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Abstract
We consider the multi-agent reinforcement learn-
ing setting with imperfect information. The re-
ward function depends on the hidden goals of
both agents, so the agents must infer the other
players’ goals from their observed behavior in
order to maximize their returns. We propose a
new approach for learning in these domains: Self
Other-Modeling (SOM), in which an agent uses
its own policy to predict the other agent’s actions
and update its belief of their hidden goal in an on-
line manner. We evaluate this approach on three
different tasks and show that the agents are able
to learn better policies using their estimate of the
other players’ goals, in both cooperative and com-
petitive settings.

1. Introduction
Reasoning about other agents’ intentions and being able to
predict their behavior is important in multi-agent systems, in
which the agents might have different, and sometimes com-
peting, goals. In this paper, we introduce a new approach for
estimating other agents’ unknown goals from their behavior
and using those estimates to choose actions. We demon-
strate that in the proposed tasks, using an explicit model
of the other player leads to better performance than simply
considering the other agent as part of the environment.

We frame the problem as a two-player stochastic game
(Shapley, 1953), in which each agent is randomly assigned
a different goal from a fixed set, which is shared between
the agents. Players have full visibility of the environment,
but no direct knowledge of the other’s goal and no commu-
nication channel. The reward obtained by each agent at the
end of an episode depends on the goals of both agents, so
an optimal policy must take into account both of their goals.

The key idea of this work is that as a first approximation
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of understanding what the other player is trying to achieve,
an agent should ask itself “what would be my goal if I had
acted as the other player had?”. We instantiate this idea by
parametrizing the agent’s action and value functions with
a neural network that takes as input the observation state
and a goal. As the agent plays the game, it uses its own
policy (with the input expressed in the other agent’s frame of
reference) to maximize the likelihood of the other’s observed
actions and optimize directly over the goal representation to
infer the other agent’s unknown goal. In contrast with the
current literature, our approach does not require building
any model of the other agent in order to infer its intention
and predict its behavior.

2. Approach
Background: A two-player Markov game is defined by a
set of states S describing the possible configurations of all
agents, a set of actions A1,A2 and a set of observations
S1,S2 for each agent, and a transition function T : S ×
A1 ×A2 → S which gives the probability distribution on
the next state as a function of current state and actions. Each
agent i chooses actions by sampling from a stochastic policy
πi : S × Ai → [0, 1]. The reward function of each agent
is: ri : S ×A1 ×A2 → R. Each agent i aims to maximize
its discounted return from time t onward: Ri

t =
∑∞

t=0 γ
trit,

where rit is the reward obtained by agent i at time t and
γ ∈ (0, 1] is the discount factor. In this work, we consider
both cooperative and adversarial settings. In cooperative
games, the agents have the same reward function: r1 = r2.

We now describe Self Other-Modeling (SOM), a new ap-
proach for inferring other agents’ goals in an online fashion
and using these estimates to choose actions. To decide an
action and to estimate the value of a state, we use a neural
network f that takes as input its own goal zself , an estimate
of the other player’s goal z̃other, and the observation state
sself , and outputs a probability distribution over actions π
and a value estimate V , such that for each agent i playing
the game we have:[

πi

V i

]
= f(siself , z

i
self , z̃

i
other; θi) .

Here θi are agent i’s parameters for f , which has one soft-
max output for the policy, one linear output for the value
function, and all the non-output layers shared. The actions
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are sampled from policy πi. The state siself contains the
observation features from agent i’s viewpoint.

We propose that each agent models the behavior of the other
player using its own policy. Thus, each agent uses its own
network f in two ways: acting mode, in which the agent
uses f to choose its actions and inference mode, in which
the agent uses f to infer the other agent’s goal. For notation
purposes, whenever f is used in acting mode (inference
mode) we will refer to it as fself (fother):

acting mode: fself (sself , zself , z̃other; θ) (1)

inference mode: fother(sother, z̃other, zself ; θ). (2)

The two modes have different relative placements of the
network’s inputs zself and z̃other. Additionally, since the
environment is fully observed, the observation state of the
two agents differs only by the specification of the agent’s
identity on the map (i.e. each agent will be able to distin-
guish between its own location and the other’s location).
Hence, in acting mode, the network fself will take as input
sself (with the identity of the acting agent at the location
of the self ) and in inference mode, the network fother will
take as input sother (with the identity of the acting agent at
the location of the other).

