
Machine Theory of Mind

Appendices
A. Model description: architectures
Here we describe the precise details of the architectures
used in the main text.

We note that we did not optimise our results by tweaking
architectures or hyperparameters in any systematic or sub-
stantial way. Rather, we simply picked sensible-looking
values. We anticipate that better performance could be ob-
tained by improving these decisions, but this is beyond the
scope of this work.

A.1. Common elements.

Pre-processing. Both the character net and the mental state
net consume trajectories, which are sequences of observed
state/action pairs, τ (obs)

ij = {(x(obs)
t , a

(obs)
t)}Tt=0, where i

is the agent index, and j is the episode index. The ob-
served states in our experiments, x(obs)

t , are always ten-
sors of shape (11 × 11 × K), where K is the number of
feature planes (comprising one feature plane for the walls,
one for each object, and one for the agent). The observed
actions, a(obs)

t , are always vectors of length 5. We com-
bine these data through a spatialisation-concatenation op-
eration, whereby the actions are tiled over space into a
(11 × 11 × 5) tensor, and concatenated with the states to
form a single tensor of shape (11× 11× (K + 5)).

Training. All ToMnets were trained with the Adam opti-
miser, with learning rate 10−4, using batches of size 16. We
trained the ToMnet for 40k minibatches for random agents
(Section 3.1), and for 2M minibatches otherwise.

A.2. ToMnet for random agents (Section 3.1)

Data. For each species, S(α), we trained a single ToM-
net, by first forming a training set by sampling 1000 agents
from S(α). For each of these agents, we then generated
behavioural traces on randomly-generated POMDPs. We
then trained a ToMnet to observe how randomly-sampled
agents Ai ∼ S(α) behave on a variable number of past
episodes Npast ∼ U{0, 10}. Each past episode was of
length 1 (i.e. each trajectory consisted of a single state-
action pair). When no past episodes were sampled for a
given agent, the character embedding was set to echar = 0.

Character net. Each trajectory τij comprises a single
state/action pair. We spatialise the action, and concate-
nate this with the state. This is passed into a 1-layer con-
vnet, with 8 feature planes and ReLU nonlinearity. We then
passed the sequence of these (indexed by j) into a convo-
lutional LSTM, with the output passed through an average
pooling layer, and a fully-connected layer to a 2D embed-

ding space, to produce echar,i. We obtained similar results
with a wide range of different architectures.

Mental net. None.

Prediction net. In this experiment, we predict only next-
step action (i.e. policy, π̂) We spatialise echar,i, and con-
catenate with the query state. This is passed to a 2-layer
convnet, with 32 feature planes and ReLUs. This is fol-
lowed by average pooling, then a fully-connected layer to
logits in R5, followed by a softmax.

A.3. ToMnet for inferring goals (Section 3.2)

A.3.1. EXPERIMENT 1: SINGLE PAST MDP

Data. Character embedding formed from a single past
episode, comprising a full trajectory on a single MDP.
Query state is the initial state of a new MDP, so no men-
tal state embedding required.

Character net. For the single trajectory τi in the past
episode, the ToMnet forms the character embedding echar,i

as follows. We pre-process the data from each time-step by
spatialising the actions, a(obs)

t , concatenating these with the
respective states, x(obs)

t , passing through a 5-layer resnet,
with 32 channels, ReLU nonlinearities, and batch-norm,
followed by average pooling. We pass the results through
an LSTM with 64 channels, with a linear output to either a
2-dim or 8-dim echar,i (no substantial difference in results).

Mental net. None.

Prediction net. In this and subsequent experiments, we
make three predictions: next-step action, which objects are
consumed by the end of the episode, and successor rep-
resentations. We use a shared torso for these predictions,
from which separate heads branch off. For the prediction
torso, we spatialise echar,i, and concatenate with the query
state; this is passed into a 5-layer resnet, with 32 channels,
ReLU nonlinearities, and batch-norm.

Action prediction head. From the torso output: a 1-layer
convnet with 32 channels and ReLUs, followed by average
pooling, and a fully-connected layer to 5-dim logits, fol-
lowed by a softmax. This gives the predicted policy, π̂.

Consumption prediction head. From the torso output: a
1-layer convnet with 32 channels and ReLUs, followed by
average pooling, and a fully-connected layer to 4-dims, fol-
lowed by a sigmoid. This gives the respective Bernoulli
probabilities that each of the four objects will be consumed
by the end of the episode, ĉ.

