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Abstract

Theory of mind (ToM) broadly refers to humans’
ability to represent the mental states of others,
including their desires, beliefs, and intentions.
We design a Theory of Mind neural network —
a ToMnet — which uses meta-learning to build
such models of the agents it encounters. The
ToMnet learns a strong prior model for agents’
future behaviour, and, using only a small num-
ber of behavioural observations, can bootstrap
to richer predictions about agents’ characteris-
tics and mental states. We apply the ToMnet
to agents behaving in simple gridworld environ-
ments, showing that it learns to model random,
algorithmic, and deep RL agents from varied
populations, and that it passes classic ToM tasks
such as the “Sally-Anne” test of recognising that
others can hold false beliefs about the world.

1. Introduction

What does it actually mean to “understand” another agent?
As humans, we face this challenge every day, as we en-
gage with other humans whose latent characteristics, latent
states, and computational processes are almost entirely in-
accessible. Yet we can make predictions about strangers’
future behaviour, and infer what information they have; we
can plan our interactions with others, and establish efficient
and effective communication.

A salient feature of these “understandings” of other agents
is that they make little to no reference to the agents’ true
underlying structure. A prominent argument from cogni-
tive psychology is that our social reasoning instead relies
on high-level models of other agents (Gopnik & Wellman,
1992). These models engage abstractions which do not
describe the detailed physical mechanisms underlying ob-
served behaviour; instead, we represent the mental states
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of others, such as their desires and beliefs. This ability
is typically described as our Theory of Mind (Premack
& Woodruff, 1978). While we may also leverage our
own minds to simulate others’ (e.g. Gordon, 1986; Gallese
& Goldman, 1998), our ultimate human understanding of
other agents is not measured by a correspondence between
our models and the mechanistic ground truth, but instead
by how much they enable prediction and planning.

In this paper, we take inspiration from human Theory of
Mind, and seek to build a system which learns to model
other agents. We describe this as a Machine Theory of
Mind. Our goal is not to assert a generative model of
agents’ behaviour and an algorithm to invert it. Rather, we
focus on the problem of how an observer could learn au-
tonomously how to model other agents using limited data
(Botvinick et al., 2017). This distinguishes our work from
previous literature, which has relied on hand-crafted mod-
els of agents as noisy-rational planners — e.g. using inverse
RL (Ngetal., 2000; Abbeel & Ng, 2004), Bayesian Theory
of Mind (Baker et al., 2011; Jara-Ettinger et al., 2016) or
game theory (Yoshida et al., 2008; Camerer, 2010). Like-
wise, other work, such as Foerster et al. (2017) and Everett
(2017), expect other agents to conform to known, strong
parametric models, while concurrent work by Raileanu
et al. (2018) assumes that other agents are functionally
identical to oneself. In contrast, we make very weak as-
sumptions about the generative model driving others’ be-
haviour. The approach we pursue here learns the agent
models, and how to do inference on them, from scratch,
via meta-learning.

Building a rich, flexible, and performant Machine Theory
of Mind may well be a grand challenge for AI. We are not
trying to solve all of this here. A main message of this
paper is that many of the initial challenges of building a
ToM can be cast as simple learning problems when they
are formulated in the right way.

There are many potential applications for this work. Learn-
ing rich models of others will improve decision-making in
complex multi-agent tasks, especially where model-based
planning and imagination are required (Hassabis et al.,
2013; Hula et al., 2015; Oliehoek & Amato, 2016). Our
work thus ties in to a rich history of opponent modelling
(Brown, 1951; Albrecht & Stone, 2017); within this con-
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text, we show how meta-learning can provide the ability to
build flexible and sample-efficient models of others on the
fly. Such models will also be important for value align-
ment (Hadfield-Menell et al., 2016), flexible cooperation
(Nowak, 2006; Kleiman-Weiner et al., 2016), and mediat-
ing human understanding of artificial agents.

We consider the challenge of building a Theory of Mind as
essentially a meta-learning problem (Schmidhuber et al.,
1996; Thrun & Pratt, 1998; Hochreiter et al., 2001; Vilalta
& Dirissi, 2002). At test time, we want to be able to en-
counter a novel agent whom we have never met before, and
already have a strong and rich prior about how they are go-
ing to behave. Moreover, as we see this agent act in the
world, we wish to be able to form a posterior about their
latent characteristics and mental states that will enable us
to improve our predictions about their future behaviour.

