
Supplementary Material for Learning Implicit Generative Models with the
Method of Learned Moments

A. Experimental Details
A.1. Experimental Setup

As mentioned in the main text, unless otherwise noted, gen-
erators use the standard DCGAN architecture with 4×4
kernels. The structure of the generator architectures for
different datasets are described in Table 4.

The moment network for Color MNIST mirror the standard
DCGAN discriminator architecture with one modification:
after the last convolutional layer, we replace linear layer of
size [4×4×C, 1] with two linear layers of sizes [4×4×C,
noise dimension] and [noise dimension, 1], respectively,
to ensure that there are at least as many moment network
parameters as generator parameters. Furthermore, the gen-
erator is trained only with moments from gradient features,
as activation features did not improve sample quality. This
allowed the use of the Hessian-vector products to more
quickly train the generator. Non-linearities between all lay-
ers are leaky ReLUs with leaky parameter 0.2.

For CIFAR-10, CelebA, and the daisy portion of ImageNet,
we found some improvement using a larger moment net-
work. Again, the moment network mirrors the DCGAN
discriminator architecture, but with two changes: prior to
each stride-2 convolutional layer we insert a stride-1 layer,
and we decrease the kernel size to 3×3. Non-linearities
between all layers are leaky ReLUs with leaky parameter
0.2. None of the moment networks use batch normalization.
For experiments that used gradient and hidden unit features,
hidden units were scaled by a constant factor (known as
activation weights in Table 10) since the hidden units had a
larger dynamic range than gradient features.

Table 10 shows the hyperparameters used for all experiments
with a few exceptions. One is the the stability of MoLM
training, which increases the number of objectives from 250
to 400. The second is the comparison of gradient features,
activations, and both gradient features and activations, as
we vary the size of the moment networks and vary the Adam
optimizer’s β parameter in that experiment. The last is the
comparison with GAN alternatives on CIFAR-10, and the
differences are described in the last paragraph of Appendix
A.1.

For comparisons, we use two standard, but somewhat flawed
metrics: Inception Score (IS), and Fréchet Inception Dis-
tance (FID). For IS, we use the standard protocol and calcu-

late scores using 10 batches of 5,000 images (for a total of
50,000) images. For FID, we report distances using 5,000
and 50,000 generated images for comparison with adver-
sarial methods. For all CIFAR-10 experiments in the main
text, we use ImageNet-trained networks, as this is the stan-
dard network for comparison. As noted by (Rosca et al.,
2017; Barratt and Sharma, 2018), however, Inception Scores
and Fréchet Inception Distances based on ImageNet-trained
networks can lead to misleading results. Therefore, we
also include Inception Scores on CIFAR-trained networks4

in Table 8 for comparison with future work. N.B. we do
not include FID results on CIFAR-trained networks, since
FID for baseline and proposed methods are extremely low
(less than 2.0). We surmise that this is the result of the
embedding layer of the CIFAR-trained network being far
lower-dimensional than that of the ImageNet-trained one.

On CelebA and CIFAR-10, we tried four GAN variants:
GAN (Goodfellow et al., 2014) with and without a gradient
penalty (Gulrajani et al., 2017), Wasserstein GAN with a
gradient penalty (Gulrajani et al., 2017), and DRAGAN
(Kodali et al., 2017) with nonsaturating loss. The same
generator architecture was used for the GAN variants as
MoLM. The results reported for DRAGAN, GAN-GP, and
WGAN-GP were the best obtained in a hyperparameter
sweep over discriminator learning rates in 0.0001, 0.0002,
0.0003 and generator learning rates in the same interval.
Whenever applicable, the gradient penalty coefficient used
was 10. The models were trained using the AdamOptimizer
with β1=0.5 and β2=0.9. DRAGAN, GAN, and GAN-GP
performed one discriminator update per generator update,
while WGAN-GP performed 5 discriminator updates for
generator updates, for a total of 200,000 generator updates.