Successor representation prediction head. From the
torso output: a 1-layer convnet with 32 channels and Re-
LUs, then a 1-layer convnet with 3 channels, followed by a
softmax over each channel independently. This gives the

Machine Theory of Mind

predicted normalised SRs for the three discount factors,
γ = 0.5, 0.9, 0.99.

A.3.2. EXPERIMENT 2: MANY PAST MDPS, ONLY A
SINGLE SNAPSHOT EACH

Data. Character embedding is formed from many past
episodes (Npast ∼ U{0, 10}); however, we only use a
snapshot of a single time point (i.e. a single state/action
pair) from each past episode. Query state as for Experi-
ment 1.

Character net. For each trajectory τij , the character net
adds a contribution echar,ij to the character embedding
echar,i as follows. We pre-process the single state/action
pair in τij as in Experiment 1, i.e. spatialising, concatenat-
ing, resnet, average pooling. There is no LSTM as there
is only a single state/action pair; instead we use a fully-
connected layer to form echar,ij ∈ R2. These are summed
across the Npast past trajectories to form echar,i.

Mental net. None.

Prediction net. As for Experiment 1.

A.3.3. EXPERIMENT 3: GREEDY AGENTS

Same as Experiment 1, but with Npast ∈ U{0, 5}.

A.4. ToMnet for modelling deep RL agents
(Section 3.3)

Data. Character embedding is formed from observing full
trajectories of agents on Npast = 4 POMDPs. While the
agents have partial observability, potentially with signifi-
cant parts of the state masked, the observer sees the entire
gridworld (albeit without any indication of the field of view
of the agent). The current episode is split at a random time
(drawn uniformly from U{0, T − 1} where T is the length
of the trajectory). The trajectory prior to the split forms the
“recent trajectory”, and is passed to the mental net. The
state at the time of the split is used as the query state.

Character net. For each past trajectory τij , the charac-
ter net adds a contribution echar,ij to the character embed-
ding echar,i via the same architecture as in Experiment 1
described in Appendix A.3 above, with an 8-dim echar,ij .
These are summed to form echar,i.

Mental net. We pre-process each time step’s state/action
pair in the recent trajectory as follows: we spatialise the
action, concatenate with the state, pass through a 5-layer
resnet, with 32 channels, ReLU nonlinearities, and batch-
norm. The results are fed into a convolutional LSTM
with 32 channels. The LSTM output is also a 1-layer
convnet with 32 channels, yielding a mental state embed-
ding emental,i ∈ R11×11×32. When the recent trajectory
is empty (i.e. the query state is the initial state of the

POMDP), emental,i is the zero vector.

Prediction net. As in Experiment 1 described in Ap-
pendix A.3. However, the prediction torso begins by spa-
tialising echar,i and concatenating it with both emental,i and
the query state. Also, as these agents act in gridworlds
that include the subgoal object, the consumption prediction
head outputs a 5-dim vector.

DVIB. For the Deep Variational Information Bottleneck
experiments, we altered the architecture by making the
character net output a posterior density, q(echar,i), rather
than a single latent echar,i; likewise, for the mental net
to produce q(emental,i), rather than emental,i. We parame-
terised both densities as Gaussians, with the respective nets
outputting the mean and log diagonal of the covariance ma-
trices, as in Kingma & Welling (2013). For the character
net, we achieved this by doubling the dimensionality of the
final fully-connected layer; for the mental net, we doubled
the number of channels in the final convolutional layer. In
both cases, we used fixed, isotropic Gaussian priors. For
evaluating predictive performance after the bottleneck, we
sampled both echar and emental, propagating gradients back
using the reparameterisation trick. For evaluating the bot-
tleneck cost, we used the analytic KL for q(echar,i), and
the analytic KL for q(emental,i) conditioned on the sam-
pled value of echar,i. We scaled the bottleneck costs by
βchar = βmental = β, annealing β quadratically from 0 to
0.01 over 500k steps.

A.5. ToMnet for false beliefs (Sections 3.4–3.5)

The ToMnet architecture was the same as described above
in Appendix A.4. The experiments in Section 3.5 also in-
cluded an additional belief prediction head to the prediction
net.

