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1. Compare Methods for Approximating a
Gaussian Mixture Entropy

1.1. Method 1: Taylor Expansion

Huber et al. (2008) propose a novel method for approximat-
ing the entropy of a Gaussian mixture model by using a
Taylor-series expansion of the logarithm of the Gaussian
mixture.

Let q(y) =
∑M
j wjN (y;mj , σ

2
j ). The Gaussians in

the mixture are univariate in our case because the function
value at a test location x is 1-D. The entropy of this mixture
is:

H [q(y)] = −
∫
q(y) log h(y)dy (1)

where h(y) = q(y) but we uses different notations to
differentiate the Gaussian mixture that’s argument of the
logarithm from that in front of the logarithm.

By expanding the logarithm term around the mean
of each Gaussian term mj in h(y), the resultant R-th order
Taylor series is

log h(y) =

R∑
k=0

(y −mj)
k

k!

dk
(
log h(y)

)
dyk

∣∣∣∣
y=mj

. (2)
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We then substitute equation 2 into equation 1 and obtain

H [q(y)] = −
∫
q(y) log h(y)dy

= −
∫ M∑

j

wjN (y;mj , σ
2
j ) log h(y)dy

= −
M∑
j

wj

R∑
k=0

1

k!

dk
(
log h(y)

)
dyk

∣∣∣∣
y=mj∫

N (y;mj , σ
2
j )(y −mj)

kdy

where
∫
N (y;mj , σ

2
j )(y −mj)

kdy is the k-th central mo-
ment of a Gaussian distribution and thus has a closed form
(Requeima, 2016). The k-th derivative of the logarithm of
Gaussian mixture h(y) can also be computed analytically
because the derivatives of a Gaussian distribution always
exist and Kronecker algebra can be used to achieve a
compact representation (Huber et al., 2008).

The entropy approximation by Taylor expansion faces
the trade-off between the accuracy and computational
burden as we can obtain more accurate approximations by
including higher order Taylor-series terms at the expense
of computational speed (Huber et al., 2008). Experiments
with this approximation approach are carried out with a
second-order Taylor-series expansion whose explicit form
is provided by the Appendix in (Huber et al., 2008):

H

 1

N

M∑
j=1

p(y|Dn,x, η
(j))


≈ H0[y] +H2[y]

= −
M∑
j=1

wj log h(mj)−
M∑
j=1

wjσ
2
j

2
F (mj)

where

F (y) =h(y)−1
N∑
i=1

wiσ
−2
i [h(y)−1(y − µi)h′(y)

+ σ−2i (y − µi)2 − 1]N (y;µi, σ
2
i ).
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1.2. Method 2: Numerical Integration

As mentioned before, one advantage of FITBO method is
that it allows us to transform the entropy calculation from
the multi-dimensional input space to the one-dimensional
output space. This, thus, permits the use of numerical inte-
gration techniques to effectively compute the entropy of a
Gaussian mixture. Experiments with numerical integration
are performed with the quad function in MATLAB which
utilises the adaptive Simpson quadrature.

1.3. Method 3: Simple Monte Carlo

Let p(y|I(j)) denotes p(y|Dn,x, η
(j)). The first term in

our FITBO acquisition function can be reformulated in the
following way:

H

 M∑
j

wjp(y|I(j))


=−

∫  M∑
j

wjp(y|I(j))

 log

 M∑
j

wjp(y|I(j))

 dy

=−
M∑
j

wj

∫
p(y|I(j)) log

 M∑
j

wjp(y|I(j))

 dy

where wj = 1
N in our case. By drawing N samples of

y from p(y|I(j)) and using Monte Carlo integration, the
entropy of a Gaussian mixture can be approximated as

H

 M∑
j

wjp(y|I(j))


≈ −

M∑
j

wj

 1

N

N∑
i

log

 M∑
j

wjp(y
(i)|I(j))

 (3)

The accuracy of the simple Monte Carlo approximation can
be enhanced by increasing the sample size M . But larger
number of samples will increase the computational burden.
Thus, we also face a trade-off between the approximation
precision and computational speed.

1.4. Experiments for Comparing Approximation
Methods

The following experiments are conducted to validate as
well as compare the three entropy approximation methods:
1) Huber’s method that uses Taylor series expansion
(Huber), 2) numerical integration that uses adaptive
Simpson quadrature (Quadra) and 3) the simple Monte
Carlo integration (MC). The approximation performance is
assessed in terms of accuracy and computational speed. The
optimal approximation method is then chosen based on the

trade-off between the accuracy and computational demand.

The methodology of the tests can be summarised as
follows:

1. Generate a Gaussian mixture as a weighted sum of N
1-D random Gaussian distributions

2. For the Gaussian mixture, estimate its true entropy by
using simple Monte Carlo method with large sample
size (e.g. MC50000 )

3. Use the 3 approximation methods to approximate
the entropy of the Gaussian mixture. For the
MC method, try it with different sample sizes (e.g.
MC10,MC100,MC1000)

4. Compute and record the running time as well as ab-
solute and fractional approximation errors for each
method.

5. Repeat the above processes for K different gaussian
mixtures and compute the median running time and the
median of the approximation errors.

