
Supplementary Material for Submission:
Learning by Playing – Solving Sparse Reward Tasks from Scratch

Martin Riedmiller * 1 Roland Hafner * 1 Thomas Lampe 1 Michael Neunert 1 Jonas Degrave 1

Tom Van de Wiele 1 Volodymyr Mnih 1 Nicolas Heess 1 Tobias Springenberg 1

Abstract
We provide details on the experimental setup as
well as additional experiments, highlighting dif-
ferent aspects of the SAC agent. A supplemen-
tary video for the experiments can be found at
https://youtu.be/mPKyvocNe M

A. Details on the Experimental Setup
A.1. Simulation

For the simulation of the Jaco robot arm the numerical
simulator MuJoCo 1 was used – using a model we identified
from our real robot setup.

The simulation was run with a numerical time step of 10
milliseconds, integrating 5 steps, to get a control interval of
50 milliseconds for the agent. In this way we can resolve
all important properties of the robot arm and the object
interactions in simulation.

The objects that are used are based on wooden toy blocks.
We use a cubic block with side lengths of 5 cm (red object)
and a cuboid with side lengths of 5cm x 5cm x 8cm (green
block). For the banana stacking experiment a combination
of 3 different geometric (capsule shaped) primitives with
radius 2.5 cm are used, resulting in a banana shaped object
of 12 cm in length (replacing the red object).

All experiments made use of an experiment table with sides
of 60 cm x 30 cm in length, which is assumed to be the full
working space for all experiments. The objects are spawned
at random on the table surface. The robot hand is initialized
randomly above the table-top with a height offset of up to 20
cm above the table (minimum 10 cm) and the fingers in an
open configuration. The simulated Jaco is controlled by raw
joint velocity commands (up to 0.8 radians per second) in all

*Equal contribution 1Google DeepMind, London, GB. Corre-
spondence to: Martin Riedmiller <riedmiller@google.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

1MuJoCo: see www.mujoco.org

Table 1. Proprioceptive observations used in all simulation experi-
ments.

Entry dimensions unit

arm joint pos 6 rad
arm joint vel 6 rad / s
finger joint pos 3 rad
finger joint vel 3 rad / s
finger touch 3 N
TCP pos 3 m

Table 2. Object feature observations, used in the default simulation
experiments. For the pixel experiments these observations are not
used. The pose of the objects is represented as world coordinate
position and quaternions. In the table m denotes meters, q refers
to a quaternion which is in arbitrary units (au).

Entry dimensions unit

object i pose 7 m au
object i velocity 6 m/s, dq/dt
object i relative pos 3 m

9 joints (6 arm joints and 3 finger joints). All experiments
run on episodes with 360 steps length (which gives a total
simulated real time of 18 seconds per episode). For the
SAC-X experiments we schedule 2 intentions each episode,
holding the executed intention fixed for 180 steps.

For the feature based experiments in simulation we make
use of the proprioceptive features that the Jaco robot can
deliver (see Table 1). In addition, for the default simulation
experiments, we use features from the objects in the scene,
that are computed directly in simulation (see table 2). This
gives a total of 56 observation entries. For the cleanup
experiment, we add the lid angle and lid angle velocity,
which gives a total of 58 observations for this experiment.
For the pixel experiments, we use two RGB cameras with
an resolution of 48 x 48 (see table 3) in combination with
the proprioceptive features (table 1).

https://youtu.be/mPKyvocNe_M

Learning by Playing

Table 3. Pixel observations that replace the object observations of
table 2 for the pixel experiments.

Entry dimensions unit

camera 1 48 x 48 x 3 rgb
camera 2 48 x 48 x 3 rgb

A.1.1. AUXILIARY REWARD OVERVIEW

We use a basic set of general auxiliary tasks for our experi-
ments. Dependent on the type and number of objects in the
scene the number of available auxiliary tasks can vary.