Belief prediction head. For each object, this head outputs
a 122-dim discrete distribution (the predicted belief that the
object is in each of the 11 × 11 locations on the map, or
whether the agent believes the object is absent altogether).
From the torso output: a 1-layer convnet with 32 channels
and ReLU, branching to (a) another 1-layer convnet with
5 channels for the logits for the predicted beliefs that each
object is at the 11×11 locations on the map, as well as to (b)
a fully-connected layer to 5-dims for the predicted beliefs
that each object is absent. We unspatialise and concatenate
the outputs of (a) and (b) in each of the 5 channels, and
apply a softmax to each channel.

Machine Theory of Mind

B. Loss function
Here we describe the components of the loss function used
for training the ToMnet.

For each agent,Ai, we sample past and current trajectories,
and form predictions for the query POMDP at time t. Each
prediction provides a contribution to the loss, described be-
low. We average the respective losses across each of the
agents in the minibatch, and give equal weighting to each
loss component.

Action prediction. The negative log-likelihood of the true
action taken by the agent under the predicted policy:

Laction,i = − log π̂(a
(obs)
t |x(obs)

t , echar,i, emental,i)

Consumption prediction. For each object, k, the negative
log-likelihood that the object is/isn’t consumed:

Lconsumption,i =
∑
k

− log pck(ck|x
(obs)
t , echar,i, emental,i)

Successor representation prediction. For each discount
factor, γ, we define the agent’s empirical successor repre-
sentation as the normalised, discounted rollout from time t
onwards, i.e.:

SRγ(s) =
1

Z

T−t∑
∆t=0

γ∆tI(st+∆t = s)

where Z is the normalisation constant such that∑
s SRγ(s) = 1. The loss here is then the cross-entropy

between the predicted successor representation and the em-
pirical one:

LSR,i =
∑
γ

∑
s

−SRγ(s) log ŜRγ(s)

Belief prediction. The agent’s belief states for each ob-
ject k is a discrete distribution over 122 dims (the 11 × 11
locations on the map, plus an additional dimension for an
absent object), denoted bk(s). For each object, k, the loss
is the cross-entropy between the ToMnet’s predicted belief
state and the agent’s true belief state:

Lbelief,i =
∑
k

∑
s

−bk(s) log b̂k(s)

Deep Varational Information Bottleneck. In addition to
these loss components, where DVIB was used, we included
an additional term for the β-weighted KLs between poste-
riors and the priors

LDV IB = βDKL (q(echar,i)||p(echar))+

βDKL (q(emental,i)||p(emental))

C. Gridworld details
The POMDPs Mj were all 11 × 11 gridworld mazes.
Mazes in Sections 3.1–3.2 were sampled with between 0
and 4 random walls; mazes in Sections 3.3–3.5 were sam-
pled with between 0 and 6 random walls. Walls were de-
fined between two randomly-sampled endpoints, and could
be diagonal.

Each Mj contained four terminal objects. These objects
could be consumed by the agent walking on top of them.
Consuming these objects ended an episode. If no terminal
object was consumed after 31 steps (random and algorith-
mic agents; Sections 3.1–3.2) or 51 steps (deep RL agents;
Sections 3.3–3.5), the episodes terminated automatically as
a time-out. The sampled walls may trap the agent, and
make it impossible for the agent to terminate the episode
without timing out.

Deep RL agents (Sections 3.3–3.5) acted in gridworlds that
contained an additional subgoal object. Consuming the
subgoal did not terminate the episode.

Reward functions for the agents were as follows:

Random agents (Section 3.1.) No reward function.

Algorithmic agents (Section 3.2). For a given agent, the
reward function over the four terminal objects was drawn
randomly from a Dirichlet with concentration parameter
0.01. Each agent thus has a sparse preference for one ob-
ject. Penalty for each move: 0.01. Penalty for walking into
a wall: 0.05. Greedy agents’ penalty for each move: 0.5.
These agents planned their trajectories using value itera-
tion, with a discount factor of 1. When multiple moves of
equal value were available, these agents sampled from their
best moves stochastically.

Deep RL agents (Sections 3.3–3.5). Penalty for each
move: 0.005. Penalty for walking into a wall: 0.05. Penalty
for ending an episode without consuming a terminal object:
1.