Figure 1. Log median absolute error in approximating the entropy
of a Gaussian mixture.
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Figure 2. Log median fractional error in approximating the entropy
of a gaussian mixture

With reference to Figure 1 and 2, in the case of a single
Gaussian(N = 1) distribution, there is a closed-form ex-
pression for its entropy. The Huber’s method gives the
exact true entropy solution, thus having 0 approximation
error. The other 2 approximation methods (Quadra and MC)
are compared against the true entropy value. It is evident
that the approximation by Monte Carlo with 50000 samples
(MC50000) is very close to the true value, which justifies
our use of the approximation results of MC50000 as our
yardstick for the cases of more than one Gaussians in the
mixture.

For a mixture of more than one Gaussian distribution
(N > 1), the performances of all 3 approximation methods
(Huber, Quadra, MC) are compared against the entropy
value estimated by MC50000. The results in Figure 1
and 2 show that Monte Carlo with a sample size of 1000
(MC1000) produces the most accurate approximation in
terms of absolute and fractional approximation errors.
MC100 and quadrature (Quadra) also have relatively
accurate approximation with low absolute and frac-
tional error. The Huber method leads to the highest
approximation errors. This may be due to the low order (or-
der of 2) of Taylor-series expansion used in our experiments.

In Figure 3, the running times of all 3 approxima-
tion methods are compared. As expected, the results show
that the computation time increases as the number of
Gaussians in the mixture rises. This is mainly due to the
computation burden associated with the construction of the
Gaussian mixture. More importantly, the quadrature method
(Quadra) gains speed advantage as the number of gaussians
in the mixture increases because the computational cost of
approximation using quadrature does not increase with the
number of Gaussian components in the mixture. The speed

Figure 3. Compare the running times of the approximation meth-
ods.

advantage of the quadrature method becomes more salient
as we have more Gaussians in the mixture which is reflected
in the growing difference among the running times of these
methods. Since the number of gaussians in the mixture (N )
is determined by the number of hyperparameter samples we
use for marginalisation in our algorithm, if we want to use a
larger number of hyperparameter sets, we should adopt the
quadrature method for fast approximation of the Gaussian
mixture entropy at decent accuracy.

2. Compute the Derivative of the Acquisition
Function

The acquisition function of our FITBO approach has the
following form:

α(x|Dn) =H
[ 1

M

M∑
j

p(y|Dn,x,θ
(j), η(j))

]

− 1

2M

M∑
j

log
[
2πe
(
vf (x|D,θ(j), η(j)) + σ2

n

)]
(4)

where vf (x|D,θ(j), η(j)) = K
(j)
f (x,x′) =

m
(j)
g (x)K

(j)
g (x,x′)m

(j)
g (x′).

If the kernel function adopted is differentiable, we
can compute the derivative of α(x|Dn) with respect to xd,
the dth dimension of x, to facilitate the optimisation of the
acquisition function.

To simplify our notation, let G(y|x) =
1
M

∑M
j p(y|x,ψ(j)) = 1

M

∑M
j p(y|Dn,x,θ

(j), η(j))
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and vj(x) = vf (x|D,θ(j), η(j)) + σ2
n. The acquisition

function of FITBO then becomes:

α(x|Dn) = H
[
G(y|x)

]
− 1

2M

M∑
j

log
[
2πe
(
vj(x)

)]
.

2.1. Derivative of FITBO acquisition function

If we approximate the entropy of the Gaussian mixture
using numerical method, the derivative of α(x|Dn) can be
computed as follows:

∂α(x|Dn)

∂xd
=
∂
[
−
∫
G(y|x) logG(y|x)dy

]
∂xd

− 1

2M

M∑
j

∂ log
[
2πe
(
vj(x)

)]
∂xd

=
[
−
∫
∂G(y|x)
∂xd

+ logG(y|x)∂G(y|x)
∂xd

dy
]

− 1

2M

M∑
j

1

vj(x)

∂vj(x)

∂xd
(5)

The key partial derivative needs to solve is ∂G(y|x)
∂xd

and for
a 1D Gaussian mixture:

∂G(y|x)
∂xd

=
1

M

M∑
j

∂p(y|x,ψ(j))

∂xd

=
1

M

M∑
j

∂
(

1√
2πevj(x)

exp(− (y−mj(x))
2

2vj(x)
)
)

∂xd

=
1

M

M∑
j

[
− p(y|x,ψ(j))

1

2vj(x)

∂vj(x)

∂xd

+ p(y|x,ψ(j))
(y −mj(x))

2

2(vj(x))2
∂vj(x)