• TOUCH, NOTOUCH: Maximizing or minimizing the
sum of touch sensor readings on the three fingers of
the Jaco hand. (see Eq. 12 and Eq. 13)

• MOVE(i): Maximizing the translation velocity sensor
reading of an object. (see Eq. 11)

• CLOSE(i,j): distance between two objects is smaller
than 10cm (see Eq. 1)

• ABOVE(i,j): all points of object i are above all points
of object j in an axis normal to the table plane (see Eq.
2)

• BELOW(i,j): all points of object i are below all points
of object j in an axis normal to the table plane (see Eq.
6)

• LEFT(i,j): all points of object i are bigger than all
points of object j in an axis parallel to the x axes of the
table plane (see Eq. 4)

• RIGHT(i,j): all points of object i are smaller than all
points of object j in an axis parallel to the x axes of the
table plane (see Eq. 7)

• ABOVECLOSE(i,j), BELOWCLOSE(i,j), LEFT-
CLOSE(i,j), RIGHTCLOSE(i,j): combination of
relational reward structures and CLOSE(i,j) (see Eq. 3,
8, 5, 9)

• ABOVECLOSEBOX(i): ABOVECLOSE(i,box object)

We define the auxiliary reward structures, so that we can - in
principle - compute all the required information from one or
two image planes (two cameras looking at the workspace).
Replacing the world coordinates referenced above with pixel
coordinates.

In the following equations a definition of all rewards is
given. Let d(oi, oj) be the distance between the center of
mass of the two objects, maxa(oi) and mina(oi) denote the

maximal (or minimal) pixel locations covered by object i in
axis a ∈ {x, y, z}.

rC(i,j)(s,a) =

{
1 iff d(oi, oj) ≤ 10cm

0 else,
(1)

rA(i,j)(s,a) =

{
1 iff maxz(oj)−minz(oi) ≤ 0

0 else,
(2)

rAC(i,j)(s,a) = rA(i,j)(s,a) ∗ rC(i,j)(s,a) (3)

rL(i,j)(s,a) =

{
1 iff maxx(oj)−minx(oi) ≤ 0

0 else,
(4)

rLC(i,j)(s,a) = rL(i,j)(s,a) ∗ rC(i,j)(s,a) (5)

rB(i,j)(s,a) = rA(j,i)(s,a) (6)
rR(i,j)(s,a) = rL(j,i)(s,a) (7)

rBC(i,j)(s,a) = rAC(j,i)(s,a) (8)
rRC(i,j)(s,a) = rLC(j,i)(s,a) (9)

(10)

In addition to these ’object centric’ rewards, we define
MOVE, TOUCH and NOTOUCH as:

rMOVE(i)(s,a) =

{
|v(oi)| iff |v(oi)| ≥ 3mms
0 else,

(11)

rT (i)(s,a) =

{
|
∑
i∈1,2,3 fi| iff |

∑
i∈1,2,3 fi| ≤ 1N

1 else,
(12)

rNT (i,j)(s,a) =

{
1 iff rT (i)(s,a) ≤ 0.1

0 else,
(13)

Two objects were used in the experiments, yielding a set of
13 general auxiliary rewards that are used in all simulation
experiments.

Learning by Playing

A.1.2. EXTERNAL TASK REWARDS

For the extrinsic or task rewards we use the notion of
STACK(i), for a sparse reward signal that describes the
property of an object to be stacked. As a proxy in simula-
tion we use the collision points of different objects in the
scene to determine this reward. where col(oi, oj) = 1 if
object i and j in simulation do have a collision – 0 otherwise.
We can derive a simple sparse reward from these signals as

rSTACK(i)(s,a) =

1 iff (1− col(GROUND, oi))
∗(1− col(ROBOT, oi))
∗col(oj , oi) = 0

0 else.
(14)

For the cleanup experiments we use an additional auxiliary
reward for each object, ABOVE CLOSE BOX (ACB), that
accounts for the relation between the object and the box:

rACB(i)(s,a) = rAC(i,BOX)(s,a). (15)

As additional extrinsic reward, we use a sparse INBOX(i)
reward signal, that gives a reward of one if the object i is
in the box; INBOXALL, that gives a signal of 1 only if all
objects are in the box; and a OPENBOX, which yields a
sparse reward signal when the lid of the box is lifted higher
then a certain threshold,

rINBOX(i)(s,a) =

{
1 iff oi is in box
0 else,

(16)

rINBOXALL(s,a) =

{
1 iff all objects in box
0 else,

(17)

rOPENBOX(s,a) =

{
1 iff θlid ≥ 1.5

0 else,
(18)

This gives 15 auxiliary reward signals and 4 extrinsic reward
signals for the cleanup experiment.

