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Abstract
Many problems in machine learning and statistics
involve nested expectations and thus do not permit
conventional Monte Carlo (MC) estimation. For
such problems, one must nest estimators, such
that terms in an outer estimator themselves in-
volve calculation of a separate, nested, estimation.
We investigate the statistical implications of nest-
ing MC estimators, including cases of multiple
levels of nesting, and establish the conditions un-
der which they converge. We derive correspond-
ing rates of convergence and provide empirical
evidence that these rates are observed in practice.
We further establish a number of pitfalls that can
arise from naı̈ve nesting of MC estimators, pro-
vide guidelines about how these can be avoided,
and lay out novel methods for reformulating cer-
tain classes of nested expectation problems into
single expectations, leading to improved conver-
gence rates. We demonstrate the applicability of
our work by using our results to develop a new es-
timator for discrete Bayesian experimental design
problems and derive error bounds for a class of
variational objectives.

1 Introduction
Monte Carlo (MC) methods are used throughout the quan-
titative sciences. For example, they have become a ubiqui-
tous means of carrying out approximate Bayesian inference
(Doucet et al., 2001; Gilks et al., 1995). The convergence of
MC estimation has been considered extensively in the litera-
ture (Durrett, 2010). However, the implications arising from
the nesting of MC schemes, where terms in the integrand
depend on the result of separate, nested, MC estimators, is
generally less well known. This paper examines the conver-
gence of such nested Monte Carlo (NMC) methods.

Nested expectations occur in wide variety of problems
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from portfolio risk management (Gordy & Juneja, 2010)
to stochastic control (Belomestny et al., 2010). In partic-
ular, simulations of agents that reason about other agents
often include nested expectations. Tackling such problems
requires some form of nested estimation scheme like NMC.

A common class of nested expectations is doubly-intractable
inference problems (Murray et al., 2006; Liang, 2010),
where the likelihood is only known up to a parameter-
dependent normalizing constant. Some problems are even
multiply-intractable, such that they require multiple lev-
els of nesting to encode (Stuhlmüller & Goodman, 2014).
This can occur, for example, when nesting probabilistic
programs (Mantadelis & Janssens, 2011; Le et al., 2016).
Our results can be used to show that changes are required
to the approaches currently employed by probabilistic pro-
gramming systems to ensure consistent estimation for such
problems (Rainforth, 2017; 2018).

The expected information gain used in Bayesian experi-
mental design (Chaloner & Verdinelli, 1995) requires the
calculation of an entropy of a marginal distribution and
therefore the expectation of the logarithm of an expecta-
tion. By extension, any Kullback-Leibler divergence where
one of the terms is a marginal distribution also involves
a nested expectation. Hence, our results have important
implications for relaxing mean-field assumptions, or using
different bounds, in variational inference (Hoffman & Blei,
2015; Naesseth et al., 2017; Maddison et al., 2017) and deep
generative models (Burda et al., 2015; Le et al., 2018).

Certain nested estimation problems can be tackled by
pseudo-marginal methods (Beaumont, 2003; Andrieu &
Roberts, 2009; Andrieu et al., 2010). These consider in-
ference problems where the likelihood is intractable, but
can be estimated unbiasedly. From a theoretical perspective,
they reformulate the problem in an extended space with aux-
iliary variables that are used to represent the stochasticity
in the likelihood computation, enabling the problem to be
expressed as a single expectation.

Our work goes beyond this by considering cases in which
a non-linear mapping is applied to the output of the inner
expectation, (e.g. the logarithm in the experimental design
example), prohibiting such reformulation. We demonstrate
that the construction of consistent NMC algorithms is possi-
ble, establish convergence rates, and provide empirical evi-
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dence that these rates are observed in practice. Our results
show that whenever an outer estimator depends non-linearly
on an inner estimator, then the number of samples used
in both the inner and outer estimators must, in general, be
driven to infinity for convergence. We extend our results to
cases of repeated nesting and show that the optimal NMC
convergence rate is O(1/T

2
D+2 ) where T is the total num-

ber of samples used in the estimator and D is the nesting
depth (with D = 0 being conventional MC), whereas naı̈ve
approaches only achieve a rate of O(1/T

1
D+1 ). We further

lay out methods for reformulating certain classes of nested
expectation problems into a single expectation, allowing
usage of conventional MC estimation schemes with superior
convergence rates than naı̈ve NMC. Finally, we use our re-
sults to make application-specific advancements in Bayesian
experimental design and variational auto-encoders.