At each step, the agent uses equation (2) to output an esti-
mate of the probability distribution over the other agent’s
actions. Then, the agent uses supervision of the other’s true
action to backpropagate through fother (without updating
its paramters) and directly optimize over its input z̃other,
the estimate of the other agent’s goal. The number of op-
timization steps used to update z̃other is a hyperparameter
that can vary with the game. The new estimate z̃other is
used as input to fself in (1) for choosing the self agent’s
next action. Figure 1 illustrates this technique.

Note that the network f is never updated during inference
mode (i.e. using supervision of the other agent’s actions),
f ’s parameters θ are updated only at the end of each episode
using Asynchronous Advantage Actor-Critic (A3C) (Mnih
et al., 2016) with reward signal obtained by the self agent.
In contrast, z̃other is updated (multiple times) at each step
in the game.

Algorithm 1 represents the pseudo-code for training a SOM
agent for one episode. The procedure is formulated from
the viewpoint of a single agent. Since the goals are discrete
in all the tasks considered here, the agent’s goal zself is
encoded as a one-hot vector of dimension equal to the total
number of possible goals in the game. In line 6, siself is
the self’s observation state from the perspective of agent i,
which is the same as the other’s observation state from the
perspective of agent j, sjother.

We consider a continuous vector z̃other of the same dimen-
sion as zself , such that the estimate of the other agent’s

Algorithm 1 SOM training for one episode
1: procedure SELF OTHER-MODELING
2: for k := 1, num players do
3: z̃kother ← 1

ngoals1ngoals
4: game.reset()
5: for step := 1, episode length do
6: siself = sjother ← game.get state()

7: z̃OH,i
other = one hot(argmax(softmax(z̃iother))

8: πi
self , V

i
self ← f iself (siself , z

i
self , z̃

OH,i
other; θi)

9: aiself ∼ πi
self

10: game.action(aiself )
11: for k : = 1, num inference steps do
12: z̃GS,j

other = gumbel soft(softmax(z̃jother))

13: π̃j
other← f jother(sjother, z̃

GS,j
other, z

j
self ; θj)

14: loss = cross entropy loss(π̃j
other, a

i
self )

15: loss.backward()
16: update(z̃jother)

17: for k := 1, num players do
18: policy.update(θk)

goal is a sample from the Categorical distribution with class
probabilities softmax(z̃other). Thus, the estimate of the
other’s goal is given by the one-hot vector z̃OH

other, as shown
in line 7. At the beginning of each game, the estimate of the
other’s goal z̃OH

other is randomly initialized, as illustrated in
line 3, where 1ngoals represents a vector of all ones with the
size equal to the number of possible goals.

In inference mode, the estimate of the other agent’s goal
is expressed as a sample from the Gumbel-Softmax distri-
bution (Jang et al., 2016; Maddison et al., 2016), z̃GS

other,
as shown in line 12, where gumbel soft(p) = softmax[g +
log(p)]), with g sampled from the Gumbel distribution and
the softmax temperature τ = 1. To update the estimate of
the other’s goal, we directly optimize z̃other by using the
cross-entropy loss to backpropagate through fother (lines 14,
15, 16).

Figure 1. Our Self Other-Model (SOM) architecture.

The agents’ policies are parametrized by long short-term
memory (LSTM) cells (Hochreiter & Schmidhuber, 1997)
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with two fully-connected linear layers, and exponential lin-
ear unit (ELU) (Clevert et al., 2015) activations. The weights
of the networks are initialized with semi-orthogonal matri-
ces, as described in Saxe et al. (2013) and zero bias.

