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1. Relationship to Storey-BH
Here, we provide details of the Benjamini-Hochberg (BH)
procedure (1995), and of the relationship of its adaptive
improvement, which we refer to as Storey-BH (Storey, 2002;
Storey et al., 2004), to SAFFRON.

The Benjamini-Hochberg procedure is a classical method
for guaranteeing FDR control in an offline setting, i.e. when
all p-values are available before testing. Although the initial
motivation for the BH method was different, it was rein-
terpreted by Storey et al. in the following manner. Since
the small p-values are more likely to be non-null, suppose
that one rejects all p-values below some fixed threshold
s ∈ (0, 1), meaning that R(s) = {i : Pi ≤ s}. Then, an
oracle estimate for the FDP is given by:

FDP∗BH(s) :=
|H0| · s
|R(s)|

.

The numerator is a sensible estimate because the nulls are
uniformly distributed, and hence we would expect about
|H0|·smany nulls to be below s. This is an “oracle” estimate
because the scientist does not know |H0|. Ideally, one would
like to choose a data-dependent s using the rule:

s∗ : = max{s : FDP∗BH(s) ≤ α},

and then reject the set R(s∗). Given n p-values, the BH
procedure overestimates the oracle FDP by the empirically
computable quantity:

F̂DPBH(s) :=
n · s
|R(s)|

,

and then rejects the set R(ŝBH), where ŝBH : = max{s :

F̂DPBH(s) ≤ α}. On interpreting the BH procedure in
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terms of an estimated FDP, Storey et al. (2002; 2004) noted
that when the p-values are independent, the estimate F̂DPBH

underutilizes the available FDR budget α. Indeed, when
the p-values are exactly uniform, it is known (Benjamini &
Yekutieli, 2001; Ramdas et al., 2017) to satisfy the stronger
bound FDR = α|H0|/n, which demonstrates that BH un-
derutilizes the FDR budget of α provided to it. Instead,
Storey et al. pick a constant λ ∈ (0, 1), and calculate:

F̂DPStBH(s) :=
n · s · π̂0
|R(s)|

,

where the unknown proportion of nulls π0 = |H0|/n is
estimated as:

π̂0 : =
1 +

∑n
i=1 1 {Pi > λ}
n(1− λ)

.

This procedure then calculates ŝStBH : = max{s :

F̂DPStBH(s) ≤ α} and rejects the setR(ŝStBH) which satis-
fies the bound FDR ≤ α. We refer to this improved method
as Storey-BH. Storey et al. demonstrated via simulations
that the Storey-BH procedure is typically more powerful
than the BH procedure, the improvement increasing with the
fraction of non-nulls, and the strength of underlying signal.
Since procedures such as Storey-BH adapt to the unknown
proportion of nulls, they are known in the multiple testing
literature as adaptive procedures.

Both BH and LORD result from a trivial upper bound on
an oracle estimate of the FDP. On the other hand, Storey-
BH and SAFFRON adapt to the unknown amount of the
provided FDR budget spent on testing nulls. In the particular
setting of online FDR, this corresponds to keeping a running
estimate of the amount of alpha-wealth that was spent on
testing nulls thus far, and not the proportion of nulls π0, like
in the case of Storey-BH; unlike the offline setting where
all p-values are compared to the same level ŝ, different p-
values have to pass different thresholds αi. In light of the
above analysis, and additionally comparing the derivation
of Storey-BH and SAFFRON, it is clear that Storey-BH is
to BH as SAFFRON is to LORD.

It is in the above sense that SAFFRON is an adaptive on-
line FDR method. As mentioned in Section 2.4, Foster
and Stine’s alpha-investing procedure is a special case of



Supplementary Material for SAFFRON: an Adaptive Algorithm for Online Control of the False Discovery Rate

SAFFRON; hence, strictly speaking, alpha-investing would
count as the first adaptive online FDR procedure (even
though the motivation for alpha-investing in the original
paper was entirely different, and did not mention estimating
the FDP, or adaptivity). However, as noted in simulations
by Javanmard and Montanari (2017), and re-confirmed in
our simulations, alpha-investing seems less powerful than
the non-adaptive algorithm LORD (and LORD++). As
shown by simulations in Section 4, SAFFRON with con-
stant λ = 1/2 is more powerful than LORD across a variety
of signal proportions and strengths, and hence is arguably
the first adaptive algorithm in the online FDR setting that
can compete with the non-adaptive algorithms.

2. Additional Simulation Results
Here we provide plots demonstrating the comparison of
achieved power and FDR of SAFFRON and LORD, de-
pending on the chosen sequence {γj}. More precisely, we
vary the aggressiveness of the sequence, meaning that more
aggressive sequences have a higher proportion of wealth
concentrated around the beginning of the sequence.