1.1 Related Work

Though the convergence of NMC has previously received
little attention within the machine learning literature, a num-
ber of special cases have been investigated in other fields,
sometimes under the name of nested simulation (Longstaff
& Schwartz, 2001; Belomestny et al., 2010; Gordy & Juneja,
2010; Broadie et al., 2011). While most of this literature
focuses on particular application-specific non-linear map-
pings, a convergence bound for a wider range of problems
was shown by Hong & Juneja (2009) and recently revisited
in the context of rare-event problems by Fort et al. (2017).
The latter paper further considers the case where samples
in the outer estimator originate from a Markov chain. Com-
pared to this previous work, ours is the first to consider
multiple levels of nesting, applies to a wider range of non-
linear mappings, and provides more precise convergence
rates. By introducing new results, outlining special cases,
providing empirical assessment, and examining specific ap-
plications, we provide a unified investigation and practical
guide on nesting MC estimators in a machine learning con-
text. We begin to realize the potential significance of this
by using our theoretical results to make advancements in a
number of specific application areas.

Another body of literature related to our work is in the
study of the convergence of Markov chains with approxi-
mate transition kernels (Rudolf & Schweizer, 2015; Alquier
et al., 2016; Medina-Aguayo et al., 2016). The analysis in
this work is distinct, but complementary, to our own, fo-
cusing on the impact of a known bias on an MCMC chain,
whereas our focus is more on the quantifying this bias. Also
related is the study of techniques for variance reduction,
such as multilevel MC (Heinrich, 2001; Giles, 2008), and
bias reduction, such as the multi-step Richardson-Romberg
method (Pages, 2007; Lemaire et al., 2017) and Russian
roulette sampling (Lyne et al., 2015), many of which are
applicable in a NMC context and can improve performance.

2 Problem Formulation
The key idea of MC is that the expectation of an arbitrary
function λ : Y → F ⊆ R under a probability distribution
p(y) for its input y ∈ Y can be approximated using:

I = Ey∼p(y) [λ(y)] (1)

≈ 1

N

N∑
n=1

λ(yn) where yn
i.i.d.∼ p(y). (2)

In this paper, we consider the case that λ is itself intractable,
defined only in terms of a functional mapping of an ex-
pectation. Specifically, λ(y) = f(y, γ(y)) where we can
evaluate f : Y ×Φ→ F exactly for a given y and γ(y), but
γ(y) is the output of the following intractable expectation
of another variable z ∈ Z:

either γ(y) = Ez∼p(z|y) [φ(y, z)] (3a)
or γ(y) = Ez∼p(z) [φ(y, z)] (3b)

depending on the problem, with φ : Y × Z → Φ ⊆ R. All
our results apply to both cases, but we will focus on (3a) for
clarity. Estimating I involves computing an integral over
z for each value of y in the outer integral. We refer to the
approach of tackling both integrations using MC as nested
Monte Carlo (NMC):

I = E [f(y, γ(y))] ≈ IN,M =
1

N

N∑
n=1

f(yn, (γ̂M )n) (4a)

where yn
i.i.d.∼ p(y) and

(γ̂M )n =
1

M

M∑
m=1

φ(yn, zn,m) (4b)

where each zn,m ∼ p(z|yn) are independently sampled. In
Section 3 we will build on this further by considering cases
with multiple levels of nesting, where calculating φ(y, z)
involves computation of an intractable (nested) expectation.

3 Convergence of Nested Monte Carlo
We now show that approximating I ≈ IN,M is in principle
possible, at least when f is well-behaved. In particular, we
establish a convergence rate of the mean squared error of
IN,M and prove a form of almost sure convergence to I . We
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Figure 1. Informal convergence
representation

further generalize our
convergence rate to ap-
ply to the case of mul-
tiple levels of estimator
nesting.

Before providing a
formal examination
of the convergence of
NMC, we first provide
intuition about how
we might expect to
construct a convergent
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NMC estimator. Consider the diagram shown in Fig-
ure 1, and suppose that we want our error to be less
than some arbitrary ε. Assume that f is sufficiently
smooth that we can choose M large enough to make
|I − E [f(yn, (γ̂M )n)]| < ε (we will characterize the
exact requirements for this later). For this fixed M , we
have a standard MC estimator on an extended space
y, z1, . . . , zM such that each sample constitutes one of
the red boxes. As we take N → ∞, i.e. taking all the
samples in the green box, this estimator converges such that
IN,M → E [f(yn, (γ̂M )n)] as N → ∞ for fixed M . As
we can make ε arbitrarily small, we can also achieve an
arbitrarily small error.

More formally, convergence bounds for NMC have pre-
viously been shown by Hong & Juneja (2009). Under
the assumptions that each (γ̂M )n is Gaussian distributed
(which is often reasonable due to the central limit theorem)
and that f is thrice differentiable other than at some finite
number of points, they show that a convergence rate of
O(1/N + 1/M2) is achieved. We now show that these as-
sumptions can be relaxed to only requiring f to be Lipschitz
continuous, at the expense of weakening the bound.