We formulate a task for an observer, who, in each episode,
gets access to a set of behavioural traces of a novel agent,
and must make predictions about the agent’s future be-
haviour. Over training, the observer should get better at
rapidly forming predictions about new agents from limited
data. This “learning to learn” about new agents is what we
mean by meta-learning. Through this process, the observer
should also acquire an effective prior over the agents’ be-
haviour that implicitly captures the commonalities between
agents within the training population.

We introduce two concepts to describe components of
this observer network: its general theory of mind — the
learned weights of the network, which encapsulate predic-
tions about the common behaviour of all agents in the train-
ing set — and its agent-specific theory of mind — the “agent
embedding” formed from observations about a single agent
at test time, which encapsulates what makes this agent’s
character and mental state distinct from others’. These cor-
respond to a prior and posterior over agent behaviour.

This paper is structured as a sequence of experiments of
increasing complexity on this Machine Theory of Mind
network, which we call a ToMnet. These experiments
showcase the idea of the ToMnet, exhibit its capabilities,
and demonstrate its capacity to learn rich models of other
agents incorporating canonical features of humans’ Theory
of Mind, such as the recognition of false beliefs.

Several experiments in this paper are inspired by the semi-
nal work on Bayesian Theory of Mind (Baker et al., 2011;
2017). We do not try to directly replicate the experiments
in these studies, which seek to explain human judgements
in computational terms. Our emphasis is on machine learn-
ing, scalability, and autonomy. While our work generalises
many of the constructions of those previous experiments,
we leave the precise alignment to human judgements as fu-
ture work.

2. Model
2.1. The tasks

We assume we have a family of partially observable
Markov decision processes (POMDPs) M = | J ; M;. Un-
like the standard formalism, we associate the reward func-
tions, discount factors, and conditional observation func-
tions with the agents rather than with the POMDPs. For
example, a POMDP could be a gridworld with a particular
arrangement of walls and objects; different agents, when
placed in the same POMDP, might receive different re-
wards for reaching these objects, and be able to see differ-
ent amounts of their local surroundings. We only consider
single-agent POMDPs here; the multi-agent extension is
simple. When agents have full observability, we use the
terms MDP and POMDP interchangeably.

Separately, we assume we have a family of agents A =
Ui A;, with their own observation spaces, observation
functions, reward functions, and discount factors. Their
policies might be stochastic (Section 3.1), algorithmic
(Section 3.2), or learned (Sections 3.3-3.5). We do not as-
sume that the agents’ policies are optimal for their respec-
tive tasks. The agents may be stateful, though we assume
their hidden states do not carry over between episodes.

The POMDPs we consider here are 11 x 11 gridworlds
with a common action space (up/down/left/right/stay), de-
terministic dynamics, and a set of consumable objects (see
Appendix C). We experimented with these POMDPs due
to their simplicity and ease of control; our constructions
should generalise to richer domains too. We parameteri-
cally generate individual M by randomly sampling wall,
object, and initial agent locations.

In turn, we consider an observer who makes potentially par-
tial and/or noisy observations of agents’ trajectories. Thus,
if agent A; follows its policy m; on POMDP M and pro-
duces trajectory 7;; = {(s¢,a;)}1_q, the observer would
see Ti(;bs) = {(@{**,a{**))}T_, . For all our experiments,
we assume that the observer has unrestricted access to the
MDP state and agents’ actions, but not to agents’ parame-
ters, reward functions, policies, or identifiers.

ToMnet training involves a series of encounters with indi-
vidual agents. The ToMnet observer sees a set of full or
partial “past episodes”, wherein a single, unlabelled agent,
A;, produces trajectories, {7;; ji"i“, as it executes its pol-
icy within the respective POMDPs, M ;. Np.q might vary,
and may even be zero. The task for the observer is to pre-
dict the agent’s behaviour (e.g. atomic actions) and poten-
tially its latent states (e.g. beliefs) on a “current episode” as
it acts within POMDP M. The observer may be seeded

with a partial trajectory in M, up to time t.