A.2. Real Robot

On the real robot we use a slightly altered set of auxiliary re-
wards to account for the fact that the robot does not possess
touch sensors (so TOUCH and NOTOUCH cannot be used).
Additionally, a distance based reward for reaching is added
to reduce the amount of training time needed. For the pick
up experiment we used the following rewards: OPENED,
CLOSED, LIFTED(block) and AT(hand,block), defined as:

• OPENED, CLOSED: maximal if the angle of the finger
motors, θfingers ∈ [0.0, 0.8], is close to its minimum
respectively maximum value. (see Eq. 19 and 20)

• LIFTED(i): maximal if the lowest point of object i is at
a height of 7.5cm above the table, with a linear shaping
term below this height. (see Eq. 21)

• AT(i, j): similar to CLOSE(i,j) in simulation but requir-
ing objects to be closer; maximal if the centers of i and
j are within 2cm of each other; additionally uses a non-
linear shaping term when further apart. (equivalent to
CLOSE1cm(i,j) in Eq. 22)

The rewards are defined as followed:

rOPENED(s,a) =

{
1 iff θfingers ≤ 0.1

0 else,
(19)

rCLOSED(s,a) =

{
1 iff θfingers ≥ 0.7

0 else,
(20)

rLIFTED(i)(s,a) =

1.5 iff minz(i) > 7.5cm

0. iff minz(i) < 0.5cm
minz(i)

7.5 else,
(21)

For all other rewards based on the relation between two
entities i and j, we use a shaped variant of CLOSE that
is parametrized by a desired distance ε. Let d(i, j) be the
distance between the center i and some target site j.

rCLOSEx(i,j)(s,a) =

{
1.5 iff d(i, j) < ε

1− tanh2(d(i,j)10) else,
(22)

In an extended experiment, the agent is trained to bring the
object to a specified target position, as well as to hover it
above it. For this, we added several more rewards based on
a fixed target site.

• CLOSE(i, j), AT(i, j): maximal if the center of object
i is within 10cm respectively 1.5cm of the target j.
(equivalent to CLOSE10cm(i,j) and CLOSE1.5cm(i,j)
in Eq. 22)

• ABOVE CLOSE(i, j), ABOVE AT(i, j): maximal if
the center of object i is within 10cm respectively
2cm of a site 6cm above the target j. (equivalent to
CLOSE10cm(i,j+6cm) and CLOSE2cm(i,j+6cm) in Eq.
22)

Learning by Playing

B. Additional model details
For the SAC-X experiments we use a shared network archi-
tecture to instantiate the policy for the different intentions.
The same basic architecture is also used for the critic Q value
function. Formally, θ and φ in the main paper thus consist of
the parameters of these two neural networks (and gradients
for individual intentions wrt. these model parameters are
averaged).

In detail: the stochastic policy consists of a layer of 200 hid-
den units with ELU units (Clevert et al., 2015), that is shared
across all intentions. After this first layer a LayerNorm (Ba
et al., 2016) is placed to normalize activations (we found this
to generally be beneficial when switching between differ-
ent environments that have differently scaled observations).
The LayerNorm output is fed to a second shared layer with
200 ELU units. The output of this shared stack is routed to
blocks of 100 and 18 ELU units followed by a final tanh ac-
tivation. This output determines the parameters for a normal
distributed policy with 9 outputs (whose variance we allow
to vary between 0.3 and 1 by transforming the correspond-
ing tanh output accordingly). For the critic we use the same
architecture, but with 400 units per layer in the shared part
and a 200-1 head for each intention. Figure 1 shows a de-
piction of this model architecture (where intention 0 would
correspond to the main task). For the pixel based experi-
ments a CNN stack consisting of two convolutional layers
(16 feature maps each, with a kernel size of 3 and stride 2)
processes two, stacked, input images of 48 x 48 pixels. The
output of this stack is fed to a 200 dimensional linear layer
(again with ELU activations) and concatenated to the output
of the first layer in the above described architecture (which
now only processes proprioceptive information).

