
Representation Tradeoffs for Hyperbolic Embeddings

Frederic Sala 1 Christopher De Sa 2 Albert Gu 1 Christopher Ré 1

Abstract
Hyperbolic embeddings offer excellent quality
with few dimensions when embedding hierarchi-
cal data structures. We give a combinatorial con-
struction that embeds trees into hyperbolic space
with arbitrarily low distortion without optimiza-
tion. On WordNet, this algorithm obtains a mean-
average-precision of 0.989 with only two dimen-
sions, outperforming existing work by 0.11 points.
We provide bounds characterizing the precision-
dimensionality tradeoff inherent in any hyperbolic
embedding. To embed general metric spaces, we
propose a hyperbolic generalization of multidi-
mensional scaling (h-MDS). We show how to per-
form exact recovery of hyperbolic points from
distances, provide a perturbation analysis, and
give a recovery result that enables us to reduce di-
mensionality. Finally, we extract lessons from the
algorithms and theory above to design a scalable
PyTorch-based implementation that can handle
incomplete information.

1. Introduction
Recently, hyperbolic embeddings have been proposed as
a way to capture hierarchy information for network and
natural language processing tasks (Nickel & Kiela, 2017;
Chamberlain et al., 2017). This approach is an exciting way
to fuse structural information (for example, from knowledge
graphs or synonym hierarchies) with the continuous repre-
sentations favored by modern machine learning methods.

To understand the intuition behind hyperbolic embeddings’
superior capacity, note that trees can be embedded with
arbitrarily low distortion into the Poincaré disk, a two-
dimensional model of hyperbolic space (Sarkar, 2011). In
contrast, Bourgain’s theorem (Linial et al., 1995) shows that
Euclidean space cannot achieve comparably low distortion
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for trees—even using an unbounded number of dimensions.

Many graphs, such as complex networks (Krioukov et al.,
2010), the Internet (Krioukov et al., 2009), and social net-
works (Verbeek & Suri, 2016), are known to have tree-like or
hyperbolic structure and thus befit hyperbolic embeddings.
Indeed, recent works show that hyperbolic representations
are suitable for many hierarchies (e.g. the question answer-
ing (Q/A) system HyperQA in Tay et al. (2018), vertex
classifiers in Chamberlain et al. (2017), and link prediction
(Nickel & Kiela, 2017)). However, the optimization prob-
lems underlying the embedding techniques in these works
are challenging, motivating us to seek fundamental insights
and to understand the subtle tradeoffs involved.

We begin by considering the case where we are given an
input graph that is a tree or nearly tree-like, and our goal is
to produce a low-dimensional hyperbolic embedding that
preserves all distances. This leads to a simple combinatorial
strategy that directly places points instead of minimizing a
surrogate loss function. It is both fast (nearly linear time)
and has formal quality guarantees. The approach proceeds
in two phases: we (1) produce an embedding of a graph into
a weighted tree, and (2) embed that tree into the hyperbolic
disk. In particular, we consider an extension of an elegant
embedding of trees into the Poincaré disk by Sarkar (2011)
and work on low-distortion graph embeddings into tree
metrics (Abraham et al., 2007). For trees, this approach has
nearly perfect quality. On the WordNet hypernym graph
reconstruction, it obtains a nearly perfect mean average
precision (MAP) of 0.989 using just 2 dimensions. The best
published numbers for WordNet in Nickel & Kiela (2017)
range between 0.823 and 0.87 for 5 to 200 dimensions.

We analyze this construction to extract fundamental trade-
offs. One tradeoff involves the embedding dimension, the
properties of the graph, and the number of bits of preci-
sion used to represent components of embedded points—an
important hidden cost. We show that for a fixed precision,
the dimension required scales linearly with the length of
the longest path. On the other hand, the dimension scales
logarithmically with the maximum degree of the tree. This
suggests that hyperbolic embeddings should have high qual-
ity on hierarchies like WordNet but require large dimensions
or high precision on graphs with long chains.