The observer must learn to predict the behaviour of many
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Figure 1. ToMnet architecture. Predictions about future be-
haviour include next-step actions (), whether objects will be con-
sumed (¢), and successor representations (S R; Dayan, 1993).

agents, whose rewards, parameterisations, and policies
may vary considerably. This problem resembles one-shot
imitation learning (Duan et al., 2017; Wang et al., 2017),
but differs since the objective is not for the observer to ex-
ecute the behaviours itself. Moreover, there is an infor-
mational asymmetry, where the “teacher” may conceivably
know less about the environment state than the “student”,
and may also carry systematic biases.

2.2. The architecture

To solve these tasks, we designed the ToMnet architecture
shown in Fig 1. The ToMnet is composed of three modules:
a character net, a mental state net, and a prediction net.

The goal of the character net is to characterise the pre-
sented agent, by parsing observed past episode trajectories,
{ (obs)}Npast

Tij o Ji=1 0

into a character embedding, ecpar ;-

The goal of the mental state net is to mentalise about the
presented agent during the current episode (i.e. infer its
mental state; Dennett, 1973; Frith & Frith, 2006), by pars-
ing the current episode trajectory, Ti(]: bs), up to time ¢ — 1
into a mental state embedding, emental,;- For brevity, we

drop the agent subscript, <.

Lastly, the goal of the prediction net is to leverage the char-
acter and mental state embeddings to predict subsequent
behaviour of the agent. Precise details of the architecture,
loss, and hyperparameters for each experiment are given in
Appendix A. We train the whole ToMnet end-to-end.

We deploy the ToMnet to model agents belonging to a num-
ber of different “species” of agent, described in respective
sections. Crucially, we did not change the core architecture
or algorithm of the ToMnet to match the structure of the
species, only the ToMnet’s capacity.

3. Experiments
3.1. Random agents

We tested the ToMnet observer on a simple but illustrative
toy problem. We created a number of different species of
random agents, sampled agents from them, and generated
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Figure 2. ToMnet trained on random agents. (a) Predictions
that an agent will perform a particular action, by ToMnets trained
on different species, S(«). Posteriors shown after observing that
agent perform just that same action in Npas¢ = O (prior), 1, or
5 past episodes. Dots: ToMnet predictions. Solid lines: Bayes-
optimal posteriors for the respective S(a). (b) Average KL be-
tween agents’ true and predicted policies when the ToMnet is
trained on agents from one species (or mixture), but tested on
agents from a different species. Dots and lines as in (a). (¢) Em-
beddings echar € R? of different agents. Colours: most frequent
action over 10 past episodes; darker for higher counts.

behavioural traces on a distribution of random gridworlds
(e.g. Fig Ala). Each agent had a stochastic policy defined
by a fixed vector of action probabilities 7;(-) = m;. We
defined different species based on how sparse its agents’
policies were: within a species S(«), each r; was drawn
from a Dirichlet distribution with concentration parameter
«. Species with small (large) « yield agents with determin-
istic (stochastic) policies. We then trained different ToMnet
observers each on a single species of agent (details in Ap-
pendix A.2). We omitted the mental net for this task.

When trained on a species S(«), the ToMnet learns to ap-
proximate Bayes-optimal, online inference about agents’
policies. Fig 2a shows how the ToMnet’s action likelihoods
increase with more past observations, and how training the
ToMnet on species with lower « yields priors that the poli-
cies are indeed sparser. We can also see how the ToMnet
specialises by testing it on agents from different species
(Fig 2b): the ToMnet makes better predictions about novel
agents drawn from the species which it was trained on.
Moreover, the ToMnet easily learns how to predict be-
haviour from mixtures of species (Fig 2d): when trained
jointly on species with highly deterministic (o = 0.01) and
stochastic (v = 3) policies, it implicitly learns to expect
this bimodality in the policy distribution, and specialises
its inference accordingly. We note that it is not learning
about two agents, but rather two species of agents, which
each span a spectrum of individual parameters.

Finally, the ToMnet exposes an agent embedding space;
here it segregates agents along canonical directions by their
5-dim empirical action counts (Fig 2c¢).

In summary, without any changes to its architecture, a
ToMnet learns a general theory of mind that is specialised
for the distribution of agents it encounters, and estimates
an agent-specific theory of mind online for each individual
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Figure 3. ToMnet on goal-driven agents. (a) Past trajectory of
an example agent. Coloured squares: the four objects. Red ar-
rows: agent’s position and action. (b) Example query: a state
from a new MDP. Black dot: agent position. (c)-(d) ToMnet’s
predictions for the query in (b), given the past observation in (a).
SR in (d) for discount v = 0.9. Darker shading: higher SR.

agent that captures the sufficient statistics of its behaviour.