3. Related Work
Multi-Agent Learning. Recent work in deep multi-agent
RL focuses on partially visible, fully cooperative settings
(Foerster et al., 2016a;b; Omidshafiei et al., 2017) and emer-
gent communication (Lazaridou et al., 2016; Foerster et al.,
2016a; Sukhbaatar et al., 2016; Das et al., 2017; Mordatch
& Abbeel, 2017). Lerer & Peysakhovich (2017) design
RL agents that are able to maintain cooperation in com-
plex social dilemmas by generalizing a well-known game
theoretic strategy called tit-for-tat (Axelrod, 2006), to multi-
agent Markov games. Leibo et al. (2017) considers semi-
cooperative multi-agent environments in which the agents
develop cooperative or competitive strategies depending on
the task type and reward structure. Similarly, Lowe et al.
(2017) proposes a centralized actor-critic architecture for
efficient training in settings with such mixed strategies. Our
setting is different since we do not allow communication
between the agents, so the players have to indirectly reason
about others’ intentions from their observed behavior.

Intent Recognition. Research on plan, activity, and intent
recognition has a long history, but it usually assumes do-
main knowledge or a form of rationality and uses techniques
such as Bayesian inference or Hidden Markov Models (Suk-
thankar et al., 2014). The field of inverse reinforcement
learning (IRL) (Russell, 1998; Ng et al., 2000; Abbeel &
Ng, 2004) is also related to the problem considered here.
IRL’s aim is to infer the reward function of an agent by ob-
serving its behavior, which is assumed to be nearly optimal.
In contrast, our approach uses the observed actions of the
other player to directly infer its goal in an online manner,
which is then used by the agent when acting in the environ-
ment. This avoids the need for collecting offline samples
of the other’s (state, action) pairs in order to estimate its
reward function and use it to learn a policy. The more re-
cent papers by Hadfield-Menell et al. (2016; 2017) are also
concerned with the problem of inferring intentions, but their
focus is on human-robot interaction and value alignment.
Motivated by similar goals, Chandrasekaran et al. (2017)
consider the problem of building a theory of AI’s mind, in
order to improve human-AI interaction and the interpretabil-
ity of AI systems. Recent work in cognitive science attempts
to understand human decision-making by using a hierarchi-
cal model of social agency that infers human intentions for
choosing a strategy (Kleiman-Weiner et al., 2016). However,
none of these papers design algorithms that explicitly model
other artificial agents in the environment or estimate their
intentions, with the purpose of improving their decision

making.

Modeling Other Agents. Opponent modeling has been ex-
tensively studied in games of imperfect information. Yet
most previous approaches focuses on developing mod-
els with domain-specific probabilistic priors or strategy
parametrizations. In contrast, our work proposes a more
general framework for opponent modeling. Davidson (1999)
uses an MLP to predict opponent actions given a game his-
tory, but the agents cannot adapt to their opponents’ behavior
online. Lockett et al. (2007) designs a neural network archi-
tecture to identify the opponent type by learning a mixture
of weights over a given set of cardinal opponents, but the
game does not unfold within the RL framework.

The closest work to ours is Foerster et al. (2017) and He et al.
(2016). Foerster et al. (2017) designs RL agents that take
into account the learning of other agents in the environment
when updating their own policies. This enables the agents to
discover self-interested yet collaborative strategies such as
tit-for-tat in the iterated prisoner’s dilemma. While our work
does not explicitly attempt to shape the learning of other
agents, it has the advantage that agents can update their
beliefs during an episode and change their strategies online
to gain more reward. Our setting is also different in that
it considers that each agent has some hidden information
needed by the other player to maximize its return.