To understand how hyperbolic embeddings perform for met-
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rics that are far from tree-like, we consider a more general
problem: given a matrix of distances that arise from points
that are embeddable in hyperbolic space of dimension d (not
necessarily from a graph), find a set of points that produces
these distances. In Euclidean space, the problem is known
as multidimensional scaling (MDS) and is solvable using
PCA. A key step is a transformation that effectively centers
the points, without knowledge of their exact coordinates.
It is not obvious how to center points in hyperbolic space,
which is curved. We show that in hyperbolic space, a center-
ing operation is still possible with respect to a non-standard
mean. In turn, this allows us to reduce the hyperbolic MDS
problem (h-MDS) to a standard eigenvalue problem that can
be solved with power methods. We also extend classical
PCA perturbation analysis (Sibson, 1978; 1979). When ap-
plied to distances from graphs induced by real data, h-MDS
obtains low distortion on far from tree-like graphs. However,
we observe that these solutions may require high precision,
which is not surprising in light of our previous analysis.

Finally, we handle increasing amounts of noise in the model,
leading naturally into new SGD-based formulations. Like in
traditional PCA, the underlying problem is nonconvex. In
contrast to PCA, there are local minima that are not global
minima—an additional challenge. Our main technical result
is that an SGD-based algorithm initialized with an h-MDS
solution can recover the submanifold the data is on—even
in some cases in which the data is perturbed by noise that
can be full dimensional. Our algorithm essentially provides
new recovery results for convergence of Principal Geodesic
Analysis (PGA) in hyperbolic space. We implemented the
resulting SGD-based algorithm using PyTorch. Finally, we
note that all of our algorithms can handle incomplete dis-
tance information through standard techniques.

2. Background
We provide intuition connecting hyperbolic space and tree
distances, discuss the metrics used to measure embedding
fidelity, and discuss the relationship between the reconstruc-
tion and learning problems for graph embeddings.

Hyperbolic spaces The Poincaré disk H2 is a two-
dimensional model of hyperbolic geometry with points lo-
cated in the interior of the unit disk, as shown in Figure 1.
A natural generalization of H2 is the Poincaré ball Hr, with
elements inside the unit ball. The Poincaré models offer
several useful properties, chief among which is mapping
conformally to Euclidean space. That is, angles are pre-
served between hyperbolic and Euclidean space. Distances,
on the other hand, are not preserved, but are given by

dH(x, y) = acosh
(

1 + 2
‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
.

There are some potentially unexpected consequences of
this formula, and a simple example gives intuition about
a key technical property that allows hyperbolic space to
embed trees. Consider three points inside the unit disk:
the origin 0, and points x and y with ‖x‖ = ‖y‖ = t
for some t > 0. As shown on the right of Figure 1, as
t → 1 (i.e., the points move towards the outside of the
disk), in flat Euclidean space, the ratio dE(x,y)

dE(x,0)+dE(0,y) is
constant with respect to t (blue curve). In contrast, the ratio

dH(x,y)
dH(x,0)+dH(0,y) approaches 1, or, equivalently, the distance
dH(x, y) approaches dH(x, 0) + dH(0, y) (red and pink
curves). That is, the shortest path between x and y is almost
the same as the path through the origin. This is analogous to
the property of trees in which the shortest path between two
sibling nodes is the path through their parent. This tree-like
nature of hyperbolic space is the key property exploited by
embeddings. Moreover, this property holds for arbitrarily
small angles between x and y.

Lines and geodesics There are two types of geodesics
(shortest paths) in the Poincaré disk model: segments of
circles that are orthogonal to the disk surface, and disk di-
ameters (Brannan et al., 2012). Our algorithms and proofs
make use of a simple geometric fact: isometric reflection
across geodesics (preserving hyperbolic distances) is repre-
sented in this Euclidean model as a circle inversion.

Embeddings and fidelity measures An embedding is a
mapping f : U → V for spaces U, V with distances dU , dV .
We measure the quality of embeddings with several fidelity
measures, presented here from most local to most global.