3.2. Inferring goal-directed behaviour

An elementary component of humans’ theory of other
agents is an assumption that their behaviour is goal-
directed (Gergely et al., 1995; Woodward, 1998; Buresh &
Woodward, 2007). We show here how the ToMnet observer
learns how to infer the goals of reward-seeking agents.

We defined species of agents who acted within the grid-
worlds with full observability (Fig 3a). Each agent, A;,
had a unique, fixed reward function over the four objects,
and planned its behaviour through value iteration. We then
trained the ToMnet to observe behaviour of these agents in
randomly-sampled “past” MDPs, and to use this to predict
the agents’ behaviour in a “current” MDP. We detail three
experiments below that explore the range of capabilities of
the ToMnet in this domain.

First, we provided the ToMnet with a full trajectory of an
agent on a single past MDP (Fig 3a). We then queried the
ToMnet with the initial state of a current MDP (Fig 3b)
and asked for a set of predictions: the next action the agent
would take (Fig 3c top), whether it would consume each
object (Fig 3c bottom), and a set of statistics about the
agent’s trajectory in the current MDP, the successor rep-
resentation (SR; the expected discounted state occupancys;
Dayan, 1993, Fig 3). The ToMnet’s predictions qualita-
tively matched the agents’ true behaviours.

Second, as a more challenging task, we trained a ToMnet
to observe only partial trajectories of the agent’s past be-
haviour. We conditioned the ToMnet on single observation-
action pairs from a small number of past MDPs (Vs ~
U{0,10}; e.g. Fig 4a). In the absence of any past observa-
tions, the ToMnet had a strong prior for the behaviour that
would be expected of any agent within the species (Fig 4b).
With more past observations of an agent, the ToMnet’s pre-
dictions improved (Fig 4c¢), yielding results comparable to
Bayesian Inverse RL (BIRL).

Whether performance will scale to more complex prob-
lems is an open question. Since the ToMnet doesn’t pre-
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Figure 4. ToMnet on goal-driven agents, continued. (a) This
ToMnet sees only snapshots of single observation/action pairs
(red arrow) from a variable number of past episodes (one shown
here). (b) Predicted policy for different initial agent locations in a
query MDP. Arrows: resultant vectors for the predicted policies,
ie >, ak - T(ak|T, echar). When Npase = 0, the predicted pol-
icy exhibits no net object preference. When Npast > 0, the ToM-
net infers a preference for the pink object. When the agent is stuck
in the top right chamber, the ToMnet predicts that it will always
consume the blue object, as this terminates the episode as soon
as possible, avoiding a costly penalty. (¢) The average posterior
probability assigned to the true action (16k sampled agents). Even
when Npast = 0, this is greater than chance, since all agents in the
species have similar policies in some regions of the state space.
Model accuracy of BIRL shown as mean = SEM over 16k sam-
pled agents. (d) ToMnet’s 2D embedding space (echar). Colour:
agents’ ground-truth preferred objects; saturation increases with
N, past-

specify the generative model of behaviour, a bias/variance-
tradeoff argument applies: the ToMnet will have higher
sample complexity than BIRL when agents truly are noisy-
rational utility maximisers; but unlike BIRL, it can flexibly
deal with richer agent populations (Sections 3.3-3.5).

Unlike inverse RL, the ToMnet is also not constrained to
explicitly infer agents’ reward functions. Nevertheless, 2D
character embeddings render this information immediately
legible (Fig 4d), even when the ToMnet does not have to
predict object consumption.

Finally, we enriched the agent species by applying a very
high move cost (0.5) to 20% of the agents; these agents
therefore generally sought the closest object. We trained
a ToMnet to observe Npagy ~ U{0,5} full trajectories
of randomly-selected agents before making its behavioural
prediction. The ToMnet learned to infer from even a sin-
gle trajectory which subspecies of agent it was observing,
and predict future behaviour accordingly (Fig 5). This
inference resembles the ability of children to jointly rea-
son about agents’ costs and rewards when observing short
traces of past behaviour (Jara-Ettinger et al., 2016).
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Figure 5. ToMnet on greedy agents. Left: a single past trajec-
tory. Right: ToMnet predictions on a query MDP. Light shaded
regions: the most probable object the agent will eventually con-
sume, given that the agent is currently in that location. (a) After
seeing the agent take a long path to the orange object, the ToM-
net predicts it will try to consume the orange object on the query
MDP, no matter its current location. (b) After seeing the agent
take the shortest path to the green object, the ToMnet predicts it
will generally consume a nearby object on the query MDP.