Theorem 1. If f is Lipschitz continuous and
f(yn, γ(yn)), φ(yn, zn,m) ∈ L2, the mean squared
error of IN,M converges to 0 at rate O (1/N + 1/M).

Proof. The theorem follows as a special case of Theorem 3.
For exposition, a more accessible proof for this particular
result is also provided in Appendix A in the supplement.

Inspection of the convergence rate above shows that, given
a total number of samples T = MN , our bound is tightest
when N ∝ M , with a corresponding rate O(1/

√
T ) (see

Appendix G). When the additional assumptions of Hong &
Juneja (2009) apply, this rate can be lowered to O(1/T 2/3)
by setting N ∝ M2. We will later show that this faster
convergence rate can, in fact, be achieved whenever f is
continuously differentiable, see also (Fort et al., 2017).

These convergence rates suggest that, for most f , it is neces-
sary to increase not only the total number of samples, T , but
also the number of samples used for each evaluation of the
inner estimator, M , to achieve convergence. Further, as we
show in Appendix B, the estimates produced by NMC are,
in general, biased. This is perhaps easiest to see by noting
that as N →∞, the variance of the estimator must tend to
zero by the law of large numbers, but our bounds remain
non-zero for any finite M , implying a bias.

3.1 Minimum Continuity Requirements

We next consider the what minimal requirements on f are
to ensure some form of convergence. For a given y1, we
have that (γ̂M )1 = 1

M

∑M
m=1 φ(y1, z1,m)→ γ(y1) almost

surely as M → ∞, because the left-hand side is a MC

estimator. If f is continuous around y1, this also implies
f(y1, (γ̂M )1)→ f(y1, γ(y1)). Our candidate requirement
is that this holds in expectation, i.e. that it holds when we
incorporate the effect of the outer estimator. More precisely,
we define (εM )n = |f(yn, (γ̂M )n)− f(yn, γ(yn))| and re-
quire that E [(εM )1] → 0 as M → ∞ (noting that (εM )n
are i.i.d. and so E [(εM )1] = E [(εM )n] ,∀n ∈ N). In-
formally, this “expected continuity” requirement is weaker
than uniform continuity (and much weaker than Lipschitz
continuity) as it allows (potentially infinitely many) discon-
tinuities in f . More formally we have the following result.

Theorem 2. For n ∈ N, let

(εM )n = |f(yn, (γ̂M )n)− f(yn, γ(yn))| .
Assume that E [(εM )1] → 0 as M → ∞. Let Ω be the
sample space of our underlying probability space, so that
Iτδ(M),M forms a mapping from Ω to R. Then, for every
δ > 0, there exists a measurable Aδ ⊆ Ω with P(Aδ) < δ,
and a function τδ : N→ N such that, for all ω 6∈ Aδ ,

Iτδ(M),M (ω)
a.s.→ I as M →∞.

Proof. See Appendix C.

As well as providing proof of a different form of conver-
gence to any existing results, this result is particularly im-
portant because many, if not most, functions are not Lip-
schitz continuous due to their behavior in the limits. For
example, even the function f(y, γ(y)) = (γ(y))

2 is not
Lipschitz continuous because the derivative is unbounded
as |γ(y)| → ∞, whereas the vast majority of problems will
satisfy our weaker requirement of E [(εM )1]→ 0.

3.2 Repeated Nesting and Exact Bounds
We next consider multiple levels of nesting, a case is partic-
ularly important for analyzing probabilistic programming
languages. To formalize what we mean by multiple nest-
ing, we first assume some fixed integral depth D > 0, and
real-valued functions f0, · · · , fD. We then define

γD

(
y(0:D−1)

)
= E

[
fD

(
y(0:D)

)∣∣∣y(0:D−1)
]

and

γk(y(0:k−1)) = E
[
fk

(
y(0:k), γk+1

(
y(0:k)

))∣∣∣y(0:k−1)
]
,

for 0 ≤ k < D, where y(k) ∼ p
(
y(k)|y(0:k−1)

)
. Note that

our single nested case corresponds to the setting of D = 1,
f0 = f , f1 = φ, y(0) = y, y(1) = z, γ0 = I , and γ1 = γ.
Our goal is to estimate γ0 = E

[
f0

(
y(0), γ1

(
y(0)

))]
. To do

so we will use the following NMC scheme:

ID

(
y(0:D−1)

)
=

1

ND

ND∑
n=1

fD

(
y(0:D−1), y(D)

n

)
and

Ik

(
y(0:k−1)

)
=

1

Nk

Nk∑
n=1

fk

(
y(0:k−1), y(k)

n , Ik+1

(
y(0:k−1), y(k)

n

))
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for 0 ≤ k ≤ D − 1, where each y(k)
n ∼ p

(
y(k)|y(0:k−1)

)
is drawn independently. Note that there are multiple values
of y(k)

n for each possible y(0:k−1) and that Ik
(
y(0:k−1)

)
is

still a random variable given y(0:k−1).