Recall that, in the setting with Gaussian observations, null
p-values are computed from samples of the form N(0, 1),
and p-values coming from the alternative are of the form
N(F1, 1), where F1 = (µc, 1) for some constant µc. The
sequences considered for SAFFRON are of the form γj ∝
j−s, where the parameter s > 1 controls the aggressiveness
of the procedure; for LORD, in addition to considering
these sequences, we also consider γj ∝ log(j∨2)

je
√

log j , which
was shown to be the asymptotically optimal sequence for
testing Gaussian means via the LORD method (Javanmard
& Montanari, 2017). In Figure 1 and Figure 2 we consider
F1 = N(2, 1), and show how the level of aggressiveness of
the sequence {γj} affects the power and FDR of SAFFRON
and LORD respectively. Figure 3 and Figure 4 demonstrate
the same results in a similar, however easier, testing problem,
with F1 = N(3, 1).
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Figure 1. Statistical power and FDR versus fraction of non-null
hypotheses π1 for SAFFRON (at target FDR level α = 0.05) using
four different sequences {γj} of increasing aggressiveness. The
observations under the alternative are Gaussian with µi ∼ N(2, 1)
and standard deviation 1, and are converted into one-sided p-values
as Pi = Φ(−Zi).
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Figure 2. Statistical power and FDR versus fraction of non-null
hypotheses π1 for LORD (at target FDR level α = 0.05) using
four different sequences {γj} of increasing aggressiveness. The
LORD1 method uses the sequence proposed in the paper (Javan-
mard & Montanari, 2017). The observations under the alternative
are Gaussian with µi ∼ N(2, 1) and standard deviation 1, and are
converted into one-sided p-values as Pi = Φ(−Zi).
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Figure 3. Statistical power and FDR versus fraction of non-null
hypotheses π1 for SAFFRON (at target FDR level α = 0.05) using
four different sequences {γj} of increasing aggressiveness. The
observations under the alternative are Gaussian with µi ∼ N(3, 1)
and standard deviation 1, and are converted into one-sided p-values
as Pi = Φ(−Zi).
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Figure 4. Statistical power and FDR versus fraction of non-null
hypotheses π1 for LORD (at target FDR level α = 0.05) using
four different sequences {γj} of increasing aggressiveness. The
LORD1 method uses the sequence proposed in the paper (Javan-
mard & Montanari, 2017). The observations under the alternative
are Gaussian with µi ∼ N(3, 1) and standard deviation 1, and are
converted into one-sided p-values as Pi = Φ(−Zi).

In the setting with beta alternatives, null p-values are uni-
formly distributed, and p-values coming from the alternative
are distributed as Beta(m,n). For SAFFRON we again con-
sider sequences γj ∝ j−s, where we vary s > 1, and
for LORD we additionally consider γj ∝ ( 1j log j)

1/m,
which was shown to be asymptotically optimal or this test-
ing setting (Javanmard & Montanari, 2017). Please refer
to the Supplementary Material for plots of achieved power
and FDR of SAFFRON and LORD obtained by varying
the sequence. Figure 5 and Figure 6 show the changes in
performance of SAFFRON and LORD respectively with
increasing s; i.e., increasing aggressiveness of the sequence
{γj}, where for the particular distribution of the observed
p-values we choose m = 0.5 and n = 5.
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Figure 5. Statistical power and FDR versus fraction of non-null
hypotheses π1 for SAFFRON using four different sequences {γj}
of increasing aggressiveness. Under the alternative the p-values
are distributed as Beta(0.5, 5).

3. Monotonicity of SAFFRON
In applying the reverse super-uniformity lemma in Sec-
tion 3 to prove that SAFFRON controls the FDR, it is as-
sumed that SAFFRON is a monotone rule, meaning that
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Figure 6. Statistical power and FDR versus fraction of non-null
hypotheses π1 for LORD using four different sequences {γj} of
increasing aggressiveness. The LORD1 method uses the sequence
proposed in the paper (Javanmard & Montanari, 2017). Under the
alternative the p-values are distributed as Beta(0.5, 5).

ft : (R1:T , C1:T ) 7→ αt is a coordinatewise non-decreasing
function. Here we provide a proof of this claim. We prove
it assuming λ is constant, however the same arguments can
be applied if it changes at every step, i.e. if it is predictable
as stated in Section 3.

Consider some (R1:T , C1:T ) and (R̃1:T , C̃1:T ) for a fixed
T . We will accordingly denote all relevant variables in the
SAFFRON procedures which result in (R1:T , C1:T ) and
(R̃1:T , C̃1:T ), e.g. αt and α̃t, respectively. Taking into ac-
count the possible relations between indicators for rejection
and candidacy, (R̃1:T , C̃1:T ) � (R1:T , C1:T ) if and only if,
for every t ≤ T , one of the following holds:
(i) Rt = R̃t and Ct = C̃t,
(ii) Rt = 0, Ct = 1 and R̃t = 1, C̃t = 1,
(iii) Rt = 0, Ct = 0 and R̃t = 0, C̃t = 1,
(iv) Rt = 0, Ct = 0 and R̃t = 1, C̃t = 1.
From this it is clear that the procedure which generated
(R1:T , C1:T ) up to time T could not have made more rejec-
tions or encountered more candidate p-values. Further, at
each time that it made a rejection, the procedure that gener-
ated (R̃1:T , C̃1:T ) also made a rejection. Looking into the
SAFFRON update rule for the rejection thresholds, recall
that αt is computed as:

αt : = min{λ, αt}, where αt : =W0γt−C0+
+

((1− λ)α−W0)γt−τ1−C1+
+

∑
j≥2

(1− λ)αγt−τj−Cj+
.

Note that, by construction, the terms ((1 − λ)α − W0)
and (1 − λ)α are strictly positive. Therefore, since the
sequence {γj} is non-increasing, the sum of the terms
(1 − λ)αγt−τj−Cj+

contributing to αt is at most as great
as the the sum of the terms (1 − λ)αγt−τ̃j−C̃j+

, because
α̃t considers at least all the rejection times in αt, and has
C̃j+ ≥ Cj+ (the same holds for the term ((1−λ)α−W0)).
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