3.3. Learning to model deep RL agents

We next considered the ToMnet’s ability to learn models
for a richer population of agents: those with partial ob-
servability and neural network-based policies, trained us-
ing deep RL. This domain begins to capture the complex-
ity of reasoning about real-world agents. So long as the
deep RL agents share some overlap in their tasks, struc-
ture, and learning algorithms, we expect that they should
exhibit some shared behavioural patterns. Individual agents
may also exhibit idiosyncratic behaviour. There are thus
opportunities to learn rich general and agent-specific the-
ories of mind for such populations. Moreover, as tasks
and agents become more complex, hand-crafting a Ma-
chine Theory of Mind to parse behaviour (e.g. Baker et al.,
2011; Nakahashi et al., 2016; Baker et al., 2017; Lake
et al., 2017) becomes increasingly intractable; instead we
seek machines which learn to model others’ minds au-
tonomously (Botvinick et al., 2017).

We trained three different species of agents on gridworlds
that included a subgoal object. Agents received maximum
reward for reaching this subgoal first, then consuming a
preferred object that differed from agent to agent. Consum-
ing any of the non-subgoal objects terminated the episode.
All agents used the UNREAL architecture (Jaderberg et al.,
2017, Appendix D). One species of agent (“blind”) was un-
able to observe the maze state at all, and could only ob-
serve its previous action (a;—1) and reward (r;_1), which it
could integrate over time through its LSTM state. The sec-
ond species had partial observability (“sighted”), but was
stateless: these agents could observe the gridworld within
a b x 5 window centred at their current location; their poli-
cies however were purely reactive, implemented via feed-
forward networks without any memory. The third species
was both sighted (with partial observability) and stateful
(with an LSTM-based policy). The ToMnet observed these
agents’ behaviour with full observability of the POMDP
state. We trained the ToMnet on rollouts from 120 trained

current SR

: SR: SR:
state blind

sighted, stateless sighted, stateful

Figure 6. Characterising trained neural-net agents. ToMnet’s
prediction of agents’ SRs given a query POMDP state at time ¢ =
0 (left), as per Fig 3d. Star: the subgoal. Predictions made after
observing behaviour on Np,s; = 5 past POMDPs from a sampled
agent of each subspecies (always preferring the pink object).

agents (3 species x 4 preferred objects x 10 initial random
seeds). We held out a test set of a further 120 trained agents
(i.e. 10 additional random seeds) for the results below.

Unlike previous experiments, these agents’ behaviour de-
pended on both their individual characteristics and their
state; the ToMnet thus needed both a character net and a
mental net to make the best predictions (Fig A2).

The ToMnet developed general models for the three differ-
ent species of agents in its world. Fig 6 shows the ToMnet’s
predictions of SRs for the same query state, but given dif-
ferent past observations. Without being given the species
label, the ToMnet implicitly infers it, and maps out where
the agent will go next: blind agents continue until they hit
a wall, then turn; sighted but stateless agents consume ob-
jects opportunistically; sighted, stateful agents explore the
interior and seek out the subgoal.

With the higher dimensionality required to train the ToM-
net on this task (R®), the embedding space lacked any dis-
cernable structure. This was likely due to the relatively
deep prediction network, and the lack of explicit pressure
to compress or disentangle the embeddings. However, the
results were dramatically different when we added a vari-
ational information bottleneck to this layer (Alemi et al.,
2016, Appendix A.4). By replacing the character embed-
ding vectors egh,, With Gaussian posteriors, ¢(€echar|), the
ToMnet was driven to disentangle the factors of variation
in agent personality space (Fig 7). Moreover, the ToM-
net even discovered unexpected substructure amongst the
sighted/stateless subspecies, as it clustered sighted/stateless
test agents into two subcategories (Fig 8a-b). Contrasting
the ToMnet’s predictions for these two clusters reveals the
structure: each sighted/stateless agent explores its world
using one of two classic memoryless wall-following algo-
rithms, the right-hand rule or the left-hand rule (Fig 8c).

