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Abstract
In the online false discovery rate (FDR) problem,
one observes a possibly infinite sequence of p-
values P1, P2, . . . , each testing a different null hy-
pothesis, and an algorithm must pick a sequence
of rejection thresholds α1, α2, . . . in an online
fashion, effectively rejecting the k-th null hypoth-
esis whenever Pk ≤ αk. Importantly, αk must be
a function of the past, and cannot depend on Pk
or any of the later unseen p-values, and must be
chosen to guarantee that for any time t, the FDR
up to time t is less than some pre-determined
quantity α ∈ (0, 1). In this work, we present a
powerful new framework for online FDR control
that we refer to as “SAFFRON”. Like older alpha-
investing algorithms, SAFFRON starts off with
an error budget (called alpha-wealth) that it intel-
ligently allocates to different tests over time, earn-
ing back some alpha-wealth whenever it makes a
new discovery. However, unlike older methods,
SAFFRON’s threshold sequence is based on a
novel estimate of the alpha fraction that it allo-
cates to true null hypotheses. In the offline setting,
algorithms that employ an estimate of the pro-
portion of true nulls are called “adaptive”, hence
SAFFRON can be seen as an online analogue of
the offline Storey-BH adaptive procedure. Just
as Storey-BH is typically more powerful than the
Benjamini-Hochberg (BH) procedure under inde-
pendence, we demonstrate that SAFFRON is also
more powerful than its non-adaptive counterparts
such as LORD.
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1. Introduction
It is now commonplace in science and technology to make
thousands or even millions of related decisions based on
data analysis. As a simplified example, to discover which
genes may be related to diabetes, we can formulate the
decision-making problem in terms of hypotheses that take
the form “gene X is not associated with diabetes,” for many
different genes X, and test for which of these null hypothe-
ses can be confidently rejected by the data. As first identified
by Tukey in a seminal 1953 manuscript (1953), the central
difficulty when testing a large number of null hypotheses
is that several of them may appear to be false, purely by
chance. Arguably, we would like the set of rejected null hy-
pothesesR to have high precision, so that most discovered
genes are indeed truly correlated with diabetes and further
investigations are not fruitless. Unfortunately, separately
controlling the false positive rate for each individual test ac-
tually does not provide any guarantee on the precision. This
motivated the development of procedures that can provide
guarantees on an error metric called the false discovery rate
(FDR) (Benjamini & Hochberg, 1995), defined as:

FDR ≡ E [FDP(R)] = E
[
|H0 ∩R|
|R|

]
,

whereH0 is the unknown set of truly null hypotheses, and
0/0 ≡ 0. Here the FDP represents the ratio of falsely re-
jected nulls to the total number of rejected nulls, and since
the set of discoveries R is data-dependent, the FDR takes
an expectation over the underlying randomness. The evi-
dence from a hypothesis test can typically be summarized
in terms of a p-value, and so offline multiple testing algo-
rithms take a set of p-values {Pi} as their input, and a target
FDR level α ∈ (0, 1), and produce a rejected set R that is
guaranteed to have FDR ≤ α. Of course, one also desires
a high recall, or equivalently a low false negative rate, but
without assumptions on many uncontrollable factors like the
frequency and strength of signals, additional guarantees on
the recall are impossible.

While the offline paradigm previously described is the classi-
cal setting for multiple decision-making, the corresponding
online problem is emerging as a major area of its own. For
example, large information technology companies run thou-
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sands of A/B tests every week of the year, and decisions
about whether or not to reject the corresponding null hy-
pothesis must be made without knowing the outcomes of
future tests; indeed, future null hypotheses may depend on
the outcome of the current test. The current standard of
setting all thresholds αk to a fixed quantity such as 0.05
does not provide any control of the FDR. Hence, the follow-
ing hypothetical scenario is entirely plausible: a company
conducts 1000 tests in one week, each with a target false
positive rate of 0.05; it happens to make 80 discoveries in
total of which 50 are accidental false discoveries, ending up
with an FDP of 5/8. Such uncontrolled error rates can have
severe financial and social consequences.

The first method for online control of the FDR was the
alpha-investing algorithm of Foster and Stine (2008), later
extended to generalized alpha-investing (GAI) algorithms
by Aharoni and Rosset (2014). Recently, Javanmard and
Montanari (2017) proposed variants of GAI algorithms that
control the FDR (as opposed to the modified FDR controlled
in the original paper (Foster & Stine, 2008)), including a new
algorithm called LORD. The GAI++ algorithms by Ramdas
et al. (2017) improved the earlier GAI algorithms (uni-
formly), and the improved LORD++ (henceforth LORD)
method arguably represents the current state-of-the-art in
online multiple hypothesis testing.