The intentions are 1 hot encoded and select which head of
the network is active for the policy and the value function.
Other network structures (such as feeding the selected in-
tention into the network directly) worked in general, but
the gating architecture described here gave the best results
– with respect to final task performance – in preliminary
experiments.

Training of both policy and Q-functions was performed
via ADAM (Kingma & Ba, 2015) using a learning rate of
2 · 10−4 (and default parameters otherwise). See also the
next section for details on the algorithm.

B.1. Stochastic Value Gradient for Learned Intentions

The following presents a detailed derivation of the stochas-
tic value gradient – Equation (9) in the main paper – for
learning the individual intention policies. Without loss of
generality, we assume Gaussian policies for all intentions
(as used in all our experiments). We can then first reparaeme-
terize the sampling process for policy at ∼ πθ(a|st, T) as

o
b

se
rv

a
ti

o
n

ta
sk

ID

2
0

0

2
0

0

1
0

0

1
8

ta
n
h

 +
 s

ca
le

n
o
rm

 d
is

tr

se
le

ct
io

n

la
y
e
r

n
o
rm

intention 0

1
0

0

1
8

ta
n
h

 +
 s

ca
le

intention n

...

p
o
lic

y

o
b

se
rv

a
ti

o
n

ta
sk

ID

4
0

0

4
0

0

2
0

0

1

se
le

ct
io

n

la
y
e
r

n
o
rm

intention 0

2
0

0

1

intention n

...

Q
-f

u
n
ct

io
n

a
ct

io
n

Figure 1. Schematics of the fully connected networks used to pa-
rameterize policy distribution and Q-functions for each intention.

gθ(st, εa), where εa is a random variable drawn from an ap-
propriately chosen base distribution. That is, for a Gaussian
policy we can use a normal distribution (Kingma & Welling,
2014; Rezende et al., 2014) εa ∼ N (0, I), with I denoting
the identity matrix. More precisely, let ∼ πθ(a|st, T) =
N (µθ(st), σ

2
θ(st)), then gθ(st, εa) = µθ(st) + σθ(st) ∗ εa.

With this definition in place we can re-write the gradient as

∇θL(θ)

≈
∑
T ∈T
τ∼B

∇θE
πθ(·|st,T)

st∈τ

[
Q̂πT (st,a;φ) + α log πθ(a|st, T)

]
,

=
∑
T ∈T
τ∼B

E
εa∼N (0,I)

st∈τ

[
∇gQ̂πT (st, gθ(st, εa);φ)∇θgθ(st, εa)

+ α∇g log πθ(g(st, εa)|st, T)∇θgθ(st, εa)
]
.

(23)

C. SAC-Q algorithm
To allow for fast experimentation we implement our algo-
rithm in a distributed manner, similar to recent distributed
off-policy implementations from the literature (Gu et al.,
2017; Horgan et al., 2018). In particular, we perform asyn-
chronous learning and data acquisition in the following way:
Except for the real world experiment, in which only a single
robot – one actor connected to 10 learners – is used, we
launch 36 actor processes that gather experience. These
actors are connected to 36 learners (we used a simple 1-
to-1 mapping) and send experience over at the end of each
episode. To allow for fast learning of the scheduling choices
each actor also performs Monte Carlo estimation of the
Scheduling rollouts (i.e. it keeps its own up-to-date sched-
uler). The complete procedure executed by each actor is
given in Algorithm 3.

