve this complexity using stochastic variance
reduction techniques in Section 5.

Theorem 1 presents the convergence in terms of iteration
number, which we transfer to the FO and LO complexity in
the following corollary.

Corollary 1. Under the same condition of theorem 1. In

option I and II of algorithm 2, to achieve the accuracy e, the
FO complexity is O(1/¢) and the LO complexity is O(E%)

e Our algorithm has the same LO complexity with FW
but improves the FO complexity from O(Z) to O(2).

4. Stochastic non-convex conditional gradient
sliding

In this section we consider the following stochastic opti-

mization problem:

{Oneigrle(H) = E:f(6,8). (5)

4.1. Algorithm

A natural way to extend batch NCGS method to the stochas-
tic case is to replace the exact gradient V F'(6) in Algorithm
2 by the stochastic gradient G(6, £). However it is shown in
Ghadimi & Lan (2016) that mini-batch stochastic gradient
is necessary to guarantee the convergence. We incorporate
this technique in the stochastic NCGS . In particular, we
define Gy = - 37 G(ad, &k i)

Notice, by our assumption in Section 2, we have
EG, = —— 3 EGEO! &) = VF(6))
Mk 3 S £

and
5 dy |12 o?
E|Gr = VF(@O)|" < —. (6)
my
We present the stochastic NCGS in Algorithm 3. Notice
we have a randomized termination criterion on the total
iteration R.

Algorithm 3 Stochastic Non-convex conditional gradient
sliding

Input: Step size ag, Ak, Ok, smoothness parameter L, a
probability mass function Pg(-) with Prob{R = k} =
Pk, k= 17 ceey N.
Initialization: 637 = 6y, k=1.
Let R be a random variable chosen according to Pr(-).
fork=1,...,Rdo

update: 94 = (1 — ap)ly? | + b1

update: 0, = Condg(ék, Or_1, Ak, Uk)-

update: 09 = condg(Gy, 07, Br, X)-
end for

4.2. Theoretical Result

In the following theorem, we carefully choose the value
of step size and the tolerance in the procedure condg to
guarantee the convergence of the algorithm.

Theorem 2. Suppose F(0) is L smooth and | lower smooth,

o2 is the variance defined in Section 2. In Algorithm 3,
1 1

Serak:;%l,ﬂk:ﬁ,)\k:%,m:xk:Nand
-1
mg = k,andsetpk = %F;l’ W/’lEl"eFk = ﬁ’
then we have
Ellg(6%, Gr, Br)|*]
4L||6o —0*H2 l 9 9 1 302
<192L(——M— + —(||6* 2M — ,
<0L(atin -+ IO 20 + 5+ 570
(7N

where 0* is the optimal solution of equation 5.

Remarks:

e Compare this result with its batch counterpart, namely,
. 2
Theorem 1, we see there is a additional term % due
to the variance of the gradient.

e The mini-batch size is set as my = k, i.e., increasing
with the iteration of the algorithm. This is chosen to
guarantee the convergence with a fast rate.

Theorem 2 implies the following corollary of LO and SFO
complexity.

Corollary 2. Under the same setting as Theorem 2, SFO
and LO complexities in algorithm 3 are O(1/€%) and
O(1/€?) respectively.

e Notice in algorithm 3, we use mini-batches to calculate
G..Thus even the number of iteration of the stochastic
non-convex conditional gradient sliding is the same as
the batch one, it needs more calls of SFO.
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e To the best of our knowledge, the corresponding Frank-
Wolfe method in Reddi et al. (2016b) has SFO com-
plexity O(1/€3 ). Our algorithm has the same LO com-
plexity while improves the SFO complexity.

5. Variance reduction nonconvex conditional
gradient sliding in finite-sum setting

The stochastic variance reduction technique has been very
successful in optimizing convex functions in the form of
finite sums. In this section we incorporate it with our non-
convex conditional gradient sliding and propose NCGS-VR
in Algorithm 4.

5.1. Algorithm

We consider minimizing a finite sum problem as the follow-

ing
1 n

min F(0) = — ;ﬂ(ex 8)
where each f; is possibly non-convex, and smooth with pa-
rameter L. If we view the finite-sum problem as a special
case of batch problem, then use Algorithm 2, we have IFO
complexity O(2). Variance reduction technique has been
proposed for finite sum problem to reduce the dependence
of IFO complexity on number of components n. We in-
corporate this technique into NCGS. At the out looper, we
calculate the full gradient and use it in the inner loop to
reduce the variance of the stochastic gradient. Then we call
the procedure condg. As we show below our new algorithm

(Algorithm 4) achieves IFO complexity O(n + %) To the
best of our knowledge, this outperforms Frank-Wolfe type
algorithms for the non-convex finite-sum problem. Notice
in Algorithm 4, different from Algorithm 2 and 3, we do not
apply Nestrerov’s acceleration step. Whether the accelera-
tion step can further improve the rate of convergence (e.g.,
exploit the lower smoothness) in this setting is left for future
research.