The current paper’s central contribution is the derivation
and analysis of a powerful new class of online FDR algo-
rithms called “SAFFRON” (Serial estimate of the Alpha
Fraction that is Futilely Rationed On true Null hypothe-
ses). As an instance of the GAI framework, the SAFFRON
method starts off with an error budget, referred to as alpha-
wealth, that it allocates to different tests over time, earning
back some alpha-wealth whenever it makes a new discovery.
However, unlike earlier work in the online setting, SAF-
FRON is an adaptive method, meaning that it is based on
an estimate of the proportion of true nulls. In the offline
setting, adaptive methods were proposed by Storey (2002;
2004), who showed that they are more powerful than the
Benjamini-Hochberg (BH) procedure (1995) under indepen-
dence assumptions; this advantage usually increases with
the proportion of non-nulls and the signal strength. Thus,
the SAFFRON method can be viewed as an online analogue
of Storey’s adaptive version of the BH procedure. As shown
in Figure 1, our simulations show that SAFFRON demon-
strates the same types of advantages over its non-adaptive
counterparts, such as LORD and alpha-investing. Further-
more, the ideas behind SAFFRON’s derivation can provide
a natural template for the design and analysis of a suite of
other adaptive online methods.

The rest of this paper is organized as follows. In Section 2,
we derive the SAFFRON algorithm from first principles,
leaving the precise statement and the proof of a central tech-
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Figure 1. Statistical power and FDR versus fraction of non-null
hypotheses π1 for SAFFRON, LORD and alpha-investing at target
FDR level α = 0.05. The p-values are drawn as Pi = Φ(−Zi),
where Φ is the standard Gaussian CDF, and Zi ∼ N(µi, 1), where
nulls have µi = 0 and non-nulls have µi ∼ N(3, 1).

nical lemma for Section 3. In Section 4, we investigate the
practical choice of tuning parameters, and demonstrate the
effectiveness of our recommended choice using simulations.
We end with a summary in Section 5.

2. Deriving the SAFFRON Algorithm
Before deriving the SAFFRON algorithm, it is useful to
recap a few concepts. By definition of a p-value, if the
hypothesis Hi is truly null, then the corresponding p-value
is stochastically larger than the uniform distribution (“super-
uniformly distributed,” for short), meaning that:

If the null hypothesis Hi is true, then
Pr{Pi ≤ u} ≤ u for all u ∈ [0, 1].

(1)

For any online FDR procedure, let the rejected set after t
steps be denoted byR(t). More precisely, this set consists
of all p-values among the first t ones for which the indicator
for rejection is equal to 1; i.e., Rj : = 1 {Pj ≤ αj} = 1,
for all j ≤ t. While we have already defined the classical
FDP and FDR in the introduction, several authors, including
Foster and Stine (2008), have considered a modified FDR,
defined as:

mFDR(t) : =
E
[
|H0 ∩R(t)|

]
E [|R(t)|]

. (2)

In the sequel, we provide guarantees for both mFDR and
FDR. Our guarantees on mFDR hold under the follow-
ing weakening of (1). Define the filtration formed by the
sequence of sigma-fields F t : = σ(R1, . . . , Rt), and let
αt : = ft(R1, . . . , Rt−1), where ft is an arbitrary function
of the first t−1 indicators for rejection. Then, we say that the
null p-values are conditionally super-uniformly distributed
if the following holds:

If the null hypothesis Ht is true, then

Pr
{
Pt ≤ αt

∣∣ F t−1} ≤ αt. (3)
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2.1. An Oracle FDP Estimate and a Naive Overestimate

To understand the motivation behind the new procedure, it
is necessary to expand on an perspective on existing online
FDR procedures, recently suggested by Ramdas et al. (2017).
We begin by defining an oracle estimate of the FDP as:

FDP∗(t) : =

∑
j≤t,j∈H0

αj

|R(t)|
.

The word oracle indicates that FDP∗ cannot be calculated
by the scientist, since H0 is unknown. Intuitively, the nu-
merator

∑
j≤t,j∈H0 αj overestimates the number of false

discoveries, and FDP∗(t) overestimates the FDP, as formal-
ized in the claim below:

Proposition 1. If the null p-values are conditionally super-
uniformly distributed (3), then we have:

(a) E

[ ∑
j≤t,j∈H0

αj

]
≥ E

[
|H0 ∩R(t)|

]
;

(b) If FDP∗(t) ≤ α for all t ∈ N, then mFDR(t) ≤ α for
all t ∈ N.

Further, if the null p-values are independent of each other
and of the non-nulls, and {αt} is a monotone function of
past rejections, then:

(c) E [FDP∗(t)] ≥ E [FDP(t)] ≡ FDR(t) for all t ∈ N;

(d) The condition FDP∗(t) ≤ α for all t ∈ N implies that
FDR(t) ≤ α for all t ∈ N.