Our work is very much in line with He et al. (2016), where
the authors build a general framework for modeling other
agents in the reinforcement learning setting. He et al. (2016)
proposes a model that jointly learns a policy and the behav-
ior of opponents by encoding observations of the opponent
into a DQN. Their Mixture of Experts architecture is able to
discover different opponent strategy patterns in two compet-
itive tasks. In our approach, rather than using hand designed
features of the other agent’s behavior, the agent models oth-
ers using its own policy. Another difference is that in this
work, the agent runs an optimization over the input vector
to infer the other agent’s hidden goal, rather than using a
feed-forward network. In the experiments below, we show
that SOM outperforms an adaptation of the method of He
et al. (2016) to our setting.

4. Experiments
In this section, we evaluate our model SOM on three tasks:

• The coin game, in Section 4.2, which is a fully co-
operative task where the agents’ roles are symmetric.

• The recipe game, in Section 4.3, which is adversarial,
but with symmetric roles.

• The door game, in Section 4.4, which is fully coop-
erative but has asymmetric roles for the two players.
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We compare SOM to three other baselines and to a model
that has access to the ground truth of the other agent’s goal.
All the tasks considered are created in the Mazebase grid-
world environment (Sukhbaatar et al., 2015).

4.1. Baselines

TRUE-OTHER-GOAL (TOG): We provide an upper bound
on the performance of our model given by a policy network
which takes the other agent’s true goal as input zother, as
well as the state features sself and its own goal zself . Since
this model has direct access to the true goal of the other
agent, it does not need a separate network to model the
behavior of the other agent. The architecture of TOG is the
same as the one of SOM’s policy network, f .

NO-OTHER-MODEL (NOM): The first baseline we use
only takes as inputs the observation states sself and its own
goal zself . NOM has the same architecture as the one used
for SOM’s policy network, fself . This baseline does not
explicitly model the other agent’s policy, goal, or actions.

INTEGRATED-POLICY-PREDICTOR (IPP): Starting with
the architecture and inputs of NOM, we construct a stronger
baseline, IPP, which has an additional final linear layer that
outputs a probability distribution over the next action of the
other agent. Besides the A3C loss used to train the policy of
this network, we also add a cross-entropy loss to train the
prediction of the other agent’s action, using observations of
its true actions.

SEPARATE-POLICY-PREDICTOR (SPP): He et al. (2016)
propose an opponent modeling framework based on DQN.
In their approach, a neural network (separate from the
learned Q-network) is trained to predict the opponents ac-
tions given hand crafted state information specific to the
opponent. An intermediate hidden representation from this
network is given as input to the Q-network.

We adapt the model of He et al. (2016) to our setting. In
particular, we use A3C instead of DQN and we do not use
the task-specific features used to represent the hidden goal
of the opponent.

The resulting model, SPP, consists of two separate net-
works, a policy network for deciding the agent’s actions,
and an opponent network for predicting the other agent’s
actions. The opponent network takes as input its own state
observation sself and goal zself , and outputs a probability
distribution for the action taken by the other agent at the
next step, as well as its hidden (recurrent) state. As in IPP,
we train the opponent policy predictor with a cross-entropy
loss using the true actions of the other agent. At each step,
the hidden (recurrent) state outputted by this network is
taken as input by the agent’s policy network, along with the
observation state and its own goal. Both the policy network
and the opponent policy predictor are LSTMs with the same

architecture as SOM.

In contrast to SOM, SPP does not explicitly infer the other
agent’s goal. Rather, it builds an implicit model of the
opponent by predicting the agent’s actions at each time step.
In SOM, an inferred goal is given as additional input to the
policy network. The analog of the inferred goal in SPP is the
hidden (recurrent) state obtained from the opponent policy
predictor which is given as an additional input to the policy
network.

Training Details. In all our experiments, we train the
agents’ policies using A3C (Mnih et al., 2016) with an
entropy coefficient of 0.01, a value loss coefficient of 0.5,
and a discount factor of 0.99. The parameters of the agents’
policies are optimized using Adam (Kingma & Ba, 2014)
with β1 = 0.9, β2 = 0.999, ε = 1×10−8, and weight decay
0. SGD with a learning rate of 0.1 was used for inferring
the other agent’s goal, z̃other.