We are now ready to provide our general result for the con-
vergence bounds that applies to cases of repeated nesting,
provides constant factors (rather than just using big O no-
tation), and shows how the bound can be improved if the
additional assumption of continuous differentiability holds.

Theorem 3. If f0, · · · , fD are all Lipschitz continuous in
their second input with Lipschitz constants

Kk := sup
y(0:k)

∣∣∣∣∣∂fk
(
y(0:k), γk+1(y(0:k))

)
∂γk+1

∣∣∣∣∣ ,
for all k ∈ 0, . . . , D − 1 and if

ς2k := E
[(
fk

(
y(0:k), γk+1

(
y(0:k)

))
− γk

(
y(0:k−1)

))2
]

<∞ ∀k ∈ 0, . . . , D

then

E
[
(I0 − γ0)

2
]
≤ ς20
N0

+

D∑
k=1

(
k−1∏
`=0

K2
`

)
ς2k
Nk

+O(ε) (5)

where O(ε) represents asymptotically dominated terms.

If f0, · · · , fD are also continuously differentiable with sec-
ond derivative bounds

Ck := sup
y(0:k)

∣∣∣∣∣∂2fk
(
y(0:k), γk+1(y(0:k))

)
∂γ2

k+1

∣∣∣∣∣
then this mean square error bound can be tightened to

E
[
(I0 − γ0)

2
]
≤ ς20
N0

+(
C0ς

2
1

2N1
+

D−2∑
k=0

(
k∏
d=0

Kd

)
Ck+1ς

2
k+2

2Nk+2

)2

+O(ε).

(6)

For a single nesting, we can further characterizeO(ε) giving

E
[
(I0 − γ0)

2
]
≤ ς20
N0

+
4K2

0 ς
2
1

N0N1
+

2K0ς0ς1

N0

√
N1

+
K2

0 ς
2
1

N1

(7)

E
[
(I0 − γ0)

2
]
≤ ς20
N0

+
C2

0 ς
4
1

4N2
1

(
1 +

1

N0

)
+
K2

0 ς
2
1

N0N1
+

2K0ς1

N0

√
N1

√
ς20 +

C2
0 ς

4
1

4N2
1

+O

(
1

N3
1

) (8)

for when the continuous differentiability assumption does
not hold and holds respectively.

Proof. See Appendix D.

These results give a convergence rate of O(
∑D
k=0 1/Nk)

when only Lipschitz continuity holds and O(1/N0 +

(
∑D
k=1 1/Nk)2) when all the fk are also continuously dif-

ferentiable. As estimation requires drawing O(T ) samples

where T =
∏D
k=0Nk, the convergence rate will rapidly

diminish with repeated nesting. More precisely, as shown in
Appendix G, the optimal convergence rates are O(1/T

1
D+1 )

and O(1/T
2

D+2 ) respectively for the two cases, both of
which imply that the rate diminishes exponentially with D.

4 Special Cases
We now outline some special cases where it is possible to
achieve a convergence rate ofO(1/N) in the mean square er-
ror (MSE) as per conventional MC estimation. Establishing
these cases is important because it identifies for which prob-
lems we can use conventional results, when we can achieve
an improved convergence rate, and what precautions we
must take to ensure this. We will focus on single nesting
instances, but note that all results still apply to repeated nest-
ing scenarios because they can be used to “collapse” layers
and thereby reduce the depth of the nesting.

4.1 Linear f
Our first special case is that f is linear in its second argu-
ment, i.e. f(y, αv+βw) = αf(y, v) + βf(y, w). Here the
problem can be rearranged to a single expectation, a well-
known result which forms the basis for pseudo-marginal,
nested sequential MC (Naesseth et al., 2015a), and certain
ABC methods (Csilléry et al., 2010). Namely we have

I = Ey∼p(y)

[
f
(
y,Ez∼p(z|y) [φ(y, z)]

)]
= Ey∼p(y)

[
Ez∼p(z|y) [f(y, φ(y, z))]

]
≈ 1

N

N∑
n=1

f(yn, φ(yn, zn)) (9)

where (yn, zn) ∼ p(y)p(z|y) if γ(y) is of the form of (3a)
and yn ∼ p(y) and zn ∼ p(z) are independently drawn if
γ(y) is of the form of (3b).