Recent work (Nickel & Kiela, 2017) proposes using the
mean average precision (MAP). For a graph G = (V,E),
let a ∈ V have neighborhood Na = {b1, b2, . . . , bdeg(a)},
where deg(a) denotes the degree of a. In the embedding f ,
consider the points closest to f(a), and define Ra,bi to be
the smallest set of such points that contains bi (that is, Ra,bi
is the smallest set of nearest points required to retrieve the
ith neighbor of a in f ). Then, the MAP is defined to be

MAP(f) =
1

|V |
∑
a∈V

1

deg(a)

|Na|∑
i=1

|Na ∩Ra,bi |
|Ra,bi |

.

We have MAP(f) ≤ 1, with 1 as the best case. MAP is not
concerned with explicit distances, but only ranks between
the distances of immediate neighbors. It is a local metric.

The standard metric for graph embeddings is distortion D.
For an n point embedding,

D(f) =
1(
n
2

)
 ∑
u,v∈U :u6=v

|dV (f(u), f(v))− dU (u, v)|
dU (u, v)

 .
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Figure 1. Left: Embedding of a binary tree in the Poincaré disk. Right: Geodesics and distances. As x and y move towards the outside of
the disk (i.e., letting ‖x‖, ‖y‖ → 1), the distance dH(x, y) approaches dH(x,O) + dH(O, y).

The best distortion isD(f) = 0, preserving the edge lengths
exactly. This is a global metric, as it depends directly on
the underlying distances rather than the local relationships
between distances. A variant is the worst-case distortion
Dwc, defined by

Dwc(f) =
maxu,v∈U :u6=v dV (f(u), f(v))/dU (u, v)

minu,v∈U :u6=v dV (f(u), f(v))/dU (u, v)
.

That is, the wost-case distortion is the ratio of the maximal
expansion and the minimal contraction of distances. Note
that scaling the unit distance does not affect Dwc. The best
worst-case distortion is Dwc(f) = 1.

Reconstruction and learning If we lack a full set of dis-
tances, we can either use the triangle inequality to recover
the missing distances, or we can access the scaled Euclidean
distances (the inside of the acosh in dH(x, y)), and ap-
ply standard matrix completion techniques (Candes & Tao,
2010). Then we compute an embedding using any of the
approaches discussed in this paper. We quantify the error
introduced by this process experimentally in Section 5.

3. Combinatorial Constructions
We first focus on hyperbolic tree embeddings—a natural
approach considering the tree-like behavior of hyperbolic
space. We review the embedding of Sarkar (2011). We then
provide novel analysis on the precision, revealing funda-
mental limits of hyperbolic embeddings. In particular, we
characterize the bits of precision needed for hyperbolic rep-
resentations. We extend the construction to r dimensions,
and propose to use Steiner nodes to better embed general
graphs as trees, building on Abraham et al. (2007).

Embedding trees The nature of hyperbolic space lends
itself towards excellent tree embeddings. In fact, it is possi-
ble to embed trees into the Poincaré disk H2 with arbitrarily
low distortion (Sarkar, 2011). Remarkably, trees cannot be
embedded into Euclidean space with arbitrarily low distor-
tion for any number of dimensions. These notions motivate
the following two-step process for embedding hierarchies

into hyperbolic space: (1) embed the graphG = (V,E) into
a tree T , and (2) embed T into the Poincaré ball Hd. We
refer to this process as the combinatorial construction. Note
that we are not required to minimize a loss function. We
begin by describing the second stage, where we extend an
elegant construction from Sarkar (2011).

3.1. Sarkar’s Construction

Algorithm 1 performs an embedding of trees into H2. The
inputs are a scaling factor τ and a node a (of degree deg(a))
from the tree with parent node b. Say a and b have already
been embedded into f(a) and f(b) in H2. The algorithm
places the children c1, c2, . . . , cdeg(a)−1 into H2.

A two-step process is used. First, f(a) and f(b) are re-
flected across a geodesic (using circle inversion) so that
f(a) is mapped onto the origin 0 and f(b) is mapped onto
some point z. Next, we place the children nodes to vec-
tors y1, . . . , yd−1 equally spaced around a circle with radius
eτ−1
eτ+1 (which is a circle of radius τ in the hyperbolic metric),
and maximally separated from the reflected parent node
embedding z. Lastly, we reflect all of the points back across
the geodesic. The isometric properties of reflections imply
that all children are now at hyperbolic distance exactly τ
from f(a). To embed the entire tree, we place the root at the
origin O and its children in a circle around it (as in Step 5
of Algorithm 1), then recursively place their children until
all nodes have been placed. This process runs in linear time.