The hidden layer dimension of the policy network was 64
for the Coin and Recipe Games and 128 for the Door Game.
We use a learning rate of 1×10−4 for all games and models.

The observation state s is represented by few-hot vectors
indicating the locations of all the objects in the environment
(including the other player). The dimension of this input
state is 1 × nfeatures, where the number of features is
384, 192, and 900 for the Coin, Recipe, and Door games,
respectively.

For each experiment, we trained the models using 5 different
random seeds. All the results shown are for 10 optimization
updates of z̃other at each step in the game, unless mentioned
otherwise.

4.2. Coin Game.

First, we evaluate the model on a fully cooperative task, in
which the agents can gain more reward when using both of
their goals rather than only their own goal. So it is in the
best interest of each agent to estimate the other player’s goal
and use that information when taking actions. The game,
shown in the left diagram of Figure 4, takes place on a 8× 8
grid containing 12 coins of 3 different colors (4 coins of
each color). At the beginning of each episode, the agents
are randomly assigned one of the three colors. The action
space consists of: go up, down, left, right, or pass. Once
an agent steps on a coin, that coin disappears from the grid.
The game ends after 20 steps. The reward received by both
agents at the end of the game is given by the formula below:

R(cself , cother) = (nselfCself
+ notherCself

)2 + (nselfCother
+ notherCother

)2

− (nselfCneither
+ notherCneither

)2,

where notherCself
is the number of coins of the self’s goal-color,

which were collected by the other agents, and nselfCneither
is
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Figure 2. Coin Strategy: Average number of collected coins per episode corresponding to the color of the Self (blue), Other (red), or
Neither (green) by the agents using TOG (left), SOM (center-left), NOM (center), IPP (center-right), and SPP (right). The optimal strategy
is to pick up as many Self as Other coins on average, across a number of episodes, and as few Neither coinsas possible. Being able to
collect more Other than Neither coins indicates that the agent is able to accurately infer the other agent’s color early enough during some
of the episodes and uses this information to collect more Other, instead of Neither coins, which increases its reward. The TOG model
learns to collect just as many Self as Other coins, while the baseline models only learn to collect more Self coins, but cannot distinguish
between the Other and Neither coins. SOM learns to collect significantly more Other coins than Neither. This shows that SOM converges
to a closer-to-optimal strategy using its guess of the other’s goal.

the number of coins corresponding to neither of the agents’
goals, collected by the self. For the example in Figure 4,
agent 1 has Cself = orange and Cother = cyan, while agent
2’s Cself is cyan and Cother is orange. Cneither is red for
both agents.

The role of the penalty for collecting coins that do not corre-
spond to any of the agents’ goals is to avoid convergence to a
greedy policy in which the agents can gain a non-negligible
amount of reward by collecting all the coins in their proxim-
ity, without any regard to their color.
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Figure 3. Coin Performance: Average reward in the Coin game
by SOM (green), TOG (blue), NOM (red), IPP (magenta), and
SPP (orange). SOM performs better than all baselines.

To maximize its return, each agent needs maximize the num-
ber of collected coins of its own or its collaborator’s color,
and minimize the number of coins of the remaining color.
Hence, when both agents are able to infer their collabora-
tors’ goals with high accuracy and as early as possible in
the game, they can use that information to maximize their

shared utility.

Figure 3 shows the mean and standard deviation of the
reward across 5 runs with different random seeds obtained
by SOM. Our model clearly outperforms all other baselines
on this task. We also show the empirical upper bound on the
reward using the model which takes as input the true color
assigned to the other agent.

Figure 2 analyzes the strategies of the different models by
looking at the proportion of coins of each type collected
by the agents. The optimal strategy is for each agent to
maximize nselfCself

+ nselfCother
and minimize nselfCneither

. Due
to the randomness in the initial conditions (in particular, the
locations of coins in the environment), this amounts to each
agent collecting an equal number of coins of its own and
of the other’s color on average, across a large number of
episodes (i.e. n̄selfCself

= n̄selfCother
).