On CIFAR-10, we found that our GAN variants had In-
ception Scores up to 0.2 worse than comparable published
results. For completeness, we include these results in Table
7. We did not believe the this would be a reliable indicator
of relative performance between adversarial methods and
the proposed one. For a more sound comparison, we use
GAN-GP and WGAN-GP results from Miyato et al. (2018),
as those results are the best we found. It uses a different
convolutional generator architecture (its specification can
be found in Table 12), which provides the extra benefit of
showing that MoLM can train more than just DCGAN gen-

4This network can be found at http://download.
tensorflow.org/models/frozen_vgg_v1_2018_
03_28.tar.gz.
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Color MNIST CIFAR-10 CelebA ImageNet Daisy
Noise dimension 128 128 256 256

Projection layer size 4×4×256 4×4×512 4×4×512 4×4×512
Conv. transpose layer 1 output size 8×8×128 8×8×256 8×8×256 8×8×256
Conv. transpose layer 2 output size 16×16×64 16×16×128 16×16×128 16×16×128
Conv. transpose layer 3 output size N/A N/A 32×32×64 32×32×64
Conv. transpose layer 4 output size N/A N/A N/A 64×64×32

Output layer size 32×32×3 32×32×3 64×64×3 128×128×3
Output nonlinearity sigmoid tanh tanh tanh
Hidden nonlinearity ReLU ReLU ReLU ReLU

Kernel size 5×5 4×4 4×4 4×4
Batch norm Yes Yes Yes Yes

Number of parameters 1,557,571 3,685,123 4,861,827 4,893,123

Table 4. Generator architectures across different datasets.

MoLM-512 MoLM-768 MoLM-1024 MoLM-1536
Size-Preserving Layer 1 3×3×3×128 3×3×3×192 3×3×3×256 3×3×3×384

Stride-2 Layer 1 3×3×128×128 3×3×192×192 3×3×256×256 3×3×384×384
Size-Preserving Layer 2 3×3×128×256 3×3×192×384 3×3×256×512 3×3×384×768

Stride-2 Layer 2 3×3×256×256 3×3×384×384 3×3×512×512 3×3×768×768
Size-Preserving Layer 3 3×3×256×512 3×3×384×768 3×3×512×1024 3×3×768×1536

Stride-2 Layer 3 3×3×512×512 3×3×768×768 3×3×1024×1024 3×3×1536×1536
Linear Layer 8,192 ×1 12,288×1 16,384×1 24,576×1
Batch norm No No No No

Hidden nonlinearity LReLU LReLU LReLU LReLU
Number of Activations 285,600 420,864 560,128 838,656
Number of Parameters 4,584,577 10,305,217 18,311,425 41,180,545

Number of Total Moments 4,866,177 10,726,081 18,871,553 42,019,201

Table 5. Moment Network Architectures for CIFAR-10

erators. We also believe that those results are among the best
for GAN-GP and WGAN-GP for any generator architec-
ture. We also compare to the spectrally-normalized GANs
(SN-GAN) in that work. For the DCGAN generator, we
compare against MMD-GAN and MMD-RBF as those can
be considered moment-based methods. Results were taken
from Li et al. (2017). Finally, we include published results
for Coulomb GAN (Unterthiner et al., 2017).

A.2. Large Generator Training on CelebA

The experiments in the main text only train generators with
up to 5 million parameters. To show the method can scale
to a larger number of generator parameters, we doubled the
number of channels and increased the kernel size to 5×5.
The number of parameters is now 20 million, and Table
11 details the architecture. The moment network mirrors
a DCGAN discriminator with 1,024 channels, and adds an
extra linear layer to ensure the number of moments is greater
than the number of generator parameters. No hidden unit
features were used in order to speed up training using the
Hessian-vector product trick. Figure 6 shows the result of
the experiment: while the generator surprisingly learns some

structure of faces using random moments, the generator
learns a higher-quality sampler of faces with MoLM.