3.2. Analyzing Sarkar’s Construction

Sarkar’s construction works by separating children suffi-
ciently in hyperbolic space. A key technical idea is to scale
all the edges by a factor τ before embedding. We can then
recover the original distances by dividing by τ . This trans-
formation exploits the fact that hyperbolic space is not scale
invariant. Sarkar’s construction always captures neighbors
perfectly, but Figure 1 implies that increasing the scale pre-
serves the distances between farther nodes better. Indeed,
if one sets τ = 1+ε

ε

(
2 log degmax

π/2

)
, then the worst-case

distortion D of the resulting embedding is no more than
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Algorithm 1 Sarkar’s Construction
1: Input: Node a with parent b, children to place
c1, c2, . . . , cdeg(a)−1, partial embedding f containing
an embedding for a and b, scaling factor τ

2: (0, z)← reflectf(a)→0(f(a), f(b))
3: θ ← arg(z) {angle of z from x-axis in the plane}
4: for i ∈ {1, . . . ,deg(a)− 1} do
5: yi ← eτ−1

eτ+1 ·
(

cos
(
θ + 2πi

deg(a)

)
, sin

(
θ + 2πi

deg(a)

))
6: (f(a), f(b), f(c1), . . . , f(cdeg(a)−1)) ←

reflect0→f(a)(0, z, y1, . . . , ydeg(x)−1)
7: Output: Embedded H2 vectors f(c1), f(c2), . . . ,
f(cdeg(a)−1)

1 + ε. For trees, Sarkar’s construction has arbitrarily high
fidelity. However, this comes at a cost: the scaling τ affects
the bits of precision required. In fact, we will show that
the precision scales logarithmically with the degree of the
tree—but linearly with the maximum path length.

How many bits of precision do we need to represent points
in H2? If x ∈ H2, then ‖x‖ < 1, so we need sufficiently
many bits so that 1− ‖x‖ will not be rounded to zero. This
requires roughly − log(1− ‖x‖) = log 1

1−‖x‖ bits. Say we
are embedding two points x, y at distance d. As described
in the background, there is an isometric reflection that takes
a pair of points (x, y) in H2 to (0, z) while preserving their
distance, so without loss of generality we have that

d = dH(x, y) = dH(0, z) = acosh

(
1 + 2

‖z‖2

1− ‖z‖2

)
.

Rearranging the terms, we have (cosh(d) + 1)/2 = (1 −
‖z‖2)−1 ≥ (1 − ‖z‖)−1/2. Thus, the number of bits
we want so that 1 − ‖z‖ will not be rounded to zero is
log(cosh(d)+1). Since cosh(d) = (exp(d)+exp(−d))/2,
this is roughly d bits. That is, in hyperbolic space, we need
about d bits to express distances of d (rather than log d in
Euclidean space).1 This result will be of use below.

Consider the largest distance in the embeddings produced
by Algorithm 1. If the longest path length in the tree is `,
and each edge has length τ = 1

ε

(
2 log

degmax
π/2

)
, the largest

distance is O( `ε log degmax), and we require this number of
bits for the representation.

Let us interpret this expression. Note that degmax is inside
the log term, so that a bushy tree is not penalized much
in precision. On the other hand, the longest path length `
is not, so that hyperbolic embeddings struggle with long
paths. Moreover, by selecting an explicit graph, we derive
a matching lower bound, concluding that to achieve a dis-

1Although it is particularly easy to bound precision in the
Poincaré model, this fact holds generally for hyperbolic space
independent of model (shown in the appendix).

tortion ε, any construction requires Ω
(
`
ε log(degmax)

)
bits.

The argument follows from selecting a graph consisting of
m(degmax+1) nodes in a tree with a single root and degmax

chains each of length m (shown in the appendix).