5.2. Theoretical result

Theorem 3 Suppose f;(0) is non convex and L smooth,
setb =n3 in Algorlthm 4, A = 3L, =n3andTisa
multiple of m, n = T' Then for output 6, we have:

18L(f(60) — f(68%) + 1)
T

E[lg(0a, VF(0a), M)|*] <

where 0* is an optimal solution to (8).

e If b = 1 and m = n, then v{ reduces to the regular
stochastic variance reduced gradient. However this
means in every step we sample one data point and then
call condg, which may deteriorate the performance of
the algorithm.

Algorithm 4 Variance reduction Non-convex conditional
gradient sliding (NCGS-VR)

Input: 0~0 = 921 =6, € R4, epoch length m, stepsize A,
tolerance 7, minibatch size b, iteration limit 7', S = =

fors=0,...,.5 —1do
o5t = es
S“ Y ZZ 1Vf7(95)
fort—O —1do

Pick I; uniformly from {1, ..., n} with replacement

suil} that \It| =b. o . )
v =5 e, (VL (07T) = V£, (0°) + g7
;1 = condg(vith, 0711, A m).

end for
oerl 03+1
m
end for
Output: 6, is chosen uniformly at random from

{{6‘5+1} -1 f 1

e The minibatch gradient with size b = n?/3 and itera-
tion length mm = n'/? are carefully chosen to guarantee
the convergence of the algorithm and fast rate.

Theorem 3 leads to the following results on IFO and LO
complexity.

Corollary 3. Set the parameters set as in Theorem 3, the

IFO and LO complexities of Algorithm 4 are O(n+ "= 5 ) and
(9(6—2) respectively to achieve E[||g(0, VF(04), )H ] <
€.

e The stochastic variance reduction frank -Wolfe method
has the IFO complexity O(n+ "5 ) while our method

has the IFO complexity O(n + —) The LO com-
plexity for both algorithms are the same.

6. Simulation Result

In this section we test our algorithm in the batch (NCGS)
and finite-sum setting (NCGS-VR) and compare them with
Frank-Wolfe counterparts (FW and SVFW (Reddi et al.,
2016b)), as well as SVRG, a projection based algorithm.

6.1. Synthetic dataset

In this section, we first use a toy example on matrix comple-
tion to examine the convergence of the gradient mapping,
which is the convergence criteria for the algorithm. Notice
that in practice, the objective function value is typically a
more relevant metric, and hence we report such results using
a multitask learning problem.
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6.1.1. MATRIX COMPLETION

We consider a toy matrix completion problem for our simu-
lation and observe the magnitude of gradient mapping. In
particular, we optimize the following trace norm constrained
non-convex problem using the candidate algorithms.

min Y fi;(0) st |0 <R, )

(4,5)€Q
where () is the set of observed entries, f;; = (1 —
exp(—w)), Y; ; is the observation of (7,7)’s en-
try, || - || is the nuclear norm. Here f; ; is a smoothed ¢

loss with enhanced robustness to outliers in the data, thus
it can solve sparse+low rank matrix completion in Chan-
drasekaran et al. (2009). Obviously, f; ; is non-convex and
satisfies assumptions in our algorithm 2,3,4. We compare
our non-convex conditional gradient sliding method with
the Frank-Wolfe method in Fig 1. Particularly, we report the
result of the batch setting in the left panel. The dimension
of the matrix is 200 x 200, rank r = 5, the probability of
observing each entry is 0.1. The sparse noise is sampled uni-
formly from [—3, 3]. Each entry is corrupted by noise with
probability 0.05. We set 0 = 1, R = 5 in Problem (9). We
observe that our algorithm 2 (NCGS) clearly outperforms
the non-convex Frank-Wolfe method (FW). In the right
panel, we treat Problem (9) as a finite-sum problem, and
thus solve it using Algorithm 4 (NCGS-VR) and compare
the performance with the SVFW (Reddi et al., 2016b). We
set the dimension of the matrix as 400 x 400, rank r = 8,
o = 1, R = 8. The way to generate sparse noise and the
probability to observe the entry are same with the setting
of batch case. We observe that our NCGS-VR uses around
50 cpu-time to achieve 10~2 accuracy of squared gradient
mapping, while SVFW needs more than 300 cpu-time.

SvFw
= NCGSVR

cccccccccccccc

Figure 1. Left figure: NCGS and non-convex Frank-Wolfe method.
Right figure: non-convex stochastic variance reduction Frank-
Wolfe and NCGS-VR. The x-axis is the cpu-time with unit second,
y-axis is the squared gradient mapping.

Notice in this example, NCGS-VR is not necessary faster
than NCGS, since computing the gradient is very cheap.