B. Consistency and Asymptotic Normality of
Moment Estimators

In this section, we review the consistency and asymptotic
normality conditions for moment estimators. Many of these
conditions are now standard within a body of work in econo-
metrics known as “Generalized Method of Moments.”

B.1. Consistency and Asymptotic Normality
Conditions Squared Error Objective

The consistency and asymptotic normality conditions for
the Equation 1 (reproduced below) are taken from (Hall,
2005).

LG(θ) = mN (x1,...,N , θ)
TWNmN (x1,...,N , θ)

We remove the dependence on Φ because it is static. Note
that below:

m(x, θ) := m1(x1, θ) = Φ(x)− Ep(z)[Φ(gθ(z))]
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CelebA ImageNet Daisy
Size-Preserving Layer 1 3×3×3×96 3×3×3×48

Stride-2 Layer 1 3×3×96×96 3×3×48×48
Size-Preserving Layer 2 3×3×96×192 3×3×48×96

Stride-2 Layer 2 3×3×192×192 3×3×96×96
Size-Preserving Layer 3 3×3×192×384 3×3×96×192

Stride-2 Layer 1 3×3×384×384 3×3×192×192
Size-Preserving Layer 4 3×3×384×768 3×3×192×384

Stride-2 Layer 2 3×3×768×768 3×3×384×384
Size-Preserving Layer 5 N/A 3×3×384×768

Stride-2 Layer 5 N/A 3×3×768×768
Linear Layer 12,288×1 12,288×1
Batch norm No No

Hidden nonlinearity LReLU LReLU
Number of Activations 921,600 1,941,504
Number of Parameters 10,551,649 10,612,657

Number of Total Moments 11,473,249 12,554,161

Table 6. Moment Network Architectures for CelebA and ImageNet Daisy

Figure 5. Samples for only activation features, gradient features, and gradient+activation features. Architecture and hyperparameters are
using the default generator and MoLM-1024 moment network.

Figure 6. CelebA samples for large generator training. From left to right: 1) data, 2) examples from the generator trained with random
moment network weights, 3) examples from the generator trained with MoLM.

Consistency conditions are:

• The (d × 1) random vectors {xi; i = 1, . . . } form a

strictly stationary process with sample space X ⊂ Rd.
• The function m : X × Θ → Rk, where k < ∞, sat-

isfies: (i) it is continuous on Θ for each xi ∈ X; (ii)
Ep(x)[m(x, θ)] exists and is finite for every θ ∈ Θ; (iii)
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Table 7. Inception Score for baseline methods and MoLM on
CIFAR-10.

Method Inception Score
GAN 6.75

GAN-GP 6.88
DRAGAN 6.89
WGAN-GP 6.48
MoLM-768 7.56

Table 8. Inception Scores using a CIFAR-trained network for
MoLM variants.

Architecture Method Inception Score
DCGAN GAN-GP 6.41
DCGAN WGAN-GP 6.34
DCGAN DRAGAN 6.35
DCGAN MoLM-768 6.55

Conv. MoLM-1024 6.87
Conv. MoLM-1536 7.13

Ep(x)[m(x, θ)] is continuous on Θ.
• The random vector X and the parameter vector θ∗ satisfy

the population moment condition: Ep(x)[m(x, θ∗)] = 0

and Ep(x)[m(x, θ̂)] 6= 0 ∀θ̂ 6= θ∗.
• WN is a PSD matrix which converges in probability to

the PD matrix of constants W .
• The random process {Xi,−∞ < i <∞} is ergodic.
• Θ is a compact set.
• Ep(x)[supθ∈Θ ‖m(X, θ)‖] <∞

The third condition is known as global identifiability, and is
typically difficult to verify. A heuristic that seems to work
well in practice is to assume that the number of moments is
greater than the number of model parameters, and that the
Jacobian of moments with respect to the model parameters
is full-rank.

