Supplementary Material for SAFFRON: an Adaptive Algorithm for Online Control of the False Discovery Rate

Aaditya Ramdas ¹ Tijana Zrnic ² Martin J. Wainwright ¹ Michael I. Jordan ¹

1. Relationship to Storey-BH

Here, we provide details of the Benjamini-Hochberg (BH) procedure (1995), and of the relationship of its adaptive improvement, which we refer to as Storey-BH (Storey, 2002; Storey et al., 2004), to SAFFRON.

The Benjamini-Hochberg procedure is a classical method for guaranteeing FDR control in an offline setting, i.e. when all p-values are available before testing. Although the initial motivation for the BH method was different, it was reinterpreted by Storey et al. in the following manner. Since the small p-values are more likely to be non-null, suppose that one rejects all p-values below some fixed threshold $s \in (0,1)$, meaning that $\mathcal{R}(s) = \{i : P_i \leq s\}$. Then, an oracle estimate for the FDP is given by:

$$\mathrm{FDP}^*_{\mathrm{BH}}(s) := \frac{|\mathcal{H}^0| \cdot s}{|\mathcal{R}(s)|}.$$

The numerator is a sensible estimate because the nulls are uniformly distributed, and hence we would expect about $|\mathcal{H}^0| \cdot s$ many nulls to be below s. This is an "oracle" estimate because the scientist does not know $|\mathcal{H}^0|$. Ideally, one would like to choose a data-dependent s using the rule:

$$s^* := \max\{s : \text{FDP}^*_{\text{BH}}(s) < \alpha\},$$

and then reject the set $\mathcal{R}(s^*)$. Given n p-values, the BH procedure overestimates the oracle FDP by the empirically computable quantity:

$$\widehat{\mathsf{FDP}}_{\mathrm{BH}}(s) := \frac{n \cdot s}{|\mathcal{R}(s)|},$$

and then rejects the set $\mathcal{R}(\widehat{s}_{BH})$, where $\widehat{s}_{BH} := \max\{s : \widehat{FDP}_{BH}(s) \leq \alpha\}$. On interpreting the BH procedure in

Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).

terms of an estimated FDP, Storey et al. (2002; 2004) noted that when the p-values are independent, the estimate $\widehat{\text{FDP}}_{\text{BH}}$ underutilizes the available FDR budget α . Indeed, when the p-values are exactly uniform, it is known (Benjamini & Yekutieli, 2001; Ramdas et al., 2017) to satisfy the stronger bound FDR = $\alpha |\mathcal{H}^0|/n$, which demonstrates that BH underutilizes the FDR budget of α provided to it. Instead, Storey et al. pick a constant $\lambda \in (0,1)$, and calculate:

$$\widehat{\text{FDP}}_{\text{StBH}}(s) := \frac{n \cdot s \cdot \widehat{\pi_0}}{|\mathcal{R}(s)|},$$

where the unknown proportion of nulls $\pi_0 = |\mathcal{H}^0|/n$ is estimated as:

$$\widehat{\pi_0} := \frac{1 + \sum_{i=1}^n \mathbf{1} \{P_i > \lambda\}}{n(1 - \lambda)}.$$

This procedure then calculates $\hat{s}_{\mathrm{StBH}} := \max\{s : \widehat{\mathrm{FDP}}_{\mathrm{StBH}}(s) \leq \alpha\}$ and rejects the set $\mathcal{R}(\hat{s}_{\mathrm{StBH}})$ which satisfies the bound FDR $\leq \alpha$. We refer to this improved method as Storey-BH. Storey et al. demonstrated via simulations that the Storey-BH procedure is typically more powerful than the BH procedure, the improvement increasing with the fraction of non-nulls, and the strength of underlying signal. Since procedures such as Storey-BH adapt to the unknown proportion of nulls, they are known in the multiple testing literature as adaptive procedures.