To clarify, the word monotone means that αt is a coordinate-
wise non-decreasing function of the vector R1, . . . , Rt−1.
Proposition 1 follows from the results of Ramdas et al.
(2017), and we prove it in Subsection 3.1 for complete-
ness. Even though FDP∗(t) cannot be directly calculated
and used, Proposition 1 is a useful way to identify what
would be ideally possible.

One natural way to convert FDP∗(t) to a truly empirical
overestimate of FDP(t) is to define:

F̂DPLORD(t) : =

∑
j≤t αj

|R(t)|
.

Since it is trivially true that F̂DPLORD(t) ≥ FDP∗(t),
we immediately obtain that Proposition 1 also holds with
FDP∗(t) replaced by F̂DPLORD(t). The subscript LORD
is used because Ramdas et al. (2017) point out that their
variant of the LORD algorithm of Javanmard and Montanari
(2017) can be derived by simply assigning αj in an online
fashion to ensure that the condition F̂DPLORD(t) ≤ α is
met for all times t.

2.2. A Better Estimate of the Alpha-Wealth Spent on
Testing Nulls

The main drawback of F̂DPLORD is that if the underlying
(unknown) truth is such that the proportion of non-nulls
(true signals) is non-negligible, then F̂DPLORD(t) is a very
crude and overly conservative overestimate of FDP∗(t), and
hence also of the true unknown FDP. With this drawback
in mind, and knowing that we would expect non-nulls to
typically have smaller p-values, we propose the following
novel estimator:

F̂DPSAFFRON(λ)(t) ≡ F̂DPλ(t) : =

∑
j≤t αj

1{Pj>λj}
1−λj

|R(t)|
,

where {λj}∞j=1 is a predictable sequence of user-chosen
parameters in the interval (0, 1). Here the term predictable
means that λj is a deterministic function of the information
available from time 1 to j − 1, which will be formalized
later. For simplicity, when λj is chosen to be a constant for
all j, we will drop the subscript and just write λ, and we
will consider λ = 1/2 as our default choice. SAFFRON
is based on the idea that the numerator of F̂DPλ is a much
better estimator of the quantity

∑
j≤t,j∈H0 αj than LORD’s

naive estimate
∑
j≤t αj .

So as to provide some intuition for why we expect F̂DPλ
to be a fairly tight estimate of FDP∗, note that 1{Pj>λj}

1−λj
has a unit expectation whenever Pj is uniformly distributed
(null), but would typically have a much smaller expectation
whenever Pj is stochastically much smaller than uniform
(non-null). The following theorem shows that, even though
F̂DPλ(t) is not necessarily always larger than FDP∗(t), a
direct analog of Proposition 1 is nonetheless valid. In order
to state this claim formally, we need to slightly modify the
assumption (3). As before, denote by Rj : = 1 {Pj ≤ αj}
the indicator for rejection, and let Cj := 1 {Pj ≤ λj} be
the indicator for candidacy. Accordingly, we refer to the
p-values for which Cj = 1 as candidates. Moreover, we
let αt : = ft(R1, . . . , Rt−1, C1, . . . , Ct−1), where ft de-
notes an arbitrary function of the first t − 1 indicators for
rejection and candidacy, and define the filtration generated
from sigma-fields F t : = σ(R1, . . . , Rt, C1, . . . , Ct). With
respect to this filtration, we introduce a conditional super-
uniformity condition on the null p-values similar to (3):

If the null hypothesis Ht is true, then

Pr
{
Pt ≤ αt

∣∣ F t−1} ≤ αt, (4)

which can be rephrased as:

E
[
1 {Pt > αt}

1− αt
························

∣∣∣∣ F t−1] ≥ 1 ≥ E
[
1 {Pt ≤ αt}

αt
························

∣∣∣∣ F t−1] .
Note that again marginal super-uniformity (1) implies this
condition, provided that the p-values are independent.
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Theorem 1. If the null p-values are conditionally super-
uniformly distributed (4), then we have:

(a) E

[ ∑
j≤t,j∈H0

αj
1{Pj>λj}

1−λj

]
≥ E

[
|H0 ∩R(t)|

]
;

(b) The condition F̂DPλ(t) ≤ α for all t ∈ N implies that
mFDR(t) ≤ α for all t ∈ N.

Further, if the null p-values are independent of each other
and of the non-nulls, and {αt} is a monotone function of
the vector R1, ..., Rt−1, C1, ..., Ct−1, then we additionally
have:

(c) E
[
F̂DPλ(t)

]
≥ E [FDP(t)] ≡ FDR(t) for all t ∈ N;

(d) The condition F̂DPλ(t) ≤ α for all t ∈ N implies that
FDR(t) ≤ α for all t ∈ N.