If in addition the following conditions are true:
(I) (i) The derivative matrix ∇θm(xi, θ) exists and is
continuous on Θ for each xi ∈ X; (ii) θ∗ is an interior point
of Θ; (iii) Ep(x)[∇θm(x, θ∗)] exists and is finite.

(II) Ep(x)[m(x, θ)m(x, θ)T] exists and is finite, and
limT→∞ cov(T 1/2

∑N
i=1

m(xi,θ
∗)

N ) = Σ exists and is a
finite valued positive definite matrix.

(III) Ep(x)[∇θm(x, θ)] is continuous on some neigh-
borhood Nε of θ∗.

(IV) supθ∈Nε ρ
p→ 0 as T →∞.

ρ = tr(‖ 1
T

∑T
i=1∇θm(xi, θ)− Ep(x)[∇θm(x, θ)]‖2)1/2

Then the estimator is asymptotically normal with variance
given in Theorem 2.

B.2. Consistency and Asymptotic Normality
Conditions for Simulated Method of Moments

Duffie and Singleton (1993) proved consistency and asymp-
totic normality for the more general case of Markov genera-
tors. In the i.i.d. scenario, some of the conditions are trivial.
We modify the conditions for the i.i.d. case, but please refer
to the original paper for more general conditions.

Consistency conditions are:

• For each θ ∈ Θ, {‖Φ(gθ(zi))‖2+δ, i = 1, 2, . . . } is
bounded for some δ > 0. The family {Φ(gθ(zi))} is
Lipschitz, uniformly in probability.

• Σ is nonsingular.
• Define LG(θ) = m̂N (x1,...,N ,Φ, θ)

Tm̂N (x1,...,N ,Φ, θ).
Then LG(θ∗) < LG(θ) for all θ 6= θ∗.

Asymptotic normality additionally requires:

• (i) θ∗ and estimators {θ̂N} are interior to Θ. (ii) Φ(gθ(zi))
is continuously differentiable with respect to θ for all i.
(iii) Ep(z)[∇θΦ(gθ∗(z))] exists, is finite, and has full rank.

• The family {∇θΦ(gθ(zi)), θ ∈ Θ, i = 1, 2, . . . }
is Lipschitz, uniformly in probability. For all
θ ∈ Θ,Ep(z)[‖∇θΦ(gθ(z))‖] <∞, and θ 7→
Ep(z)[∇θΦ(gθ(z))] is continuous.

If the conditions are true, then the asymptotic variance is
the one outlined in Theorem 3.

B.3. Moment Matching with Alternative Distances

Adversarial training seems to be performing moment match-
ing with access to a single moment per generator step.
Can we say anything how this changes the asymptotics?
Presently, no, but we can say something about the asymp-
totics of matching a finite number of moments with respect
to another metric (in this case ‖l‖∞), instead of squared
error:

Theorem 4. Under the Assumptions below, the estimator
θ̂N converges in probability to θ∗. Furthermore, we have:

√
N(θ̂N − θ∗)→ arg min

ζ
d(Y +Gζ)

where Y ∼ N (0,Σ) and G := Ep(z)[∇θΦ(gθ∗(z))]

This result is proved in (Han and De Jong, 2004). Asymp-
totic normality requires conditions on the distance function
δ(·), conditions on the notion of a localized distance, and
moment conditions. The conditions on the distance function
are:

• δ(·) is continuous
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Color MNIST CIFAR-10 CelebA ImageNet Daisy
Number of objectives No 150 250 250 250

Number of moment training steps Nm 100 100 100 100
Number of generating training steps Ng 2,000 2,000 2,000 2,000

Learning rate α 1E-4 1E-4 1E-4 1E-4
Adam β1/β2 0.9/0.999 0.9/0.999 0.9/0.999 0.9/0.999

Activation weights 0.0 1E-4 1E-4 1E-4
Norm penalty parameter λ 0.1 1.0 1.0 1.0

Batch size 1000 200 200 200

Table 9. Hyperparameters for different datasets for all experiments except those comparing to adversarial methods.