Both BH and LORD result from a trivial upper bound on an oracle estimate of the FDP. On the other hand, Storey-BH and SAFFRON *adapt* to the unknown amount of the provided FDR budget spent on testing nulls. In the particular setting of online FDR, this corresponds to keeping a running estimate of the amount of alpha-wealth that was spent on testing nulls thus far, and not the proportion of nulls π_0 , like in the case of Storey-BH; unlike the offline setting where all p-values are compared to the same level \hat{s} , different p-values have to pass different thresholds α_i . In light of the above analysis, and additionally comparing the derivation of Storey-BH and SAFFRON, it is clear that Storey-BH is to BH as SAFFRON is to LORD.

It is in the above sense that SAFFRON is an adaptive online FDR method. As mentioned in Section 2.4, Foster and Stine's alpha-investing procedure is a special case of

¹Departments of Statistics and Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, USA ²Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, USA. Correspondence to: Aaditya Ramdas <aramdas@eecs.berkeley.edu>, Tijana Zrnic <tijana@eecs.berkeley.edu>, Martin J. Wainwright <wainwrig@eecs.berkeley.edu>, Michael I. Jordan <jordan@eecs.berkeley.edu>.

SAFFRON; hence, strictly speaking, alpha-investing would count as the first adaptive online FDR procedure (even though the motivation for alpha-investing in the original paper was entirely different, and did not mention estimating the FDP, or adaptivity). However, as noted in simulations by Javanmard and Montanari (2017), and re-confirmed in our simulations, alpha-investing seems *less* powerful than the non-adaptive algorithm LORD (and LORD++). As shown by simulations in Section 4, SAFFRON with constant $\lambda=1/2$ is more powerful than LORD across a variety of signal proportions and strengths, and hence is arguably the first adaptive algorithm in the online FDR setting that can compete with the non-adaptive algorithms.

2. Additional Simulation Results

Here we provide plots demonstrating the comparison of achieved power and FDR of SAFFRON and LORD, depending on the chosen sequence $\{\gamma_j\}$. More precisely, we vary the aggressiveness of the sequence, meaning that more aggressive sequences have a higher proportion of wealth concentrated around the beginning of the sequence.

Recall that, in the setting with Gaussian observations, null p-values are computed from samples of the form N(0,1), and p-values coming from the alternative are of the form $N(F_1,1)$, where $F_1=(\mu_c,1)$ for some constant μ_c . The sequences considered for SAFFRON are of the form $\gamma_i \propto$ i^{-s} , where the parameter s>1 controls the aggressiveness of the procedure; for LORD, in addition to considering these sequences, we also consider $\gamma_j \propto \frac{\log(j \vee 2)}{j e^{\sqrt{\log j}}}$, which was shown to be the asymptotically optimal sequence for testing Gaussian means via the LORD method (Javanmard & Montanari, 2017). In Figure 1 and Figure 2 we consider $F_1 = N(2,1)$, and show how the level of aggressiveness of the sequence $\{\gamma_i\}$ affects the power and FDR of SAFFRON and LORD respectively. Figure 3 and Figure 4 demonstrate the same results in a similar, however easier, testing problem, with $F_1 = N(3, 1)$.

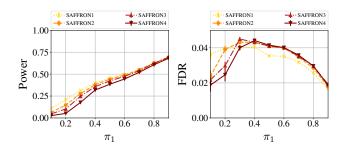


Figure 1. Statistical power and FDR versus fraction of non-null hypotheses π_1 for SAFFRON (at target FDR level $\alpha=0.05$) using four different sequences $\{\gamma_j\}$ of increasing aggressiveness. The observations under the alternative are Gaussian with $\mu_i \sim N(2,1)$ and standard deviation 1, and are converted into one-sided p-values as $P_i = \Phi(-Z_i)$.