4.2 Finite Possible Realizations of y
Our second case is if y must take one of finitely many values
y1, · · · , yC , then it is possible to use another approach to
ensure the same convergence rate as standard MC. The key
observation is to note that in this case we can convert the
nested problem (2) into C separate non-nested problems

I =

C∑
c=1

P (y = yc) f(yc, γ(yc)) (10)

which can then be estimated using

IN =

C∑
c=1

(P̂N )c (f̂N )c where (11)

P (y = yc) ≈ (P̂N )c =
1

N

N∑
n=1

I(yn = yc) (12)

f(yc, γ(yc)) ≈ (f̂N )c = f

(
yc,

1

N

N∑
n=1

φ(yc, zn,c)

)
(13)
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with yn
i.i.d.∼ p(y) and zn,c ∼ p(z|yc) (or zn,c ∼ p(z) if

using the formulation in (3b)). Note the critical point that
each zn,c is independent of yn as each yc is a constant. We
can now show the following result which, though intuitively
straightforward, requires care to formally prove.

Theorem 4. If f is Lipschitz continuous, then the mean
squared error of IN =

∑C
c=1(P̂N )c (f̂N )c as an estimator

for I as per (10) converges at rate O(1/N).

Proof. See Appendix E.

4.3 Products of Expectations

We next consider the scenario, occurring for many latent
variables models and probabilistic programming problems,
where γ(y) is equal to the product of multiple expectations,
rather than just a single expectation as per (3a). That is,

I = Ey∼p(y)

[
f

(
y,

L∏
`=1

Ez`∼p(z`|y) [ψ`(y, z`)]

)]
. (14)

Because the z` will not in general be independent, we cannot
trivially rearrange (14) to a standard nested estimation by
moving the product within the expectation. Our insight is
that the required rearrangement can instead be achieved
by introducing new random variables {z′`}`=1:L such that
each z′`|y ∼ p(z`|y) and the z′` are independent of one
another. This can be achieved by, for example, taking L
independent samples from the joint Z`

i.i.d.∼ p(z1:L|y) and
using the `th such draw for the `th dimension of z′, i.e.
setting z′` = {Z`}`. For every y ∈ Y we now have

L∏
`=1

Ez`∼p(z`|y)[ψ`(y, z`)] =

L∏
`=1

Ez′`∼p(z′`|y)[ψ`(y, z
′
`)]

= E{z′`}`=1:L∼p({z′`}`=1:L|y)

[
L∏
`=1

ψ`(y, z
′
`)

]
(15)

which is a single expectation on an extended space and
shows that (14) fits the NMC formulation. Furthermore,
we can now show that if f is linear, the MSE of the NMC
estimator (14) converges at the standard MC rate O(1/N),
provided that M remains fixed.

Theorem 5. Consider the NMC estimator

IN =
1

N

N∑
n=1

f

(
yn,

L∏
`=1

1

M`

M∑̀
m=1

ψ`(yn, z
′
n,`,m)

)
where each yn ∈ Y and z′n,`,m ∈ Z` are independently
drawn from yn ∼ p(y) and z′n,`,m|yn ∼ p(z`|yn), respec-
tively. If f is linear, the estimator converges almost surely to
I , with a convergence rate of O(1/N) in the mean square
error for any fixed choice of {M`}`=1:L.

Proof. See Appendix F.

As this result holds in the case L = 1, an important conse-
quence is that whenever f is linear, the same convergence

rate is achieved regardless of whether we reformulate the
problem to a single expectation or not, provided that the
number of samples used by the inner estimator is fixed.

4.4 Polynomial f

Perhaps surprisingly, whenever f is of the form
f(y, γ(y)) = g(y) γ(y)α (16)

where α ∈ Z≥0, then it is also possible to construct a
standard MC estimator by building on the ideas introduced
in Section 4.3 and those of (Goda, 2016). The key idea is

(E [z])
2

= E [z]E [z′] = E [zz′] (17)
where z and z′ are i.i.d. Therefore, assuming appropriate
integrability requirements, we can construct the following
non-nested MC estimator:

E [g(y) γ(y)α] = E

[
g(y)

α∏
`=1

Ez`∼p(z|y) [φ(y, z`)|y]

]

= E

[
g(y)

α∏
`=1

φ(y, z`)

]
≈ 1

N

N∑
n=1

g(yn)

α∏
`=1

φ(yn, zn,`)

where we independently draw each zn,`|yn ∼ p(z|yn).