For each deep RL agent species (e.g. blind, stateless, 5×5,
...), we trained a number of canonical agents which re-
ceived a reward of 1 for consuming the subgoal, and a re-
ward of 1 for consuming a single preferred terminal object
(e.g. the blue one). Consuming any other object yielded
zero reward (though did terminate the episode). We ar-
tifically enlarged this population of trained agents by a
factor of four, by inserting permutations into their obser-
vation functions, ωi, that effectively permuted the object
channels. For example, when we took a trained blue-
object-preferring agent, and inserted a transformation that
swapped the third object channel with the first object chan-
nel, this agent behaved as a pink-object-preferring agent.

Machine Theory of Mind

D. Deep RL agent training and architecture
Deep RL agents were based on the UNREAL architec-
ture (Jaderberg et al., 2017). These were trained with over
100M episode steps, using 16 CPU workers. We used the
Adam optimiser with a learning rate of 10−5, and BPTT,
unrolling over the whole episode (50 steps). Policies were
regularised with an entropy cost of 0.005 to encourage ex-
ploration.

We trained a total of 660 agents, spanning 33 random
seeds × 5 fields of view × 2 architectures (feedfor-
ward/convolutional LSTM) × 2 depths (4 layer convnet or
2 layer convnet, both with 64 channels). We selected the
top 20 agents per condition (out of 33 random seeds), by
their average return. We randomly partitioned these sets
into 10 training and 10 test agents per condition. With the
reward permutations described above in Appendix C, this
produced 40 training and 40 test agents per condition.

Observations. Agents received an observation at each time
step of nine 11 × 11 feature planes – indicating, at each
location, whether a square was empty, a wall, one of the
five total objects, the agent, or currently unobservable.

Beliefs. We also trained agents with the auxiliary task of
predicting the current locations of all objects in the map.
To do this, we included an additional head to the Convo-
lutional LSTMs, in addition to the policy (πt) and baseline
(Vt) heads. This head output a posterior for each object’s
location in the world, bk (i.e. a set of five 122-dim discrete
distributions, over the 11 × 11 maze size, including an ad-
ditional dimension for a prediction that that the object is
absent). For the belief head, we used a 3-layer convnet
with 32 channels and ReLU nonlinearities, followed by a
softmax. This added a term to the training loss: the cross
entropy between the current belief state and the true current
world state. The loss for the belief prediction was scaled by
an additional hyperparameter, swept over the values 0.5, 2,
and 5.

E. Additional results

Figure A1. Example gridworld in which a random agent acts.
(a) Example past episode. Coloured squares: objects. Red ar-
rows: agent’s positions and actions (b) Example query: a state
from a new MDP. Black dot: agent position. (c)-(d) ToM-
net’s predictions when trained on species of agents with (a) near-
deterministic policies, or (d) more stochastic policies.

Figure A2. Usefulness of ToMnet components for the three be-
havioural prediction targets, compared with a simple ToMnet
with no character nor mental net. Longer bars are better; in-
cluding both character and mental nets is best. More details are
given in Table A1.

Machine Theory of Mind

Model Train agents Test agents

Action loss
none 1.14 1.12
char net 0.84 0.86
+ shuffled echar 1.61 1.62
mental net 0.83 0.98
+ shuffled emental 1.61 1.65
both 0.72 0.73
+ shuffled echar 1.57 1.69
+ shuffled emental 1.16 1.20
+ shuffled both 1.99 2.02

Consumption loss
none 0.34 0.36
char net 0.19 0.16
+ shuffled echar 0.83 0.77
mental net 0.32 0.30
+ shuffled emental 0.43 0.43
both 0.16 0.14
+ shuffled echar 0.82 0.78
+ shuffled emental 0.23 0.23
+ shuffled both 0.83 0.77

Successor loss
none 2.48 2.53
char net 2.23 2.21
+ shuffled echar 3.17 3.13
mental net 2.36 2.29
+ shuffled emental 2.92 2.80
both 2.16 2.04
+ shuffled echar 3.27 3.19
+ shuffled emental 2.45 2.33
+ shuffled both 3.53 3.31

Table A1. Full table of losses for the three predictions in Fig 6.
For each prediction, we report the loss obtained by a trained ToM-
net that had no character or mental net, had just a character net,
just a mental net, or both. For each model, we quantify the im-
portance of the embeddings echar and emental by measuring the
loss when echar,i and emental,i are shuffled within a minibatch.
The middle column shows the loss for the ToMnet’s predictions
on new samples of behaviour from the agents used in the trained
set. The right column shows this for agents in the test set.