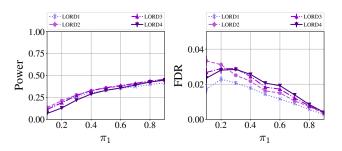


Figure 2. Statistical power and FDR versus fraction of non-null hypotheses π_1 for LORD (at target FDR level $\alpha=0.05$) using four different sequences $\{\gamma_j\}$ of increasing aggressiveness. The LORD1 method uses the sequence proposed in the paper (Javanmard & Montanari, 2017). The observations under the alternative are Gaussian with $\mu_i \sim N(2,1)$ and standard deviation 1, and are converted into one-sided p-values as $P_i = \Phi(-Z_i)$.

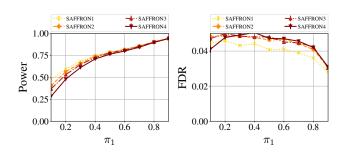


Figure 3. Statistical power and FDR versus fraction of non-null hypotheses π_1 for SAFFRON (at target FDR level $\alpha=0.05$) using four different sequences $\{\gamma_j\}$ of increasing aggressiveness. The observations under the alternative are Gaussian with $\mu_i \sim N(3,1)$ and standard deviation 1, and are converted into one-sided p-values as $P_i = \Phi(-Z_i)$.

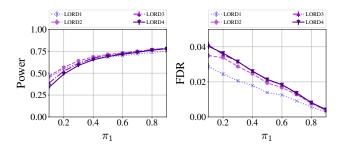


Figure 4. Statistical power and FDR versus fraction of non-null hypotheses π_1 for LORD (at target FDR level $\alpha=0.05$) using four different sequences $\{\gamma_j\}$ of increasing aggressiveness. The LORD1 method uses the sequence proposed in the paper (Javanmard & Montanari, 2017). The observations under the alternative are Gaussian with $\mu_i \sim N(3,1)$ and standard deviation 1, and are converted into one-sided p-values as $P_i = \Phi(-Z_i)$.

In the setting with beta alternatives, null p-values are uniformly distributed, and p-values coming from the alternative are distributed as Beta(m,n). For SAFFRON we again consider sequences $\gamma_j \propto j^{-s}$, where we vary s>1, and for LORD we additionally consider $\gamma_j \propto (\frac{1}{j}\log j)^{1/m}$, which was shown to be asymptotically optimal or this testing setting (Javanmard & Montanari, 2017). Please refer to the Supplementary Material for plots of achieved power and FDR of SAFFRON and LORD obtained by varying the sequence. Figure 5 and Figure 6 show the changes in performance of SAFFRON and LORD respectively with increasing s; i.e., increasing aggressiveness of the sequence $\{\gamma_j\}$, where for the particular distribution of the observed p-values we choose m=0.5 and n=5.

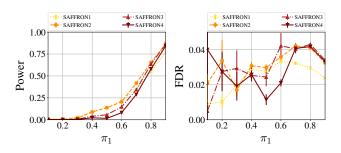


Figure 5. Statistical power and FDR versus fraction of non-null hypotheses π_1 for SAFFRON using four different sequences $\{\gamma_j\}$ of increasing aggressiveness. Under the alternative the p-values are distributed as Beta(0.5, 5).

3. Monotonicity of SAFFRON

In applying the reverse super-uniformity lemma in Section 3 to prove that SAFFRON controls the FDR, it is assumed that SAFFRON is a monotone rule, meaning that

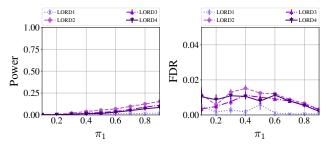


Figure 6. Statistical power and FDR versus fraction of non-null hypotheses π_1 for LORD using four different sequences $\{\gamma_j\}$ of increasing aggressiveness. The LORD1 method uses the sequence proposed in the paper (Javanmard & Montanari, 2017). Under the alternative the p-values are distributed as Beta(0.5,5).