5 Empirical Verification
The convergence rates proven in Section 3 are only upper
bounds on the worst-case performance. We will now ex-
amine whether these convergence rates are tight in practice,
investigate what happens when our guidelines are not fol-
lowed, and outline some applications of our results.

5.1 Simple Analytic Model

We start with the following analytically calculable problem
y ∼ Uniform(−1, 1), (18a)
z ∼ N (0, 1), (18b)

φ(y, z) =
√

2/π exp
(
−2(y − z)2

)
, (18c)

f(y, γ(y)) = log(γ(y)) = log(Ez[φ(y, z)]). (18d)

for which I = 1
2 log

(
2

5π

)
− 2

15 . Figure 2a shows the corre-
sponding empirical convergence obtained by applying (4)
to (18) directly. It shows that, for this problem, the theoreti-
cal convergence rates from Theorem 3 are indeed realized.
The figure also demonstrates the danger of not increasingM
with N , showing that the NMC estimator converges to an in-
correct solution when M is held constant. Figure 2b shows
the effect of varying N and M for various fixed sample
budgets T and demonstrates that the asymptotically optimal
strategy can be suboptimal for finite budgets.

5.2 Planning Cancer Treatment

We now introduce a real-world example to show the ap-
plicability of NMC in a scenario where the solution is not
analytically tractable and conventional MC is insufficient.
Consider a treatment center assessing a new policy for plan-
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Figure 2. Empirical convergence of NMC for (18). [Left] convergence in total samples for different ways of setting M and N . Results
are averaged over 1000 independent runs, while shaded regions give the 25%-75% quantiles. The theoretical convergence rates, namely
O(1/

√
T ) andO(1/T 2/3) for setting N ∝M andN ∝M2 respectively, are observed (see the dashed black and green lines respectively

for reference). The fixed M case converges at the standard MC error rate of O(1/T ) but to a biased solution. [Right] final error for
different total sample budgets as a function of α where N = Tα and M = T 1−α iterations are used for the outer and inner estimators
respectively. This shows that even though α = 2

3
is the asymptotically optimal allocation strategy, this is not the optimal solution for finite

T . Nonetheless, as T increases, the optimum value of α increases, starting around 0.5 for T = 103 and reaching around 0.6 for T = 107.

ning cancer treatments, subject to a budget. Clinicians must
decide on a patient-by-patient basis whether to administer
chemotherapy in the hope that their tumor will reduce in
size sufficiently to be able to perform surgery at a later date.
A treatment is considered to have been successful if the size
of the tumor drops below a threshold value in a fixed time
window. The clinicians have at their disposal a simulator for
the evolution of tumors with time, parameterized by both
observable values, y, such as tumor size, and unobservable
values, z, such as the patient-specific response to treatment.
Given a set of input parameters, the simulator deterministi-
cally returns a binary response φ(y, z) ∈ {0, 1}, with 1 indi-
cating a successful treatment. To estimate the probability of
a successful treatment for a given patient, the clinician must
calculate the expected success over these unobserved vari-
ables, namely Ez∼p(z|y)[φ(y, z)] where p(z|y) represents
a probabilistic model for the unobserved variables, which
could, for example, be constructed based on empirical data.
The clinician then decides whether to go ahead with the
treatment for that patient based on whether the calculated
probability of success exceeds a certain threshold Ttreat.

The treatment center wishes to estimate the expected num-
ber of patients that will be treated for a given Ttreat so that
it can minimize this threshold without exceeding its budget.
To do this, it calculates the expectation of the clinician’s de-
cisions to administer treatment, giving the complete nested
expectation for calculating the number of treated patients as
I(Ttreat) = E

[
I
(
Ez∼p(z|y)[φ(y, z)] > Ttreat

)]
, (19)

where the step function I(· > Ttreat) imposes a non-linear
mapping, preventing conventional MC estimation. Full
details on φ, p(y), and p(z|y) are given in Appendix H.

To verify the convergence rate, we repeated the analysis
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Figure 3. Convergence of NMC for cancer simulation. A ground
truth estimate was calculated using a single run with M = 105

and N = 105. Experimental setup and conventions are as per
Figure 2a and we again observe the expected convergence rates.
When M =

√
N an interesting fluctuation behavior is observed.

Further testing suggests that this originates because the bias of
the estimator depends in a fluctuating manner on the value of M
as the binary output of φ(y, z) creates a quantization effect on
the possible estimates for γ̂. This effect is also observed for the
M = N case but is less pronounced.

from Section 5.1 for (19) at a fixed value of Ttreat = 0.35.
The results, shown in Figure 3, again verify the theoretical
rates. By further testing different values of Ttreat, we found
Ttreat = 0.125 to be optimal under the budget.