F. Additional notes
F.1. Hypersensitivity of 3× 3 agents to swap events

with swap distance 1

In Fig 11c, the policies of agents with 3 × 3 fields of view
are seen to be considerably more sensitive to swap events

Figure A3. Natural Sally-Anne test, using swap events within
the distribution of POMDPs. (a) For SRs of different discount
factors (γ). DJS measured between normalised SRs. (b) As for
(a), but for a ToMnet trained on a range of agents with different
fields of view. Showing only 3× 3 and 9× 9 results for clarity.

Figure A4. ToMnet performance on the Natural Sally-Anne
test does not depend on the ToMnet observing swap events
during training. The left two columns show the data presented
in Fig 11 and Fig 12. The rightmost column shows the predictions
of the ToMnet when it is trained on data from the same agents, but
rolled out on POMDPs where the probability of swap events was
p = 0 instead of p = 0.1.

that occur adjacent to the agent than the agents with 9 × 9
fields of view. Agents with 5× 5 and 7× 7 were similar to
the 9× 9 agents in their sensitivities.

Machine Theory of Mind

Figure A5. Supervised prediction of beliefs. (a) Belief states for
the blue object’s location (b = p(loc|x0:tswap)) reported by the
agent in the POMDPs shown in Fig 9 at the time of subgoal con-
sumptions. Left two panels: the swap event occurred within the
agent’s field of view, so the agent’s beliefs changed. Right two
panels: the swap event was not within the agent’s field of view,
so its beliefs did not change. (b) Predictions b̂ made by the ToM-
net, given only the trajectory of states and actions. The ToMnet
predicts that the observable swap event (left) leads to a change
in belief state, whereas the unobservable swap event (right) does
not.

Figure A6. Variational character embeddings of agents with
different fields of view. (a) First two dimensions of echar rep-
resent field of view. Contours are shown of the marginal poste-
riors for each agent species. (b) Next three dimensions represent
preferred objects. Volumes show the approximate marginal pos-
teriors for agents preferring each of the four objects (colours).
Blind agents (left) cannot express their preference through their
overt behaviour; the ToMnet therefore reverts to the prior. Sighted
agents (right) produce embeddings arranged in a roughly tetrahe-
dral arrangement.

We did not perform a systematic analysis of the policy dif-
ferences between these agents, but we speculate here as to
the origin of this phenomenon. As we note in the main
text, the agents were competent at their respective tasks, but
not optimal. In particular, we noted that agents with larger
fields of view were often sluggish to respond behaviourally
to swap events. This is evident in the example shown on the
left hand side of Fig 9. Here an agent with a 5 × 5 field of
view does not respond to the sudden appearance of its pre-
ferred blue object above it by immediately moving upwards
to consume it; its next-step policy does shift some proba-
bility mass to moving upwards, but only a small amount
(Fig 9c). It strongly adjusts its policy on the following
step though, producing rollouts that almost always return
directly to the object (Fig 9d). We note that when a swap

event occurs immediately next to an agent with a relatively
large field of view (5 × 5 and greater), such an agent has
the luxury of integrating information about the swap events
over multiple timesteps, even if it navigates away from this
location. In contrast, agents with 3×3 fields of view might
take a single action that results in the swapped object dis-
appearing altogether from their view. There thus might be
greater pressure on these agents during learning to adjust
their next-step actions in response to neighbouring swap
events.

F.2. Use of Jensen-Shannon Divergence

In Sections 3.4–3.5, we used the Jensen-Shannon Diver-
gence (DJS) to measure the effect of swap events on
agents’ (and the ToMnet’s predicted) behaviour (Figs 11-
12). We wanted to use a standard metric for changes to
all the predictions (policy, successors, and beliefs), and we
found that the symmetry and stability of DJS was most
suited to this. We generally got similar results when using
the KL-divergence, but we typically found more variance
in these estimates: DKL is highly sensitive the one of the
distributions assigning little probability mass to one of the
outcomes. This was particularly problematic when mea-
suring changes in the successor representations and belief
states, which were often very sparse. While it’s possible
to tame the the KL by adding a little uniform probability
mass, this involves an arbitrary hyperparameter which we
preferred to just avoid.