 $f_t:(R_{1:T},C_{1:T})\mapsto \alpha_t$ is a coordinatewise non-decreasing function. Here we provide a proof of this claim. We prove it assuming λ is constant, however the same arguments can be applied if it changes at every step, i.e. if it is predictable as stated in Section 3.

Consider some $(R_{1:T}, C_{1:T})$ and $(\tilde{R}_{1:T}, \tilde{C}_{1:T})$ for a fixed T. We will accordingly denote all relevant variables in the SAFFRON procedures which result in $(R_{1:T}, C_{1:T})$ and $(\tilde{R}_{1:T}, \tilde{C}_{1:T})$, e.g. α_t and $\tilde{\alpha}_t$, respectively. Taking into account the possible relations between indicators for rejection and candidacy, $(\tilde{R}_{1:T}, \tilde{C}_{1:T}) \succeq (R_{1:T}, C_{1:T})$ if and only if, for every $t \leq T$, one of the following holds:

(i)
$$R_t = \tilde{R}_t$$
 and $C_t = \tilde{C}_t$,

(ii)
$$R_t=0,\,C_t=1$$
 and $\tilde{R}_t=1,\,\tilde{C}_t=1,$

(iii)
$$R_t = 0$$
, $C_t = 0$ and $\tilde{R}_t = 0$, $\tilde{C}_t = 1$,

(iv)
$$R_t = 0$$
, $C_t = 0$ and $\tilde{R}_t = 1$, $\tilde{C}_t = 1$.

From this it is clear that the procedure which generated $(R_{1:T}, C_{1:T})$ up to time T could not have made more rejections or encountered more candidate p-values. Further, at each time that it made a rejection, the procedure that generated $(\tilde{R}_{1:T}, \tilde{C}_{1:T})$ also made a rejection. Looking into the SAFFRON update rule for the rejection thresholds, recall that α_t is computed as:

$$\begin{split} &\alpha_t := \min\{\lambda, \overline{\alpha}_t\}, \ \text{ where } \ \overline{\alpha}_t := W_0 \gamma_{t-C_{0+}} + \\ &((1-\lambda)\alpha - W_0) \gamma_{t-\tau_1-C_{1+}} + \sum_{j \geq 2} (1-\lambda)\alpha \gamma_{t-\tau_j-C_{j+}}. \end{split}$$

Note that, by construction, the terms $((1-\lambda)\alpha-W_0)$ and $(1-\lambda)\alpha$ are strictly positive. Therefore, since the sequence $\{\gamma_j\}$ is non-increasing, the sum of the terms $(1-\lambda)\alpha\gamma_{t-\tau_j-C_{j+}}$ contributing to α_t is at most as great as the the sum of the terms $(1-\lambda)\alpha\gamma_{t-\tilde{\tau_j}-\tilde{C}_{j+}}$, because $\tilde{\alpha}_t$ considers at least all the rejection times in α_t , and has $\tilde{C}_{j+} \geq C_{j+}$ (the same holds for the term $((1-\lambda)\alpha-W_0)$).

References

- Benjamini, Y. and Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society, Series B* (*Methodological*), 57(1):289–300, 1995.
- Benjamini, Y. and Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. *The Annals of Statistics*, 29(4):1165–1188, 2001.
- Javanmard, A. and Montanari, A. Online rules for control of false discovery rate and false discovery exceedance. *The Annals of Statistics*, to appear, 2017.
- Ramdas, A., Barber, R. F., Wainwright, M., and Jordan, M. A unified treatment of multiple testing with prior knowledge. arXiv preprint arXiv:1703.06222, 2017.
- Storey, J. A direct approach to false discovery rates. *Journal of the Royal Statistical Society, Series B (Statistical Methodology)*, 64(3):479–498, 2002.
- Storey, J., Taylor, J., and Siegmund, D. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. *Journal of the Royal Statistical Society, Series B (Statistical Methodology)*, 66(1):187–205, 2004.