3.4. Acting based on false beliefs

Humans recognise that other agents do not base their deci-
sions directly on the state of the world, but rather on an in-
ternal representation, or belief about the state of the world
(Leslie, 1987; Gopnik & Astington, 1988; Wellman, 1992).
These beliefs can be wrong. An understanding that others
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Figure 7. Variational character embeddings. Left: first two
non-degenerate dimensions of echar € RS. Ellipses: Gaussian
covariance (one stdev) of the posteriors g(echar|-), coloured by
agents’ ground-truth species. Right: second two dimensions. Pos-
teriors coloured by agents’ ground-truth preferred objects. The
ToMnet uses the first two dimensions to represent the agent’s
species, and the next two dimensions to represent its preferred ob-
ject. When the agent is blind, the ToMnet represents the agent’s
preferred object by the prior, a unit Gaussian. All posteriors col-
lapsed to the prior in the remaining four dimensions.

(@) (b)

Figure 8. Discovering subspecies. (a) Posteriors, q(echar), for
sighted/stateless agents. Axes show the first two non-degenerate
dimensions (as in Fig 7a). Each colour shows the posteriors in-
ferred from a single deep RL agent from the test set, using differ-
ent behavioural traces. (b) Marginal posteriors for the individual
agents in (a), shown as iso-density contours, enclosing 80% of
the total density. Dots: cluster means. (c) Predicted policy dif-
ferences between agents in the two clusters in a query POMDP.
Each panel shows predicted policy for different agent locations, as
in Fig 4c. Left: ToMnet’s prediction for an agent with echar at the
one cluster mean. Middle: at the other cluster mean. Arrows are
darker where the two policies differ (higher D ;s). Right: vector
difference between left and middle.

can have false beliefs has become the most celebrated indi-
cator of a rich Theory of Mind (Baron-Cohen et al., 1985;
Krupenye et al., 2016; Baillargeon et al., 2016).

Could the ToMnet learn that agents may hold false beliefs?
To answer this, we needed a set of POMDPs in which
agents could indeed hold incorrect information (and act
upon this). We therefore introduced random state changes
that agents might not see. In the subgoal maze described
above, we included a low probability (p = 0.1) state tran-
sition when the agent stepped on the subgoal, such that the
four other objects would randomly permute their locations
instantaneously (Fig 9a-b). These swap events could only
affect the agent when the objects’ positions were within
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Figure 9. Subgoal task, where agents can have false beliefs. (a)
Trajectory of an agent (red arrows) as it seeks the subgoal (star).
Agent has partial observability: dark grey areas have not been
observed; light grey areas have been seen previously, but are not
observable at the time of subgoal consumption. (b) When the
agent consumes the subgoal object, there is a small probability
that the other objects will instantaneously swap locations. Left:
swap event within the agent’s current field of view. Right: outside
it. (c) Effect of swap on agent’s immediate policy. (d) Effect
of swap on agent’s empirical SR (computed over 200 stochastic
rollouts). Agent prefers the blue object.
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the the agent’s current field of view; when the swaps oc-
curred entirely outside its field of view, its policy at the
next time step remained unaffected (Fig 9c, right), a signa-
ture of a false belief. As agents were trained to expect these
low-probability swap events, they produced corrective be-
haviour as their policy was rolled out over time (Fig 9d,
right). While the trained agents were competent at the task,
they were not optimal.

In turn, we trained the ToMnet to predict the behaviour of
these agents. We initially focused on agents with 5 x 5
fields of view. We trained the ToMnet on rollouts from 40
sighted/stateful agents (4 preferred objects x 10 random
states), and tested it on a set of 40 held-out agents.