Indeed, this is the strategy learned by the model with perfect
information of the other agent’s goal (TOG). SOM also
learns to collect significantly more Other than Neither coins
(although not as many as Self coins), indicating its ability to
distinguish between the two types, at least during some of
the episodes. This means that SOM can accurately infer the
other agent’s goal early enough during the episode and use
that information to collect more Other Coins, thus gaining
more reward than if it were only using its own goal to direct
its actions.

In contrast, the agents trained with the three baseline models
collect significantly more Self coins, and as many Other as
Neither coins on average. This shows that they learn to use
their own goal for gaining reward, but they are unable to
use the hidden goal of the other agent for further increasing
their returns. Even if IPP and SPP are able to predict the
actions of the other player with an accuracy of about 50%,
they do not learn to distinguish between the coins that would
increase (Other) and those that would decrease (Neither)
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their reward. This shows the weaknesses of using an implicit
model of the other agent to maximize reward on certain
tasks.

Figure 4. Illustration of the Coin (left), Recipe (center), and Door
(right) games. Above each diagram, we show the agents’ goals
(not visible to one another).

4.3. Recipe Game.

Agents in adversarial scenarios have competing goals, so
the ability of inferring the opponent’s goal could better in-
form the agent’s actions. With this motivation in mind, we
evaluate our model on a game in which the agents have to
craft certain compositional recipes, each containing multi-
ple items found in the environment. The agents are given
as input the names of their goal-recipes, without the corre-
sponding components needed to make it. The resources in
the environment are scarce, so only one of the agents can
craft its recipe within one episode.

As illustrated in Figure 4 (center), there are 4 types of items:
{sun, star, moon, lightning} and 4 recipes: {sun, sun, star};
{star, star, moon}; {moon, moon, lightning}; {lightning,
lightning, sun}. The game is played in a 4× 6 grid, which
contains 8 items in total, 2 of each type.

At the beginning of each episode, we randomly assign a
recipe to one of the agents, and then we randomly pick a
recipe for the other agent so that it has overlapping items
with the recipe of the first agent. This ensures that the agents
are competing for resources within each episode. At the
end of the episode, each agent receives a reward of +1 for
crafting its own recipe and a penalty of -0.1 for each item it
picked up not needed for making its recipe.

We designed the layout of the grid so that neither agent has
an initial advantage by being closer to the scarce resource.
At the beginning of each episode, one of the agents starts
on the left-most column of the grid, while the other one
starts on the right-most column, at the same y-coordinate.
Their initial y-coordinate as well as which agent starts on
the left/right is randomized. Similarly, one item of each of
the 4 different types is placed at random in the grid formed

by the second and third columns of the maze, from left to
right. The rest of the items are placed in the forth and fifth
columns, so that the symmetry with respect to the vertical
axis is preserved (i.e. items of the same type are placed at
the same y-coordinate, and symmetric x-coordinates).

Agents have six actions to choose from: pass, go up, down,
left, right, or pick up (for picking up an item, which then
disappears from the grid). The first agent to take an action
is randomized. The game ends after 50 steps.

We pretrain all baselines on a version of the game which
does not have overlapping recipes, in order to ensure that
all the models learn to pick up the corresponding items,
given a recipe as goal. All of the models learn to craft their
assigned recipes ∼ 90% of the time on this simpler task.
Then, we continue training the models on the adversarial
task in which their recipes overlap in each episode. SOM is
initialized with a pretrained NOM network.

Figure 5 shows the winning fraction for different pairs
played against each other in the Recipe game. For the first
100k episodes, the models are not being trained. We can
see that SOM significantly outperfroms NOM, IPP, and SPP,
winning ∼ 75 − 80% of the time, while the baselines can
only win ∼ 15− 20% of the games. SPP ties against NOM,
and TOG outperforms SOM by a large margin. We also
played the same types of agents against each other and they
all win ∼ 40− 50% of the games.

4.4. Door Game.

In this section, we show that on a collaborative task with
asymmetric roles and multiple possible partners, the agents
can learn to figure out what role they should be playing in
each game based on their partners’ actions.