The proof of this theorem is given in Section 3.2, and is
based on a “reverse super-uniformity lemma” that is dis-
cussed in the next section. This lemma, though of a tech-
nical nature, may be of independent interest in deriving
new algorithms. The statements on mFDR control allow
SAFFRON to be used in place of LORD in applications in
which p-values are not independent, but are conditionally
super-uniformly distributed, such as the MAB-FDR frame-
work (based on multi-armed bandits) proposed by Yang et
al. (2017).

2.3. The SAFFRON Algorithm for Constant λ

We now present the SAFFRON algorithm at a high level.
For simplicity, we consider the constant λ setting, which
performs well in experiments, though it may be a useful
direction for future work to construct good heuristics for
time-varying sequences {λj}∞j=1.

1. Given a target FDR level α, the user first picks a con-
stant λ ∈ (0, 1), an initial wealth W0 < (1− λ)α, and
a positive non-increasing sequence {γj}∞j=1 of sum-
ming to one. For example, given a parameter s > 1,
we might pick γj ∝ j−s for some s > 1.

2. We use the term “candidates” to refer to p-values
smaller than λ, since SAFFRON will never reject a
p-value larger than λ. Recalling the indicator for can-
didacy Ct : = 1 {Pt ≤ λ}, and denoting by τj be the
time of the j-th rejection (and setting τ0 = 0), de-
fine the candidates after the j-th rejection as Cj+ =

Cj+(t) =
∑t−1
i=τj+1 Ci.

3. SAFFRON begins by allocation α1 = min{γ1W0, λ},

and then at time t = 2, 3, . . ., it allocates:

αt : = min{λ, α̃t}, where α̃t : = W0γt−C0+
+

((1− λ)α−W0)γt−τ1−C1+
+
∑
j≥2

(1− λ)αγt−τj−Cj+ .

In words, SAFFRON starts off with an alpha-wealth W0 <
(1−λ)α, never loses wealth when testing candidate p-values,
gains wealth of (1− λ)α on every rejection except the first.
If there is a significant fraction of non-nulls, and the signals
are fairly strong, then SAFFRON may make more rejections
than LORD.

To clarify, SAFFRON guarantees FDR control for any
λ ∈ (0, 1) and any chosen sequence {γj}∞j=1, but the al-
gorithm’s power, or ability to detect signals, varies as a
function of these parameters. Given the minimal nature of
our assumptions, there is no universally optimal constant
or sequence: specifically, we do not make assumptions on
the frequency of true signals, or on how strong they are, or
on their order, all of which are factors that affect the power.
We discuss reasonable default choices in the experimental
section.

2.4. Relationship to Other Procedures

Here, we compare SAFFRON to existing procedures in the
literature, emphasizing commonalities that allow us to give
a unified view of seemingly disparate algorithms.

Alpha-investing. Even though the motivation that we
have presented for SAFFRON relates it to the LORD algo-
rithm, we find it interesting that the original alpha-investing
algorithm of Foster and Stine (2008) is recovered by choos-
ing λj = αj in F̂DPλ, and attempting to ensure that
F̂DPλ(t) ≤ α for all times t ∈ N. In order to see this
fact, first note that with this choice of λj , the indicator
1 {Pj > λj} simply indicates when the j-th hypothesis
is not rejected. Consequently, the numerator of F̂DPλ
reads as

∑
j≤t

αj
1−αj 1 {j /∈ R(t)}. Hence, ensuring that

F̂DPλ(t) ≤ α at all times t ∈ N, is equivalent to ensuring
that

∑
j≤t

αj
1−αj 1 {j /∈ R(t)} never exceeds α(|R(t)| ∨ 1),

which, in the language of alpha-investing, is equivalent to
ensuring that the algorithm’s wealth never becomes nega-
tive.1 Just as Ramdas et al. (2017) were able to reinterpret
and rederive LORD in terms of a particular estimate of the
FDP, the current work allows us to reinterpret and rederive
alpha-investing in terms of SAFFRON’s FDP. However, our
simulations demonstrate that despite this similarity, SAF-
FRON with λj = 1/2 is typically a more powerful algo-
rithm than both LORD and alpha-investing.

1Recall that the alpha-investing algorithm starts off with an
alpha-wealth of α, reduces its alpha-wealth by αj

1−αj
after tests

that fail to reject, and increase the wealth by α on rejections.
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Storey-BH. In offline multiple testing, where all n p-
values are immediately available, the Benjamini-Hochberg
(BH) procedure (1995) is a classical method for guarantee-
ing FDR control. BH estimates the FDP of the rejection set
R(s) := {i : Pi ≤ s} by F̂DPBH(s) : = n·s

|R(s)| , which is

a conservative estimate of the oracle FDP∗BH(s) : = |H0|·s
|R(s)|

(details in Supplementary Material). For independent p-
values, Storey et al. (2002; 2004) improved the BH method,
by picking a constant λ ∈ (0, 1), and calculating:

F̂DPStBH(s) : =
n · s · π̂0
|R(s)|

,

where π̂0 is an estimate of the unknown proportion of nulls
π0 = |H0|/n computed as:

π̂0 : =
1 +

∑n
i=1 1 {Pi > λ}
n(1− λ)

.