Our goal was to determine whether the ToMnet would
learn a general theory of mind that included an element of
false beliefs. However, the ToMnet, as described, does not
have the capacity to explicitly report agents’ (latent) be-
lief states, only the ability to report predictions about the
agents’ overt behaviour. To proceed, we created a variant
of the “Sally-Anne test”, used to probe human and animal
Theory of Mind (Wimmer & Perner, 1983; Baron-Cohen
et al., 1985; Call & Tomasello, 2008). In this classic test,
the observer watches an agent leave a desired object in one
location, only for it to be moved, unseen by the agent. The
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Figure 10. Sally-Anne test. (a) Agents’ forced trajectory. When
it reaches the subgoal (star), a swap event may or may not occur. If
there is no swap, the optimal action is to go left. By extending the
length of the path, the swap event will no longer be visible to the
agent. (b) Left: effect of a swap event on the agents’ true policies,
measured as the relative reduction in their probability of moving
back towards the original location where they saw the blue object
(Amrp = (w(ar|no swap) — w(ar|swap))/m(ar|no swap) x
100%). If the agent can see that the object has moved from this
location (swap dist < 2), it will not return left. If it cannot see this
location, its policy will not change. Right: ToMnet’s prediction.

subject, who sees all, is asked where the agent will seek
the object. While infants and apes cannot explicitly report
inferences about others’ mental states, experimenters have
nevertheless been able to measure these subjects’ predic-
tions of where the agents will actually go (Krupenye et al.,
2016; Baillargeon et al., 2016).

We used the swap events to construct a gridworld Sally-
Anne test. We hand-crafted scenarios where an agent
would see its preferred blue object in one location, but
would have to leave to reach a subgoal before returning to
consume it (Fig 10a). During this time, the preferred ob-
ject might be moved by a swap event, and the agent may
or may not see this occur, depending on how far away the
subgoal was. We forced the agents along this trajectory
(off-policy), and measured how a swap event affected the
agent’s probability of moving back to the preferred object.
As expected, when the swap occurred within the agent’s
field of view, the agent’s likelihood of turning back dropped
dramatically; when the swap occurred outside its field of
view, the policy was unchanged (Fig 10b, left).

We presented these trajectories to the ToMnet (which had
seen past behaviour indicating the agent’s preferred ob-
ject). Crucially, the ToMnet was able to observe the en-
tire POMDP state, and thus was aware of swaps when the
agent was not. To perform this task, the ToMnet needs to
have implicitly learned to separate out what it itself knows,
and what the agent can plausibly know. Indeed, the ToM-
net predicted the correct behaviours (Fig 10b, right): when
the world changes far away from an agent, that agent will
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Figure 11. Natural Sally-Anne test, using swap events within
the distribution of POMDPs. (a) Left: effect of swap events on
5 x 5 agents’ next-step policies. Right: ToMnet predictions. (b)
Results for a ToMnet trained on a range of agents with different
fields of view. Showing only 3 x 3 and 9 x 9 results for clarity.
Results for SRs shown in Fig A3. For a discussion about 3 x 3
agents’ sensitivity to adjacent swap events: Appendix F.1.

pursue actions founded on false beliefs about the world.

We validated these results by looking at the ToMnet’s pre-
dictions for how the agents responded to all swap events
in the distribution of POMDPs. We sampled a set of
test mazes, and rolled out the agents’ policies until they
consumed the subgoal, selecting only episodes where the
agents had seen their preferred object along the way. At
this point, we created a set of counterfactuals: either a
swap event occurred, or it didn’t. We measured the ground
truth for how the swaps would affect the agent’s policy, via
the average Jensen-Shannon divergence (D jg) between the
agent’s true action probabilities in the no-swap and swap
conditions'. As before, the agent’s policy often changed
when a swap was in view (for these agents, within a 2 block
radius), but wouldn’t change when the swap was not ob-
servable (Fig 11a, left).

The ToMnet learned that the agents’ policies were indeed
more sensitive to local changes in the POMDP state, but
were relatively invariant to changes that occurred out of
sight (Fig 11a, right). The ToMnet did not, however, learn
a hard observability boundary, and was more liberal in pre-
dicting that far-off changes could affect agent policy. The
ToMnet also correctly predicted that the swaps would in-
duce corrective behaviour over longer time periods, even
when they were not initially visible (Fig A3a).

These patterns were even more pronounced when we
trained the ToMnet on mixed populations of agents with
different fields of view. Here, the ToMnet had to infer what
each agent could see (from past behaviour alone) in order
to predict their behaviour in the future. The ToMnet’s pre-
dictions reveal an implicit grasp of how different agents’

sensory abilities render them differentially vulnerable to

'For a discussion of the D s measure, see Appendix F.2.
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Figure 12. Natural Sally-Anne task for reported beliefs. The
ToMnet captures the longer range over which the 9 x 9 agents up-
date their beliefs (again, inferring a soft observability boundary).

acquiring false beliefs (Figs 11b, A3). Most surprising of
all, the ToMnet learned these statistics even if the ToMnet
had never seen swap events during training (Fig A4).