In the Door game, two agents are located in a 5 × 9 grid,
with 5 goals behind 5 doors on the left wall, and 5 switches
on the right wall of the grid. The game starts with the two
players in random squares on the grid, except for the ones
occupied by the goals, doors, or switches, as illustrated in
Figure 4. Agents can take any of the five actions: go up,
down, left, right or pass. An action is invalid if it moves the
player outside of the border or to a square occupied by a
block or closed door. Both agents receive +3 reward when
either one of them steps on its goal and they are penalized
-0.1 for each step they take. The game ends when one of
them gets to its goal or after 22 steps. All the goals are
behind doors which are open only as long as one of the
agents sits on the corresponding switch for that door.

At the beginning of an episode, each of the two players is
randomly selected from a pool of 5 agents and receives as
input a random number from 1 to 5 corresponding to its goal.
Each of the 5 agents has its own policy which gets updated
at the end of each episode they play. Note that the agents’
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Figure 5. Recipe Performance: Average fraction of success in the Recipe game by SOM-NOM (left), SOM-IPP (center-left), SOM-SPP
(center-center), SOM-TOG (center-right) NOM-SPP (right). The plots show the performance of SOM with 5 optimization updates of
z̃other at each step in the game.
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Figure 6. Door Performance: Average fraction of success on the
Door game by SOM (green), TOG (blue), NOM (red), IPP (ma-
genta), and SPP (orange). On average, SOM performs better than
all baselines.

identities are not visible (i.e. there is no indication in the
state features that specifies the id’s of the agents playing
during a given episode). This restriction is important in
order to ensure that the agents cannot gain advantage by
specializing into the two roles needed to win (i.e. goal-goer
and switch-puller) and identifying the specialization of the
other player by simply observing its unique id.

The agents need to cooperate in order to receive reward. In
contrast to our previous tasks, the two players must take
different roles. In fact, the player who sits on the switch
should ignore its own goal and instead infer the other’s goal,
while the player who goes to its goal does not need to infer
the other’s goal, but only use its own. In order to sit on
the correct switch, an agent has to infer the other player’s
goal from their observed actions. The only way in which an
agent can use its own policy to model the other player is if
each agent learns to play both roles of the game, i.e. go to
its own goal and also open its collaborator’s door by sitting
on the corresponding switch. Indeed, we see that the agents
learn to play both roles and they are able to use their own
policies to infer the other player’s goals when needed.

Fig 6 shows the mean and standard deviation of the winning
fraction obtained by one of the agents on the Door game.
While our model is still able to outperform the three base-
lines, the gap between the performance of our model and
that of IPP or SPP (an approximate version of (He et al.,
2016)) is smaller than in the previous tasks. However, this
is a more difficult task for our model since it needs the agent
to learn both roles before effectively using its own policy
to infer the other agent’s goal. The plot shows that SOM
actually performs worse than IPP and SPP during the initial
part of training, before outperforming them. Nevertheless,
we see that SOM training allows the agents to play both
roles in an asymmetric cooperative game, and to infer the
goal and role of the other player.

4.5. Analyzing the goal inference

In this section we further analyze the ability of the SOM
models to infer other’s intended goals.
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Figure 7. Inference Accuracy during Training: The mean frac-
tion of episodes in which the agent correctly infers the other’s goal
for the Coin (left), Recipe (center), and Door (right) games, as
a function of training epoch. The estimate of the other’s goal is
considered correct if it remains accurate during all the following
steps in the game.