Then, this procedure, which we refer to as “Storey-BH,” cal-
culates ŝStBH : = max{s : F̂DPStBH(s) ≤ α} and rejects
the setR(ŝStBH) which satisfies the bound FDR ≤ α. Pro-
cedures such as Storey-BH are known in the multiple testing
literature as adaptive procedures, since they automatically
adapt to the unknown proportion of nulls.

Returning to the setting of online FDR, what matters is not
the proportion of nulls π0, but instead a running estimate
of the amount of alpha-wealth that was spent testing nulls
thus far; this difference arises because, unlike the offline
setting where all p-values are compared to the same level
ŝ, different p-values have to pass different thresholds αi.
In light of the above discussion, it should be apparent that
Storey-BH is to BH as SAFFRON is to LORD. In the offline
context, Storey-BH is called an “adaptive method” (it is
adaptive to the unknown null proportion) and in this sense,
SAFFRON can be seen as an adaptive online FDR method.

Accumulation tests. Note that E [2I(P > 1/2)] ≥ 1 for
null p-values (with equality when they are exactly uniformly
distributed, simply because

∫ 1

0
2I(p > 1/2)dp = 1). One

may actually use any non-decreasing function h such that∫ 1

0
h(p)dp in the formula for F̂DPλ. Such accumulation

functions were studied (Li & Barber, 2017) in the (offline)
context of ordered testing, and may seamlessly be trans-
ferred to the online setting considered here, yielding mFDR
control using the same proof. In initial experiments, the use
of other functions does not seem to yield any advantage, and
under some additional assumptions in the offline ordered
testing setting, the aforementioned authors argued that the
step function (1− λ)−1I(I > λ) is asymptotically optimal
for power. In this light, SAFFRON can also be seen as an
online analog of adaptive SeqStep (Lei & Fithian, 2016),
which is a variant of selective SeqStep (Barber & Candès,
2015) and SeqStep (Li & Barber, 2017).

3. Proof of Theorem 1 Using a Reverse
Super-Uniformity Lemma

In this section, we present a lemma that is central to the
proof of FDR control for SAFFRON. We then use this
lemma to prove Proposition 1 and Theorem 1. Let us
first recall and set up some preliminary notation. In what
follows, αt, λt are random variables in (0, 1) that always
satisfy αt ≤ λt. We denote the indicator for rejection
at the t-th step by Rt : = 1 {Pt ≤ αt}, and recall that
since only p-values smaller than λt are candidates for re-
jection, we had earlier defined the indicator for candidacy
as Ct : = 1 {Pt ≤ λt}. If we denote C̄t = 1 − Ct, then
it is clear that RtC̄t = 0, since Rt = 1 implies C̄t = 0
and C̄t = 1 implies Rt = 0, and it is also possible for Rt
and C̄t to both equal 0. Also let R1:t : = {R1, . . . , Rt} and
C1:t : = {C1, . . . , Ct}. As before, we consider the filtration
F t : = σ(R1:t, C1:t). In what follows, we insist that the
sequences {αt}∞t=1 and {λt}∞t=1 are predictable, meaning
that they are functions of the information available from
time 1 to t − 1 only; specifically, we insist that αt, λt are
measurable with respect to the sigma-field F t−1. We will
also require that the {αt} sequence is monotone, meaning
that αt = ft(R1:t−1, C1:t−1) for some coordinatewise non-
decreasing function ft : {0, 1}2(t−1) → [0, λt]. The proof
that SAFFRON as described in Subsection 2.3 satisfies this
requirement is given in the Supplementary Material.

Recall the definition (4) of conditional super-uniformity,
as well as its equivalent rephrased form in the line after
definition (4). Lemma 1 guarantees that for independent
p-values, this statement holds true more generally.

Lemma 1. Assume that the p-values P1, P2, . . . are inde-
pendent and let g : {0, 1}T → R be any coordinatewise
non-decreasing function. Then, for any index t ≤ T such
that Ht ∈ H0, we have:

E
[
ft(R1:t−1, C1:t−1)1 {Pt > λt}

(1− λt)g(R1:T )

∣∣∣∣ F t−1]
≥ E

[
ft(R1:t−1, C1:t−1)

g(R1:T )

∣∣∣∣ F t−1]
≥ E

[
1 {Pt ≤ ft(R1:t−1, C1:t−1)}

g(R1:T )

∣∣∣∣ F t−1] .
Proof. The second inequality is a consequence of super-
uniformity lemmas from past work (Ramdas et al., 2017;
Javanmard & Montanari, 2017), so we only prove the first
inequality. At a high level, the proof strategy is inverted,
and we will hallucinate a vector with one element being set
to 1, instead of being set to 0 in the aforementioned works.