Learning by Playing

The learners then aggregate all collected experience inside
a replay buffer and calculate gradients for the policy and
Q-function networks, as described in Algorithm 2.

Each learner then finally sends gradients to a central pa-
rameter server, that collects G = 36 gradients, updates the
parameters and makes them available for both learners and
actors; see the algorithm listing in Algorithm 1.

Note that this setup also makes experimentation on a real
robot easy, as learning and acting (the part of the procedure
that needs to be executed on the real robot) are cleanly
separated.

Algorithm 1 SAC-Q (parameter server)
Input: G number of gradients to average
Initialize parameters θ, φ
while True do

initialize N = 0
initialize gradient storage dθ = {}, dφ = {}
while N < G do

receive next gradients from learner i
dTφ = dTφ ∪ {δφi}
dθ = dθ ∪ {δθi}

end while
update parameters with averages from gradient store:
φ = ADAM update(φ, 1

|dφ|
∑
δφ∈dφ δφ)

θ = ADAM update(θ, 1
|dθ|

∑
δθ∈dθ δθ)

send new parameters to workers
end while

Algorithm 2 SAC-Q (learner)
Input: Nlearn number of learning iterations, α entropy
regularization parameter Fetch initial parameters θ, φ
initialize N = 0
while N < Nlearn do

update replay buffer B with received trajectories
for k=0,1000 do

sample a trajectory τ from B
// compute gradients for policy and Q
δφ = 1

|T|
∑
T ∈T∇φL(φ)

δθ = ∇θL(θ)
send (δθ, δφ) to parameter server
wait for parameter updates
fetch new parameters φ, θ

end for
// update target networks
φ′ = φ, θ′ = θ
N = N + 1

end while

Algorithm 3 SAC-Q (actor)
Input: Ntrajectories number of total trajectories requested,
T steps per episode, ξ scheduler period
initialize N = 0
// Initialize Q-table
∀Th, T0:h−1 : Q(T0:h−1, Th) = 0, MTh = 0
while N < Ntrajectories do

fetch parameters θ
// collect new trajectory from environment
τ = {}, h = 0
for t=0,T do

if t (mod ξ) ≡ 0 then
Th ∼ PS(T |T0:h−1)
h = h+ 1

end if
at ∼ πθ(a0|st, Th)
// execute action and collect all rewards
r̄ = [rA1

(st,at), . . . , r|A|(st,at), rM(st,at)]
τ ← τ ∪ {(st,at, r̄, πθ(a0|st, Th))}

end for
send τ and schedule decisions T0:H to learner
// update Monte Carlo Q for schedulerPS
for h=0:H do
MTh = MTh + 1

Q(T0:h−1, Th) +=
RτM(Th:H)−Q(T0:h−1,Th)

M
end for
N = N + 1

end while

Learning by Playing

D. Additional Experiment Results
D.0.1. A DETAILED LOOK AT THE SAC-Q LEARNING

PROCESS

In Figure 2 we show the reward statistics over the full set
of auxiliary and extrinsic tasks for both SAC-U (left) and
SAC-Q (right) when learning the stacking task. While our
main goal is to learn the extrinsic stacking task, we can
observe that the SAC-X agents are able to learn all auxiliary
intentions in parallel. In this example we use a set of 13
auxiliary intentions which are defined on the state of the
robot and the two blocks in the scene as in Section A.1.1.
These are TOUCH, NOTOUCH, MOVE(1), MOVE(2),
CLOSE(1,2), ABOVE(1,2), BELOW(1,2), LEFT(1,2),
RIGHT(1,2), ABOVECLOSE(1,2), BELOWCLOSE(1,2),
LEFTCLOSE(1,2), RIGHTCLOSE(1,2). In addition we have
the extrinsic reward, which is defined as STACK(1) in this
case. SAC-U (shown in the top part of the figure) will exe-
cute all intentions in a uniform order. Some of the intention
goals (such as for NOTOUCH, WEST, EAST) can be valid
starting states of an episode and will see their reward signals
very early in the learning process. Other reward signals,
such as MOVE and TOUCH, are more difficult to learn and
will lead to rich interaction with the environment which are,
in turn, a requirement for learning even more difficult inten-
tions. In this example, after NORTH and NORTHCLOSE
are learned, PILE(1) can be learned reliably as well.