DCGAN Conv
Number of objectives No 700 800

Number of moment training steps Nm 50 50
Number of generating training steps Ng 1,000 1,000

Learning rate α 1E-4 1E-4
Adam β1/β2 0.9/0.999 0.9/0.999

Activation weights 1E-3 1E-3
Norm penalty parameter λ 0.1 0.1

Generator batch size 200 200
Moment batch size 50 50

Table 10. Hyperparameters for different architectures for GAN comparison on CIFAR-10.

CIFAR-10
Noise dimension 128

Projection layer size 4×4×512
Conv. transpose layer 1 output size 8×8×256
Conv. transpose layer 2 output size 16×16×128
Conv. transpose layer 3 output size 32×32×64

Stride-1 Conv. layer output size 32×32×3
Output nonlinearity tanh

Conv. transpose layer kernel size 4×4
Stride-1 Conv. layer kernel size 3×3

Batch norm Yes
Number of parameters 3,811,907

Table 12. Generator architecture for GAN comparison on CIFAR-
10.

CelebA
Noise dimension 256

Projection layer size 4×4×1024
Conv. transpose layer 1 output size 8×8×512
Conv. transpose layer 2 output size 16×16×256
Conv. transpose layer 3 output size 32×32×128

Output layer size 64×64×3
Output nonlinearity tanh

Kernel size 5×5
Batch norm Yes

Number of parameters 20,615,427

Table 11. Generator architecture for large generator parameter ex-
periment.

• δ(x) = 0 iff x = 0

• δ(x) = δ(−x)

• δ satisfies the triangle inequality up to a finite constant
locally (in a neighborhood of 0), i.e., there exists an
ε > 0 such that if ‖x1‖1 < ε and ‖x2‖1 < ε then
δ(x1 + x2) ≤ M [δ(x1) + δ(x2)] ∀x1, x2, for some
M <∞.

The authors define a sequence of localized distance func-
tions as

dn(x) =
δ(n−1/2x)

δ(n−1/21)
n = 1, 2, . . .

Conditions on the localized distance are:

• There is a real function φ(·) on Rq such that infn dn(x) ≥
φ(x), and φ(x)→∞ if |x| → ∞.

• dn converges uniformly in every compact subset of Rq to
a continuous function d.

• d(z + Bt) achieves its minimum at a unique point of
t ∈ Rp for each z ∈ Rq and for any q × p matrix B with
full column rank.
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Conditions on the moments (again removing dependence
on Φ) are:

• Θ is a compact set.
• m̂N (x1,...,N , θ) = 1

N

∑N
i=1m(xi, θ) converges in proba-

bility to a nonrandom function µ(θ) uniformly on Θ.
• µ(θ) = 0 iff θ = θ∗ where θ∗ is an interior point of Θ.
• ĜN (θ) = 1

N

∑N
i=1∇θm(xi, θ) exists and converges in

probability to a nonrandom function G(θ) uniformly in a
neighborhood of θ∗ and G(θ∗) has full column rank.

• There exists θ̂ in between θ and θ∗ such that .

m̂N (x1,...,N , θ) = m̂N (x1,...,N , θ
∗) + ĜN (θ)(θ − θ∗)

for θ in a neighborhood of θ∗.
•
√
Nm̂N (x1,...,N , θ)

d→N (0,Σ)

C. Proofs
C.1. Proof of Proposition 1

The proof of the following statement is sufficiently sim-
ple that there is likely an earlier proof. Unfortunately, we
could not find a reference, so we are likely re-proving this
statement.
Proposition. Suppose the kernel function K(x, y) =
K(x− y) is real, shift-invariant, Bochner integrable, and
without loss of generality K(0)=1. Then:

Ep(x,x′)[K(x, x′)]−2Ep(x,y)[K(x, y)]+Ep(y,y′)[K(y, y′)]

= Ep(w)[(Ep(x)[cos(ωTx)]− Ep(y)[cos(ωTy)])2]

+ Ep(w)[(Ep(x)[sin(ωTx)]− Ep(y)[sin(ωTy)])2]

where p(ω) is a probability measure specified by the kernel.