Letting P1:T = (P1, . . . , PT ) be the original vector of
p-values, we define a “hallucinated” vector of p-values
P̃ t→1
1:T : = (P̃1, . . . , P̃T ) that equals P1:T , except that the
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t-th component is set to one:

P̃i =

{
1 if i = t

Pi if i 6= t.

Define hallucinated candidate and rejection in-
dicators as C̃i = 1

{
P̃i ≤ λi

}
and R̃i =

1
{
P̃i ≤ fi(R̃1:i−1, C̃1:i−1)

}
respectively. Let

R1:T = (R1, . . . , RT ) and R̃t→1
1:T = (R̃1, . . . , R̃T )

denote the vector of rejections using P1:T and P̃ t→1
1:T ,

respectively. Similarly, let C1:T = (C1, . . . , CT ) and
C̃t→1

1:T = (C̃1, . . . , C̃T ) denote the vector of candidates
using P1:T and P̃ t→1

1:T , respectively.

By construction, we have the following properties:

1. R̃i = Ri and C̃i = Ci for all i < t, hence
fi(R1:i−1, C1:i−1) = fi(R̃1:i−1, C̃1:i−1) for all i ≤ t.

2. R̃t = C̃t = 0, and hence R̃i ≤ Ri for all i ≥ t, due to
monotonicity of the functions fi.

Hence, on the event {Pt > λt}, we have Rt = R̃t = 0 and
Ct = C̃t = 0, and hence also R1:T = R̃t→1

1:T . This allows
us to conclude that:

ft(R1:t−1, C1:t−1)1 {Pt > λt}
(1− λt)g(R1:T )

=

ft(R1:t−1, C1:t−1)1 {Pt > λt}
(1− λt)g(R̃t→1

1:T )
.

Since R̃t→1
1:T is independent of Pt, we may take conditional

expectations to obtain:

E
[
ft(R1:t−1, C1:t−1)1 {Pt > λt}

(1− λt)g(R1:T )

∣∣∣∣ F t−1]
= E

[
ft(R1:t−1, C1:t−1)1 {Pt > λt}

(1− λt)g(R̃t→1
1:T )

∣∣∣∣∣ F t−1
]

(i)

≥ E

[
ft(R1:t−1, C1:t−1)

g(R̃t→1
1:T )

∣∣∣∣∣ F t−1
]

(ii)

≥ E
[
ft(R1:t−1, C1:t−1)

g(R1:T )

∣∣∣∣ F t−1] ,
where inequality (i) follows by taking an expectation only
with respect to Pt by invoking the conditional super-
uniformity property (4); and inequality (ii) follows because
g(R1:T ) ≥ g(R̃t→1

1:T ) since Ri ≥ R̃i for all i by monotonic-
ity of the online FDR rule. This concludes the proof of the
lemma.

We now proceed to using the above lemma to prove Propo-
sition 1 and Theorem 1.

3.1. Proof of Proposition 1

Statement (a) is proved by noting that for any time t ∈ N,
we have:

E
[
|H0 ∩R(t)|

]
=

∑
j≤t,j∈H0

E [1 {Pj ≤ αj}]

≤
∑

j≤t,j∈H0

E [αj ] ,

where the inequality follows after taking iterated expec-
tations by conditioning on F j−1, and then applying the
conditional super-uniformity property (3).

If we have FDP∗(t) : = 1
|R(t)|

∑
j≤t,j∈H0

αj ≤ α, as assumed

in statement (b), then it follows that:

∑
j≤t,j∈H0

E [αj ] = E

 ∑
j≤t,j∈H0

αj


≤ αE [|R(t)|] ,

using linearity of expectation and the assumption on
FDP∗(t). Using part (a) and rearranging yields the inequal-

ity mFDR(t) : =
E[|H0∩R(t)|]

E[|R(t)|] ≤ α, which concludes the
proof of part (b).