Figure 7 shows the fraction of episodes in which the goal
of the other agent is correctly inferred. We consider that
the goal is correctly inferred only when the estimate of the
other’s goal remains accurate until the end of the game,
so that we avoid counting the episodes in which the agent
might infer the correct goal by chance at some intermediate
step in the game. In all the games, the SOM agent learns to
infer the other player’s goal with a mean accuracy ranging
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from ∼ 60− 80%. Comparing the second plot in Figure 2
with the left plot in Figure 7, one can observe that the SOM
agent starts distinguishing Other from Neither coins after
approximately 2M training episodes, which coincides with
the time when the mean accuracy of the inferred goal con-
verges to ∼ 75%. The Door Game (right) presents higher
variance since the agents learn to use and infer the other’s
goal at different stages during training.
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Figure 8. Inference Step Distribution: Cumulative distribution
of the step tinf at which the goal of the other player is correctly
inferred (i.e. z̃tother = zother, ∀t ≥ tinf ) for the Coin (left),
Recipe (center) and Door (right) games. We define this step so
that z̃other = zother for all the remaining steps in the game. The
distribution is computed over the subset of runs in which the goal
is correctly inferred before the end of the game (∼ 70− 80% of
all runs). A total of 1000 runs with trained SOM models were used
to compute this distribution.

Figure 8 shows the cumulative distribution of the step at
which the goal of the other player is correctly inferred (and
remains the same until the end of the game). The cumulative
distribution is computed over the episodes in which the goal
is correctly inferred before the end of the game. In the
Coin (blue) and Recipe (red) games, 80% of the times the
agent correctly infers the goal of the other, it does so in
the first five steps. The distribution for the Door (green)
game indicates that the agent needs more steps on average
to correctly infer the goal. This explains in part why the
SOM agent only slightly outperforms the SPP baseline. If
the agent does not infer the other’s goal early enough in the
episode, it cannot efficiently use it to maximize its return.
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Figure 9. Performance Variation with Number of Inference
Steps: Average reward (blue) and average fraction of episodes
in which the goal of the other agent is correctly inferred (red)
obtained by the SOM agent as a function of the number of infer-
ence steps used for estimating the other’s goal for the Coin (left),
Recipe (center), and Door (right) games. The error bars represent
1 standard deviation.

Figure 9 shows how the performance of the agent varies with

the number of optimization updates performed on z̃other at
each step in the game. As expected, the agent’s reward
(blue) generally increases with the number of inference
steps, as does the fraction of episodes in which the goal
is correctly inferred. One should note that increasing the
number of inference steps from 10 to 20 only translates
into less than 0.45% performance gain, while increasing it
from 1 to 5 translates into a performance gain of 6.9% on
the Coin game, suggesting that there is a certain threshold
above which increasing the number of inference steps will
not significantly improve performance.

5. Discussion
Summary. In this paper, we introduced a new approach for
inferring other agents’ hidden goals from their behavior and
using those estimates to choose actions. We demonstrated
that the agents are able to estimate others’ hidden goals in
both cooperative and competitive settings, which enables
them to converge to better policies. In the proposed tasks,
using an explicit model of the other player led to better
performance than simply considering the other agent as part
of the environment.

Strengths. Some of the main advantages of our method
are its simplicity and flexibility. This method does not
require any extra parameters to model other agents in the
environment, can be trained with any reinforcement learning
algorithm, and can be easily integrated with any network
architecture. SOM can also be adapted to settings with more
than two players, since the agent can use its own policy to
model the behavior of any number of agents and infer their
goals. Moreover, it can be easily generalized to numerous
other environments and tasks.

Limitations. Our approach is based on the assumption that
the agents are identical or that their transition functions are
independent and identically distributed. Hence, the frame-
work is expected to be more suitable for symmetric games,
in which the agents share a fixed set of goals and have simi-
lar abilities, and we expect a degradation of performance for
asymmetric games. Our experiments confirm this observa-
tion. Another limitation of SOM is that it requires a longer
training time than other baselines, since we backpropagate
through the network at each step. However, their online na-
ture is essential in adapting to the behavior of other agents
in the environment.

Future Work. We plan to extend this work by evaluating
the models on more complex environments and model devi-
ations from the assumption that the players have identical
policies, given a certain goal and state of the world. Another
important avenue for future research is to design models
that can adapt to non-stationary strategies of others in the
environment, as well as to tasks with hierarchical goals.
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