6.1.2. NON-CONVEX MULTITASK LEARNING

In this section, we consider the non-convex multitask learn-
ing problem and compare the performance of NCGS, NCGS-

VR, non-convex Frank-Wolfe (FW) (Lacoste-Julien, 2016),
stochastic variance reduction Frank-wolfe (SVFW) (Reddi
et al., 2016b) and SVRG (Johnson & Zhang, 2013). In
SVRG, we update 6 and then project it back to the feasible
set of the nuclear norm constraint. In the experiment we
apply the mini-batch technique on SVRG. The reason is that
in regular SVRG (with mini-batch size =1) it samples one
data point and then calls the the procedure condg, result-
ing in very slow convergence. We choose the mini-batch
b =n?/3 and m = n'/3 as that in Reddi et al. (2016a).

We first generate m different covariance matrices ;, ¢ =
1,...,m, according to ¥; = UZ-DiUiT, where D, € R%*4 ig
a diagonal matrix with each entry drawn uniformly from
(1,2), and U; € R¥*9 is a random matrix with each entry
drawn from N (0, 1). The feature vectors of task (4, k) are
generated from the Normal distribution A/ (0, 3; + AX ),
k =1,..K, where AY;, = UiADiUiT, AD; is a small
perturbation of D; uniformly sampled from (0,0.1) . Thus
for each ¢, there are K similar tasks. Totally we have m x K
tasks, where some of them are similar and others may be
different. The target y;k in task (i, k)is 0 or 1 which is
sampled from the distribution ]P’(y;‘-’]C = 1|x;k =1zx) =
W, where 6% b* is the true parameter and
each entry of them (-1 or 1) are sampled with equal proba-
bility . In each task we generate n such data points. We use
Equation (2) as our objective function, where we choose a
loss function I(y, 0"x +b) = (y — 1rem@rays)°- This
non-convex loss function has been used in (Mei et al., 2016;
Nguyen & Sanner, 2013) and enjoys better accuracy in con-
trast to convex losses (e.g., logistic loss). NCGS, NCGS-VR,
FW, SVFW and SVRG are compared in this experiment.

We choose different setting on m, K, n and report the results
in Figure 2. In all experiment, the dimension of feature is
set as d = 300 and we choose R = 10 in Equation (2).

We observe from Figure 2 that although we already adapt
SVRG into the mini-batch version to speed up the converges,
its convergence is still very slow due to large amount of com-
putation in singular value decomposition when performing
the projection onto the nuclear norm ball. We also observe
that in all experiments, the proposed non-convex conditional
gradient sliding methods outperfom their respective coun-
terparts of the Frank-wolfe method. Particularly, NCGS-VR
performs the best and is followed by NCGS , FW and SVFW.
When the sample size is large (the right panel where the
sample size is 30 x 10 x 3000), our method is significantly
better than the Frank-Wolfe method.

6.2. Real datasets

We test our algorithms on three real datasets: Aloi
(n=108000, d=128) (Geusebroek et al., 2005), Covertype
(n=581012, d=54) (Blackard & Dean, 1999) and Sensorless
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Figure 2. The X-axis is the cputime, the y-axis is the objective function. In the left figure, m = 50, kK = 5, and n = 1000. In the middle
figure, we have m = 30, kK = 5, and n = 1500. In the right figure, m = 30, k = 10, and n = 3000.
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Figure 3. The X-axis is the cputime, the y-axis is the objective function. From the left to right, the dataset is aloi, covetype and Sensorless

Drive Diagnosis.

Drive Diagnosis Data Set (n=58509, d=49) (Bator, 2015).
We test the multitask learning task in Equation 2. For all
dataset, we normalize the feature to the range [—1, 1]. Note
these dataset have multi-classes. We generate tasks in the
following way. For each class of a dataset, we generate
five noisy versions of them by adding the small noise on
the feature . Then we set the labels of these data to ones.
We randomly sample same amount data from other classes
and generate the noisy version of them in the same way,
and then set the labels of them to zeros. Each version of
data with label ones and zeros is one individual task in our
multi-task learning problem. We report the experimental
results in Figure 3. Same as before, we use the mini-batch
version of SVRG.

In all experiments, SVRG converges very slowly due to
heavy computation cost of the projection onto the nuclear
norm ball. In the left figure, the performance of NCGS-
VR is best and then is followed by NCGS. The non-convex
Frank-Wolfe method converges fast at beginning then slow
down, while SVFW performs in the opposite way. In the
mid figure, NCGS-VR works fastest and is followed by
NCGS, SVFW, and FW. In the right figure, the performance
of NCGS-VR and NCGS are almost identical, and both
outperform the counterpart of the Frank-Wolfe method.

7. Conclusion and future work

In this paper, we propose non-convex conditional gradient
sliding methods to solve the batch, stochastic and finite-sum
non-convex problems with complex constraints, such that
projecting onto the feasible set is time consuming. Our algo-
rithms surpass state of the art Frank-Wolfe type method both
theoretically and empirically. One future research direction
is to consider the accelerated steps in the proposed NCGS-
VR algorithm, in hope to further improve the convergence
speed.
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