0 1000 2000 3000 4000 5000 6000 7000 8000
TOUCH

NOTOUCH
MOVE(1)
MOVE(2)

CLOSE(1,2)
ABOVE(1,2)
BELOW(1,2)

LEFT(1,2)
RIGHT(1,2)

ABOVECLOSE(1,2)
BELOWCLOSE(1,2)

LEFTCLOSE(1,2)
RIGHTCLOSE(1,2)

STACK(1)

0 1000 2000 3000 4000 5000 6000 7000 8000
TOUCH

NOTOUCH
MOVE(1)
MOVE(2)

CLOSE(1,2)
ABOVE(1,2)
BELOW(1,2)

LEFT(1,2)
RIGHT(1,2)

ABOVECLOSE(1,2)
BELOWCLOSE(1,2)

LEFTCLOSE(1,2)
RIGHTCLOSE(1,2)

STACK(1)

Figure 2. Comparison of full auxiliary and extrinsic set of inten-
tions learned of SAC-U (top) and SAC-Q (bottom) over the training
process. The x axis is episodes per actor and the color intensity
encodes the obtained reward for each depicted intention.

The SAC-Q agent in contrast tries to select only auxiliary
tasks that will help to collect reward signals for the extrinsic
intentions. In the bottom plot in Figure 2, we can see that
by ignoring the auxiliaries MOVE(2), SOUTH and SOUTH-
CLOSE, SAC-Q manages to learn the extrinsic task faster.

The learned distribution of Q values at the end of training
can also be seen in Figure 3 (plotted for pairs of executed
intentions). We can observe that executing the sequence
(STACK(1), STACK(1)), gives the highest value, as expected.
But SAC-Q also found other sequences of intentions that
will help to collect reward signals for STACK(1).

T
O

U
C

H

N
O

T
O

U
C

H

M
O

V
E
(1

)

M
O

V
E
(2

)

C
LO

S
E
(1

,
2

)

A
B

O
V

E
(1

,
2

)

B
E
LO

W
(1

,
2

)

LE
FT

(1
,

2
)

R
IG

H
T
(1

,
2

)

A
B

O
V

E
C

LO
S
E
(1

,
2

)

B
E
LO

W
C

LO
S
E
(1

,
2

)

LE
FT

C
LO

S
E
(1

,
2

)

R
IG

H
T
C

LO
S
E
(1

,
2

)

S
T
A

C
K

(1
)

TOUCH

NOTOUCH

MOVE(1)

MOVE(2)

CLOSE(1, 2)

ABOVE(1, 2)

BELOW(1, 2)

LEFT(1, 2)

RIGHT(1, 2)

ABOVECLOSE(1, 2)

BELOWCLOSE(1, 2)

LEFTCLOSE(1, 2)

RIGHTCLOSE(1, 2)

STACK(1)

Figure 3. SAC-Q learned Q value distribution for the scheduler.
We plot the Q-values after training for pairs of executed intentions.
That is, the Q value after first executing the intention denoted
by the row names and then executing the intention denoted by
the column name. Lighter colors here indicate a higher extrinsic
stacking reward.

A full set of plots for the clean-up tasks is also shown in
Figures 4 to 7, comparing the SAC-U and SAC-Q results
over all auxiliaries and extrinsic tasks. While SAC-Q and
SAC-U both learn all tasks, only SAC-Q manages to learn
the most difficult sparse clean-up task. As shown in the
plots, the learned scheduler is more efficient in learning
the auxiliaries, as well as the extrinsic tasks, at least in the
beginning of the learning process. In later stages, SAC-Q
will try to concentrate on intentions that will help it solve
the extrinsic tasks, and therefore may disregard some of the
less important auxiliaries (e.g. CLOSE(1,2)).