On the one hand, the ToMnet learns a general theory
of mind that incorporates an implicit understanding that
agents act based on their own representations of the world,
even if they are mistaken. Yet this cognitive ability is un-
likely due to the ToMnet architecture itself, which is indeed
very straightforward. Rather, this work demonstrates that
representational Theory of Mind can arise simply by ob-
serving competent agents acting in POMDPs.

3.5. Explicitly inferring belief states

While the ToMnet learns that agents can act based on false
beliefs, it cannot explicitly report what these agents know
and don’t know about the world. It is also difficult to re-
solve any beliefs that do not manifest immediately in overt
behaviour. We therefore extended the ToMnet to make
declarative statements about agents’ beliefs.

We constructed a supervised dataset of belief states by
training the UNREAL agents to report their beliefs about
the locations of the four objects and the subgoal at every
time step, alongside their policy. Example belief states for
the query MDP states in Fig 9a-b are shown in Fig A5a.
These reported beliefs are just a readout from the LSTM
state, so are not causal to the agents’ policy.

In turn, we trained a single ToMnet on agents with a range
of different fields of view. This ToMnet had to observe
only agents’ overt behaviour, and use it to predict, for a
given query state, an agent’s policy, consumptions, SRs,
and reported beliefs (i.e., what the agent would say about
the world if it were asked; e.g. Fig ASb).

The ToMnet learns agent-specific theories of mind for the
different subspecies that grasp the essential differences be-
tween their belief-forming tendencies: agents with less vis-
ibility of changes in their world are more likely to report
false beliefs, and behave according to them too (Fig 12).

Last of all, we included an additional variational informa-
tion bottleneck penalty, to encourage low-dimensional ab-
stract embeddings of agent types. The character embed-
dings again separated along the factors of variation (field

of view and preferred object; Fig A6). This also reveals the
ToMnet’s ability to distinguish different agents’ visibility:
blind and 3 x 3 agents are easily distinguishable, whereas
there is little in past behaviour to separate 7 x 7 agents from
9 x 9 agents (or little benefit in making this distinction).

This particular construction of explicit belief inference will
likely not scale in its current form as it requires access to
others’ latent belief states for supervision. Here we provide
this to the ToMnet via a rich communication channel; in the
real-world, this channel is likely much sparser. Humans do,
however, have privileged access to some of our own men-
tal states through meta-cognition (though this data may be
biased and noisy). Itis also intractable to predict others’ be-
liefs about every aspect of the world simultaneously. This
may require solutions such as forming abstract embeddings
of others’ belief states that can be queried.

4. Discussion

We have shown that, through meta-learning, the ToMnet
learns a general model for agents it encounters, and how to
construct an agent-specific model online while observing a
new agent’s behaviour. The ToMnet can flexibly learn such
models for many different species of agents, whilst mak-
ing few assumptions about the generative processes driv-
ing these agents’ decision-making. The ToMnet can also
discover abstractions within the space of behaviours.

The experiments we pursued here were simple, and de-
signed to illustrate the core ideas of such a system. There
is much work to do to scale the ToMnet. First, we have
worked entirely within gridworlds; these results should be
extended to richer domains, e.g. 3D visual environments.
Second, we did not limit the observability of the observer
itself. This is clearly an important challenge within real-
world social interaction, and is another inference problem
(Baker et al., 2017). Third, there are many other dimen-
sions over which to characterise agents, such as whether
they are prosocial or adversarial (Ullman et al., 2009), re-
active or able to plan (Sutton & Barto, 1998). Potentially
more interesting is the possibility of using the ToMnet to
discover new structure in the behaviour of either natural
or artificial populations. Fourth, a rich Theory of Mind
is likely important for many multi-agent decision making
tasks, which will require situating ToMnet-like systems in-
side artificial agents. We anticipate many other needs: to
enrich the set of predictions a ToMnet must make; to im-
prove data efficiency at training time; to introduce gentle
inductive biases; and to consider how agents might draw
flexibly from their own cognition to inform their models of
others. Addressing these will be necessary for advancing a
Machine Theory of Mind that learns the rich capabilities of
responsible social beings.
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