5.3 Repeated Nesting

We next consider some simple models with multiple levels
of nesting, starting with
y(0) ∼ Uniform(0, 1), y(1) ∼ N (0, 1), y(2) ∼ N (0, 1),

f0

(
y(0), γ1

(
y(0)

))
= log γ1

(
y(0)

)
(20a)
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Figure 4. Empirical convergence of NMC to (20) for an increasing
total sample budget T = N0N1N2. Setup and conventions as per
Figure 2a. Shown in red is the convergence with a fixed N2 = 5
and N0 = N2

1 , which we see gives a biased solution. Shown in
blue is the convergence when setting N0 = N1 = N2, which we
see converges at the expected O(T−1/3) rate. Shown in green
is the convergence when setting N0 = N2

1 = N2
2 which we see

again gives the theoretical convergence rate, namely O(T−1/2).

f1

(
y(0:1), γ2

(
y(0:1)

))
=

exp

(
− 1

2

(
y(0)−y(1) − log γ2

(
y(0:1)

))) (20b)

f2

(
y(0:2)

)
= exp

(
y(2) − y(0) + y(1)

2

)
(20c)

which has analytic solution I = −3/32. The convergence
plot shown in Figure 4 demonstrates that the theoretically
expected convergence behaviors are observed for different
methods of setting N0, N1, and N2.

We further investigated the empirical performance of dif-
ferent strategies for choosing N0, N1, N2 under a finite
fixed budget T = N0N1N2. In particular, we looked
to establish the optimal empirical setting under the fixed
budget T = 106 for the model described in (20) and a
slight variation where y(0) is replaced with y(0)/10, for
which the ground truth is now I = 39/160. Defining
α1 and α2 such that N0 = Tα1 , N1 = Tα2(1−α1), and
N2 = T (1−α1)(1−α2), we ran a Bayesian optimization algo-
rithm, namely BOPP (Rainforth et al., 2016), to optimize the
log MSE, log10

(
E
[
(I0(α1, α2)− γ0)2

])
, with respect to

(α1, α2). For each tested (α1, α2), the MSE was estimated
using 1000 independently generated samples of I0 and we
allowed a total of 200 such tests. We found respective op-
timal values for (α1, α2) of (0.53, 0.36) and (0.38, 0.45).
By comparison, the asymptotically optimal setup suggested
by our theoretical results is (0.5, 0.5), showing that the fi-
nite budget optimal allocation can vary significantly from
the asymptotically optimal solution and that it does so in a
problem dependent manner.

As a byproduct, BOPP also produced Gaussian process
approximations to the log MSE variations, as shown in

(a) Original (b) Modification

Figure 5. Contour plots of log10

(
E
[
(I0 − γ0)2

])
produced by

BOPP for different allocations of the sample budget T = 106 for
the problem shown in (20) and its modified variant.

Figure 5. We see that the two problems lead to distinct
performance variations. Based on the (unshown) uncertainty
estimates of these Gaussian processes, we believe these
approximations are a close representation of the truth.

6 Applications

6.1 Bayesian Experimental Design

In this section, we show how our results can be used to
derive an improved estimator for the problem of Bayesian
experimental design (BED) in the case where the experiment
outputs are discrete. A summary of our approach is provided
here, with full details provided in Appendix I.

Bayesian experimental design provides a framework for
designing experiments in a manner that is optimal from
an information-theoretic viewpoint (Chaloner & Verdinelli,
1995; Sebastiani & Wynn, 2000). Given a prior p(θ) on pa-
rameters θ and a corresponding likelihood p(y|θ, d) for ex-
periment outcomes y given a design d, the Bayesian optimal
design d∗ is given by maximizing the mutual information
between θ and y defined as follows

Ū(d) =

∫
Y

∫
Θ

p(y, θ|d) log

(
p(θ|y, d)

p(θ)

)
dθdy. (21)

Estimating d∗ is challenging as p(θ|y, d) is rarely known in
closed-form. However, appropriate algebraic manipulation
shows that (21) is consistently estimated by

ÛNMC(d) =
1

N

N∑
n=1

[
log(p(yn|θn,0, d))

− log

(
1

M

M∑
m=1

p(yn|θn,m, d)

)] (22)

where θn,m ∼ p(θ) for each (m,n) ∈ {0, . . . ,M} ×
{1, . . . , N}, and yn ∼ p(y|θ = θn,0, d) for each n ∈
{1, . . . , N}. This naı̈ve NMC estimator has been implicitly
used by (Myung et al., 2013) amongst others and gives a
convergence rate of O(1/N + 1/M2) as per Theorem 3.