If, in addition, the null p-values are independent of each
other and of the non-nulls and the sequence {αt} is mono-
tone, we can use the following argument to prove claims (c)
and (d). These claims establish that the procedure controls
the FDR at any time t ∈ N. Still assuming the inequality
FDP∗(t) ≤ α, we have:

FDR(t) = E
[
|H0 ∩R(t)|
|R(t)|

]
=

∑
j≤t,j∈H0

E
[
1 {Pj ≤ αj}
|R(t)|

························
]

≤
∑

j≤t,j∈H0

E
[ αj
|R(t)|
············

]
= E [FDP∗(t)]
≤ α,

where the first inequality follows after taking iterated ex-
pectations by conditioning on F j−1, and then applying
the super-uniformity lemma (Ramdas et al., 2017), the fol-
lowing equality uses linearity of expectation, and the final
inequality follows by the assumption on FDP∗(t). This
concludes the proof of both statements (c) and (d).
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3.2. Proof of Theorem 1

First note that, for any time t ∈ N, we have:

E
[
|H0 ∩R(t)|

]
=

∑
j≤t,j∈H0

E [1 {Pj ≤ αj}]

(i)

≤
∑

j≤t,j∈H0

E [αj ]

(ii)

≤ E

 ∑
j≤t,j∈H0

αj
1 {Pj > λj}

1− λj

 ,
where inequality (i) first uses the law of iterated expectations
by conditioning onF j−1, and then both (i) and (ii) apply the
conditional super-uniformity property (4), which concludes
the proof of part (a). To prove part (b), we drop the condition
j ∈ H0 from the last expectation, and use the assumption

that F̂DPλ(t) : =

∑
j≤t αj

1{Pj>λj}
1−λj

|R(t)| ≤ α to obtain:

E

 ∑
j≤t,j∈H0

αj
1 {Pj > λj}

1− λj

 ≤ αE [|R(t)|] .

Combining this inequality with the result of part (a),
and rearranging the terms, we reach the conclusion that
mFDR(t) ≤ α, as desired. Under the independence and
monotonicity assumptions of parts (c, d), we have

FDR(t) = E
[
|H0 ∩R(t)|
|R(t)|

]
=

∑
j≤t,j∈H0

E
[
1 {Pj ≤ αj}
|R(t)|

························
]

(iii)

≤
∑

j≤t,j∈H0

E
[ αj
|R(t)|
············

]
(iv)

≤
∑

j≤t,j∈H0

E
[
αj1 {Pj > λj}
(1− λj)|R(t)|
·····························

]
,

where inequality (iii) first uses iterated expectations by
conditioning on F j−1, and then both (iii) and (iv) apply
Lemma 1. Assuming that the inequality F̂DPλ(t) ≤ α
holds, it follows that:∑
j≤t,j∈H0

E
[
αj1 {Pj > λj}
(1− λj)|R(t)|
·····························

]
(v)

≤ E
[∑

j≤t αj1 {Pj > λj}
(1− λj)|R(t)|

········································
]

(vi)
= E

[
F̂DPλ(t)

]
(vii)

≤ α,

where inequality (v) follows by linearity of expectation and
summing over a larger set of indices; equality (vi) simply
uses the definition of F̂DPλ(t), and inequality (vii) follows
by the assumption, hence proving parts (c,d).

4. Numerical Simulations
In this section, we provide the results of some numerical
experiments that compare the performance of SAFFRON
with current state-of-the-art algorithms for online FDR con-
trol, namely the aforementioned LORD and alpha-investing
procedures.2 For each method, we provide empirical eval-
uations of its power while ensuring that the FDR remains
below a chosen value. We only run simulations since for
real data, we would not know the ground truth and hence
which discoveries are true or false.

The following two subsections separately analyze two exper-
imental settings - one in which the p-values are computed
from Gaussian observations, and another in which the p-
values under the alternative are drawn from a beta distribu-
tion. In both cases, SAFFRON outperforms the competing
algorithms, with the exact level of performance depending
on the choice of sequence {γj}. All experiments use a target
FDR of α = 0.05 and estimate the FDR and power by aver-
aging over 200 independent trials. As previously mentioned,
the constant sequence λj = 1/2 for all j was found to be
particularly successful, so this is our default choice, and we
drop the index for simplicity.

4.1. Testing with Gaussian Observations

We use the simple experimental setup of testing the mean of
a Gaussian distribution with T = 1000 components. More
precisely, for each index i ∈ {1, . . . , T}, the null hypothesis
takes the form Hi : µi = 0. The observations consist
of independent Gaussian variates Zi ∼ N(µi, 1), which
are converted into one-sided p-values using the transform
Pi = Φ(−Zi), where Φ is the standard Gaussian CDF.
The motivation for one-sided conversion lies in A/B testing,
where one wishes to detect larger effects, not smaller. The
parameter µi is chosen according to a mixture model:

µi =

{
0 with probability 1− π1
F1 with probability π1,

where the random variable F1 is of the form N(µc, 1) for
some constant µc. We ran simulations for µc ∈ {2, 3}, thus
seeing how changing the distance of the alternative mean to
the null mean affects the performance of SAFFRON.