Learning by Playing

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

20

40

60

80

100

120

cu
m

.
to

u
ch

SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

50

100

150

cu
m

.
n
o
 t

o
u
ch

SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

20

40

60

80

cu
m

.
n
o
 m

o
v
e
 1

SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

10

20

30

40

50

60

70

cu
m

.
n
o
 m

o
v
e
 2

SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

50

100

150

cu
m

.
cl

o
se

(1
,2

)

SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

50

100

150

cu
m

.
a
b
o
v
e
(1

,2
)

SAC-Q

SAC-U

Figure 4. Cleanup experiment, SAC-Q learns all six extrinsic tasks
reliably. In addition it reliably learns also to solve the 15 auxiliary
tasks in parallel. Part 1: auxiliaries 1-6.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0
20
40
60
80

100
120
140

cu
m

.
b
e
lo

w
(1

,2
) SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

50

100

150

cu
m

.
le

ft
(1

,2
)

SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

50

100

150

cu
m

.
ri

g
h
t(

1
,2

)

SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0
20
40
60
80

100
120
140

cu
m

.
a
b
o
v
e
 c

lo
se

(1
,2

)

SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0
20
40
60
80

100
120
140

cu
m

.
b
e
lo

w
 c

lo
se

(1
,2

)

SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

20

40

60

80

100

120

140

cu
m

.
le

ft
 c

lo
se

(1
,2

) SAC-Q

SAC-U

Figure 5. Cleanup experiment, SAC-Q learns all six extrinsic tasks
reliably. In addition it reliably learns also to solve the 15 auxiliary
tasks in parallel. Part 2: auxiliaries 7-12.

Learning by Playing

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

20

40

60

80

100

120

140

cu
m

.
ri

g
h
t

cl
o
se

(1
,2

) SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

20

40

60

80

100

120

140

cu
m

.
a
b
o
v
e
 b

o
x
 c

(1
) SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

20

40

60

80

100

120

140

cu
m

.
a
b
o
v
e
 b

o
x
 c

(2
) SAC-Q

SAC-U

Figure 6. Cleanup experiment, SAC-Q learns all six extrinsic tasks
reliably. In addition it reliably learns also to solve the 15 auxiliary
tasks in parallel. Part 3: auxiliaries 13-15.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

50

100

150

cu
m

.
o
p
e
n
 b

o
x

SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

20

40

60

80

100

120

140

cu
m

.
in

b
o
x
(1

)

SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

20

40

60

80

100

120

140

cu
m

.
in

b
o
x
(2

)

SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

20

40

60

80

100

120

140

cu
m

.
st

a
ck

(1
)

SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

20

40

60

80

100

120

140

cu
m

.
st

a
ck

(2
)

SAC-Q

SAC-U

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
episodes/actor 1e4

0

20

40

60

80

100

cu
m

.
in

b
o
x
 a

ll

SAC-Q

SAC-U

Figure 7. Cleanup experiment, SAC-Q learns all six extrinsic tasks
reliably. In addition it reliably learns also to solve the 15 auxiliary
tasks in parallel. Part 4: extrinsic tasks.

Learning by Playing

References
Ba, L. J., Kiros, R., and Hinton, G. E. Layer normalization. CoRR,

arXiv:abs/1607.06450, 2016.

Clevert, D., Unterthiner, T., and Hochreiter, S. Fast and accurate
deep network learning by exponential linear units (elus). CoRR,
arXiv:abs/1511.07289, 2015.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. Deep reinforcement
learning for robotic manipulation with asynchronous off-policy
updates. In IEEE International Conference on Robotics and
Automation (ICRA), 2017.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M.,
van Hasselt, H., and Silver, D. Distributed prioritized experience
replay. 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimiza-
tion. In International Conference on Learning Representations
(ICLR), 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational bayes.
In The International Conference on Learning Representations
(ICLR), 2014.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic back-
propagation and approximate inference in deep generative mod-
els. In Proceedings of the 31st International Conference on
Machine Learning (ICML), 2014.