When y can only take on finitely many realizations
y1, . . . , yc, we use the ideas introduced in Section 4.2 to
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Figure 6. Convergence of NMC (i.e. (22)) and our reformulated
estimator (23) for the BED problem. Experimental setup and
conventions are as per Figure 2a, with a ground truth estimate made
using a single run of the reformulated estimator with 1010 samples.
We see that the theoretical convergence rates are observed, with the
advantages of the reformulated estimator particularly pronounced.

derive the following improved estimator

ÛR(d) =
1

N

N∑
n=1

C∑
c=1

p(yc|θn, d) log (p(yc|θn, d)) (23)

−
C∑
c=1

[(
1

N

N∑
n=1

p(yc|θn, d)

)
log

(
1

N

N∑
n=1

p(yc|θn, d)

)]
where θn ∼ p(θ),∀n ∈ {1, . . . , N}. As C is fixed, (23)
converges at the standard MC error rate of O(1/N). This
constitutes a substantially faster convergence as (22) re-
quires a total of MN samples compared to N for (23).

We finish by showing that the theoretical advantages of this
reformulation also lead to empirical gains. For this we con-
sider a model used in psychology experiments introduced
by (Vincent, 2016), details of which are given in Appendix I.
Figure 6 demonstrates that the theoretical convergence rates
are observed while results given in Appendix I show that
this leads to significant practical gains in estimating Ū(d).

6.2 Variational Autoencoders
To give another example of the applicability of our results,
we now use Theorem 3 to directly derive a new result for
the importance weighted autoencoder (IWAE) (Burda et al.,
2015). Both the IWAE and the standard variational autoen-
coder (VAE) (Kingma & Welling, 2013) use lower bounds
on the model evidence as objectives for train deep generative
models and employ estimators of the form

IN,M =
1

N

N∑
n=1

log

(
1

M

M∑
m=1

wn,m(θ)

)
(24)

for some given θ upon which the random wn,m(θ) depend.
The IWAE sets N = 1 and the VAE M = 1. We can
view (24) as a (biased) NMC estimator for the log evidence
logE [w1,1(θ)], which is the target one actually wishes to
optimize (for the generative network). We can now assess
the MSE of this biased estimator using (8), noting that this

is a special case where ς20 = 0, giving E
[
(IN,M − I)

2
]
≤

C2
0 ς

4
1

4M2

(
1 + 1

N

)
+
K2

0 ς
2
1

NM +
C0K0ς

3
1

NM3/2 +O( 1
M3 ). For a fixed bud-

get T = NM this becomes O
(

1
M2 + 1

T + 1
T
√
M

)
. Given

T is fixed, we thus see that the higher M is, the lower the
error bound. Therefore, the lowest MSE is achieved by
setting N = 1 and M = T , as is done by the IWAE. As we
show in Rainforth et al. (2018), these results further carry
over to the reparameterized derivative estimates∇θIN,M .

6.3 Nesting Probabilistic Programs

Probabilistic programming systems (PPSs) (Goodman et al.,
2008; Wood et al., 2014) provide a strong motivation for
the study of NMC methods because many PPSs allow for
arbitrary nesting of models (or queries, as they are known
in the PPS literature), such that it is easy to define and run
nested inference problems, including cases with multiple
layers of nesting (Stuhlmüller & Goodman, 2012; 2014).
Though this ability to nest queries has started to be exploited
in application-specific work (Ouyang et al., 2016; Le et al.,
2016), the resulting nested inference problems fall outside
the scope of conventional convergence proofs and so the
statistical validity of the underlying inference engines has
previously been an open question in the field.

As we show in Rainforth (2017; 2018), the results presented
here can be brought to bear on assessing the relative cor-
rectness of the different ways PPSs allow model nesting.
In particular, the correctness of sampling or observing the
conditional distribution of one query within another follows
from Theorem 3, but only if the computation for each call
to the inner query increases the more times that query is
called. This requirement is not satisfied by current systems.
Meanwhile, Theorem 5 can be used to the assert the correct-
ness of factoring the trace probability of one query by an
unbiased partition function estimate of another.

7 Conclusions
We have introduced a formal framework for NMC estima-
tion and shown that it can be used to yield a consistent esti-
mator for problems that cannot be tackled with conventional
MC alone. We have derived convergence rates and consid-
ered what minimal continuity assumptions are required for
convergence. However, we have also highlighted a number
of potential pitfalls for naı̈ve application of NMC and pro-
vided guidelines for avoiding these, e.g. highlighting the
importance of increasing the number of samples in both the
inner and the outer estimators to ensure convergence. We
have further introduced techniques for converting certain
classes of NMC problems to conventional MC ones, provid-
ing improved convergence rates. Our work has implications
throughout machine learning and we hope it will provide
the foundations for exploring this plethora of applications.
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