∂xd

+ p(y|x,ψ(j))
(y −mj(x))

vj(x)

∂mj(x)

∂xd

]
=

1

M

M∑
j

p(y|x,ψ(j))

[
(y −mj(x))

vj(x)

∂mj(x)

∂xd

+
( (y −mj(x))

2 − vj(x)
2(vj(x))2

)∂vj(x)
∂xd

]
(6)

Thus,
∫ ∂G(y|x)

∂xd
dy = 0 and the first derivative term in func-

tion 5 can be expanded in the following way:

−
∫
∂G(y|x)
∂xd

+ logG(y|x)∂G(y|x)
∂xd

dy

= −
∫

logG(y|x)∂G(y|x)
∂xd

dy

= −
∫

logG(y|x) 1

M

M∑
j

{

p(y|x,ψ(j))

[
(y −mj(x))

vj(x)

∂mj(x)

∂xd

+
( (y −mj(x))

2 − vj(x)
2(vj(x))2

)∂vj(x)
∂xd

]}
dy (7)

The derivative of the acquisition function then has the form:

∂α(x|Dn)

∂xd

=−
∫

logG(y|x) 1

M

M∑
j

{
p(y|x,ψ(j))

[
( (y −mj(x))

2 − vj(x)
2(vj(x))2

)∂vj(x)
∂xd

+
(y −mj(x))

vj(x)

∂mj(x)

∂xd

]}
dy

− 1

2M

M∑
j

1(
vj(x) + σ2

n

) ∂vj(x)
∂xd

(8)

where

∂mj(x)

∂xd
= m(j)

g (x)
∂m

(j)
g (x)

∂xd
, (9)

∂vj(x)

∂xd
=
∂K

(j)
g (x,x′)

∂xd

(
m(j)
g (x)

)2
+ 2K(j)

g (x,x′)m(j)
g (x)

∂m
(j)
g (x)

∂xd
(10)

and ∂mg(x)
∂xd

and ∂Kg(x,x
′)

∂xd
can be computed from the defini-

tion of the chosen kernel function.

2.2. Derivative of FITBO-MM acquisition function

A faster alternative to approximate the entropy of the Gaus-
sian mixture is to use simple moment-matching:

G(y|x) = 1

M

M∑
j

p(y|x,ψ(j)) ≈ N (y|mG(x), vG(x))

where

mG(x) =

M∑
j

1

M
mj(x)
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vG(x) =

M∑
j

1

M

(
vj(x) + (mj(x))

2
)
−
(
mG(x)

)2
.

This leads to an analytical form of the acquisition function:

α(x|Dn) ≈
1

2
log
[
2πe
(
vG(x)

)]
− 1

2M

M∑
j

log
[
2πe
(
vj(x)

)]
.

The derivative of the acquisition function then has a neat
analytical form:

∂α(x|Dn)

∂xd
=

1

2vG(x)

∂vG(x)

∂xd
− 1

2M

M∑
j

1

vj(x)

∂vj(x)

∂xd

where

∂vG(x)

∂xd
=

M∑
j

1

M

(∂vj(x)
∂xd

+ 2mj(x)
∂mj(x)

∂xd

)

− 2mG(x)
( M∑

j

1

M

∂mj(x)

∂xd

)

with ∂mj(x)
∂xd

and ∂vj(x)
∂xd

have the same expressions as equa-
tions 9 and 10.

3. The Acquisition Functions Obtained by
Numerical Integration and
Moment-matching

In this section, we compare the resultant acquisition func-
tions obtained by using (1) numerical integration (FITBO)
and (2) moment-matching (FITBO-MM) to approximate
Gaussian mixture entropy. Figure 4 shows the acquisition
function of FITBO-MM in comparison with those of FITBO
which use different tolerance levels (1e-3, 1e-4, 1e-6) for
numerical integration. We assume the acquisition function
obtained using numerical integration with a tolerance level
of 1e-6 (pink line in Figure 4) to be a fair representation
of the true value. It is evident that the moment-matching
method leads to a looser upper bound than numerical in-
tegration but the resultant acquisition function manages to
capture the true function shape quite well and recommend a
query point that is very close to the best numerical approxi-
mation.

Figure 4. Acquisition functions obtained using numerical integra-
tion and moment-matching approximation methods. The top plot
shows the objective function (red dotted line), the posterior mean
(black solid line) and the 95% confidence interval (blue shaded
area) estimated by the Gaussian process model as well as the ob-
servation points (black dot). The following three plots show the
acquisition function value of FITBO-MM and those of FITBO
with different tolerance level (1e-3, 1e-4, 1e-6) used for numeri-
cal integration.The next query points are recommended by max-
imising respective acquisition functions: FITBO-1e-3 (green dot),
FITBO-1e-4 (red dot), FITBO-1e-6 (pink dot) and FITBO-MM
(blue triangle). The acquisition functions are computed using 600
hyperparameter samples.
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