In what follows, we compare SAFFRON’s achieved power
and FDR to those of LORD and alpha-investing. The con-
stant infinite sequence γj ∝ log(j∨2)

je
√

log j , where the proportion-
ality constant is determined so that the sequence sums to one,
was shown to be asymptotically optimal for testing Gaussian
means via the LORD method in the paper (Javanmard &
Montanari, 2017). Since SAFFRON loses wealth only when

2The code for all simulations described in this section is avail-
able at: https://github.com/tijana-zrnic/SAFFRONcode
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testing non-candidates whereas LORD loses wealth at every
step, it is expected to behave more conservatively and not
use up its wealth at the same rate, conditioned on both using
the same sequence {γj}. For this reason, informally speak-
ing, it can reuse this leftover wealth, hence the sequence
{γj} chosen for SAFFRON is more aggressive, in the sense
that more wealth is concentrated around the beginning of
the sequence. In particular, we choose sequences of the
form γj ∝ j−s, where the parameter s > 1 controls the
aggressiveness of the procedure; the greater the constant s,
the more wealth is concentrated around small values of j.
We also consider these sequences for LORD, thus observing
the difference in performance resulting from using a more
aggressive sequence in the regime of a finite sequence of p-
values. Figures showing the power and FDR of SAFFRON
and LORD by varying the aggressiveness of sequence {γj}
are in the Supplementary Material.

In Figure 2 we consider F1 = N(2, 1), and compare the
level of performance of alpha-investing, SAFFRON and
LORD, the latter two using the highest performing sequence
chosen among six possible sequences. Figure 1 demon-
strates the same comparison for a similar but somewhat
easier testing problem, with F1 = N(3, 1). Experiments
indicate that increasing the fraction of non-null hypothe-
ses allows SAFFRON to achieve a faster increase of power
than LORD, thus performing considerably better than both
LORD and the alpha-investing procedure in settings with a
great number of non-null observations.
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Figure 2. Statistical power and FDR versus fraction of non-null
hypotheses π1 for SAFFRON, LORD and alpha-investing, the first
two using the sequence {γj} which achieves the highest power for
each of them (chosen over six sequences of varying aggressive-
ness). The observations under the alternative are Gaussian with
µi ∼ N(2, 1) and standard deviation 1, and are converted into
one-sided p-values as Pi = Φ(−Zi).

4.2. Testing with Beta Alternatives

In this setting we generate the p-value sequence according
to the following model:

Pi ∼

{
Unif[0, 1], with probability 1− π1
Beta(m,n), with probability π1,

where i ∈ [T ] and T = 1000, as before. Again we compare
the performance of SAFFRON, alpha-investing and LORD
in terms of the achieved power with the FDR controlled
under a chosen level. For LORD, the asymptotically op-
timal sequence {γj} was derived in the paper (Javanmard
& Montanari, 2017) and is of the form γj ∝ ( 1

j log j)1/m

for m < 1 and n ≥ 1. As in the Gaussian case, for SAF-
FRON and additionally for LORD we consider the sequence
γj ∝ j−s with varying s, which, unlike the aforementioned
sequence, does not depend on the parameters of the distribu-
tion. Please refer to the Supplementary Material for plots of
achieved power and FDR of SAFFRON and LORD obtained
by varying the sequence. For the particular distribution of
the observed p-values we choose m = 0.5 and n = 5.

Figure 3 compares the performance of SAFFRON, LORD
and alpha-investing, the first two using the highest perform-
ing sequence {γj} chosen among six considered sequences,
as in the setting with Gaussian tests. Although simulations
show SAFFRON performing similarly to LORD and alpha-
investing for small fractions of non-null hypotheses, it sig-
nificantly outperforms its competitors in terms of power and
using up available wealth with a higher number of signals.
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Figure 3. Statistical power and FDR versus fraction of non-null
hypotheses π1 for SAFFRON, LORD and alpha-investing, the first
two using the sequence {γj} which achieves the highest power for
each of them (chosen over six sequences of varying aggressive-
ness). Alternative p-values are distributed as Beta(0.5, 5).

5. Summary
This paper introduces SAFFRON, a new algorithmic frame-
work for online mFDR and FDR control. We show em-
pirically that SAFFRON is more powerful than existing
algorithms. SAFFRON is based on a novel reverse super-
uniformity lemma that allows us to estimate the fraction
of alpha-wealth that an algorithm spends on testing null
hypotheses. One may interpret SAFFRON as an adaptive
version of LORD, just as Storey-BH is an adaptive version
of the Benjamini-Hochberg algorithm. Lastly, the derivation
of SAFFRON is rather different from that of earlier general-
ized alpha-investing (GAI) algorithms, and as such provides
a template for the derivation of new algorithms.
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