Proof. From Bochner’s Theorem for real kernels (Zhao and
Meng, 2015):

K(x− y) = Ep(ω)[K(0) cos(ωT(x− y))]

When K(0) = 1, p(ω) is a probability measure. Without
loss of generality let K(0) = 1. Since the kernel is inte-
grable we can interchange expectations.

E[K(x, y)] =Ep(x,y)[Ep(ω)[cos(ωT(x− y))]]

=Ep(ω)[Ep(x,y)[cos(ωT(x− y))]]

Then:

Ep(x,y)[cos(ωT(x− y))] = Ep(x,y)[cos(ωTx) cos(ωTy)]

+ Ep(x,y)[sin(ωTx) sin(ωTy)]

= Ep(x)[cos(ωTx)]E(y)[cos(ωTy)]

+ Ep(x)[sin(ωTx)]Ep(y)[sin(ωTy)]

Addition of Ep(x,x′)[K(x, x′)] − 2Ep(x,y)[K(x, y)] +
Ep(y,y′)[K(y, y′)] yields the result.

C.2. Simplification of Coulomb GAN

We offer a simpler interpretation of optimality of the gen-
erator in Couloumb GAN (Unterthiner et al., 2017) using
ideas from Maximum Mean Discrepancy. Suppose we are
learning an implicit generative model using MMD:

L(θ) = min
θ

sup
f∈F

Ep(x)[f(x)]− Ep(z)[f(gθ(z))]

If we knew f∗, the function that maximizes the inner supre-
mum, then we can simplify the loss to:

L(θ) = min
θ
−Ep(z)[f∗(gθ(z))] (3)

If the function class F is the unit ball in a Reproducing
Kernel Hilbert Space, then the witness function f∗, defined
in Gretton et al. (2012), can be analytically calculated as:

f∗(t) ∝ Ep(x)[k(x, t)]− Ep(z)[k(gθ(z), t)]

The empirical version of which is:

f̂∗(t) ∝ 1

m

∑

i

k(xi, t)−
1

n

∑

j

k(gθ(zj), t)

Plugging in this scaled witness function into the Monte
Carlo estimate of Equation 3 gives us a biased estimate of
the loss. L(θ) is a distance if the kernel k(x, y) is character-
istic.

In Coulomb GAN (Unterthiner et al., 2017), the discrimina-
tor and generator steps are:

LD(D;G) =
1

2
Ep(t)

(
(D(t)− Φ̂(t))2

)

LG(D;G) = −1

2
Ep(z)(D(gθ(z)))

The authors define the empirical estimate of the potential
function Φ (not to be confused with feature functions in the
main text) as:

Φ̂(t) =
1

m

∑

i

k(xi, t)−
1

n

∑

j

k(gθ(zj), t)

and

p(t) =
1

2

∫
N (t; gθ(z), εI)pz(z)dz

+
1

2

∫
N (t;x, εI)px(x)dx

Φ̂ is merely the empirical estimate of the witness function,
discriminatorD is a model of the empirical witness function,
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and the generator loss is that of Equation 3. The empirical
estimate of LG(D;G) is biased, though it’s unknown how
this affects training in practice. Note that dependence of θ
on f∗ requires frequent retraining of D.

To demonstrate that the loss is a distance, it remains to show
that the function class F is rich enough, or equivalently that
the kernel function k(x, y) is characteristic. Note that the
proposed Plummer kernel:

kp(a, b) =
1

(
√
‖a− b‖2 + ε2)d

is a rational quadratic kernel:

krq(a, b) = σ2

(
1 +
‖a− b‖2

2αl2

)−α

with α = d
2 , σ = ε−d/2 and l = ε√

d
. Since rational

quadratic kernels are characteristic, so are Plummer ker-
nels.