3.3. Improving the Construction

Our next contribution is a generalization of the construction
from the disk H2 to the ball Hr. Our construction follows
the same line as Algorithm 1, but since we have r dimen-
sions, the step where we place children spaced out on a
circle around their parent now uses a hypersphere.

Spacing out points on the hypersphere is a classic problem
known as spherical coding (Conway & Sloane, 1999). As
we shall see, the number of children that we can place for
a particular angle grows with the dimension. Since the
required scaling factor τ gets larger as the angle decreases,
we can reduce τ for a particular embedding by increasing
the dimension. Note that increasing the dimension helps
with bushy trees (large degmax), but has limited effect on
tall trees with small degmax. We show

Proposition 3.1. The generalized Hr combinatorial con-
struction has distortion at most 1 + ε and requires at
most O( 1

ε
`
r log degmax) bits to represent a node compo-

nent for r ≤ (log degmax) + 1, and O( 1
ε `) bits for r >

(log degmax) + 1.

To generalize to Hr, we replace Step 5 in Algorithm 1 with
a node placement step based on coding theory. The children
are placed at the vertices of a hypercube inscribed into the
unit hypersphere (and then scaled by τ ). Each component
of a hypercube vertex has the form ±1√

r
. We index these

points using binary sequences a ∈ {0, 1}r in the following
way: xa =

(
(−1)a1√

r
, (−1)

a2
√
r
, . . . , (−1)

ar
√
r

)
. We space out

the children by controlling the distances by selecting a set of
binary sequences a with a prescribed minimum Hamming
distance—a binary error-correcting code—and placing the
children at the resulting hypercube vertices. We provide
more details, including our choice of code in the appendix.

3.4. Embedding into Trees

We revisit the first step of the construction: embedding
graphs into trees. There are fundamental limits to how well
graphs can be embedded into trees; in general, breaking
long cycles inevitably adds distortion, as shown in Figure 2.
We are inspired by a measure of this limit, the δ-4 points
condition introduced in Abraham et al. (2007). A graph on
n nodes that satisfies the δ-4 points condition has distortion
at most (1 + δ)c1 logn for some constant c1. This result
enables our end-to-end embedding to achieve a distortion
of at most D(f) ≤ (1 + δ)c1 logn(1 + ε).

The result in Abraham et al. (2007) builds a tree with Steiner
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Figure 2. Top: Cycles are an issue in tree embeddings: dG(a, b)
changes from 1 to 5. Bottom: Steiner nodes can help: adding a
node and weighting edges maintains the pairwise distances.

nodes. These additional nodes can help control the distances
in the resulting weighted tree (Figure 2). Note that Algo-
rithm 1 readily extends to the case of weighted trees.

In summary, the key takeaways of our analysis are:

• There is a fundamental tension between precision and
quality in hyperbolic embeddings.

• Hyperbolic embeddings have an exponential advantage
in space compared to Euclidean embeddings for short,
bushy hierarchies, but will have less of an advantage
for graphs that contain long paths.

• Choosing an appropriate scaling factor τ is critical for
quality. Later, we will propose to learn this scale factor
automatically for computing embeddings in PyTorch.

• Steiner nodes can help improve embeddings of graphs.

4. Hyperbolic Multidimensional Scaling
In this section, we explore a fundamental and more general
question than we did in the previous section: if we are given
the pairwise distances arising from a set of points in hyper-
bolic space, can we recover the points? This enables us to
produce an embedding for a desired distance metric. The
equivalent problem for Euclidean distances is solved with
multidimensional scaling (MDS). The goal of this section
is to analyze the hyperbolic MDS (h-MDS) problem. We
describe and overcome the additional technical challenges
imposed by hyperbolic distances, and show that exact re-
covery is possible and interpretable. Afterwards we propose
a technique for dimensionality reduction using principal
geodesics analysis (PGA) that provides optimization guar-
antees. In particular, this addresses the shortcomings of
h-MDS when recovering points that do not exactly lie on a
hyperbolic manifold.

4.1. Exact Hyperbolic MDS

Suppose that there is a set of hyperbolic points x1, . . . , xn ∈
Hr, embedded in the Poincaré ball and written X ∈ Rn×r
in matrix form. We observe all the pairwise distances di,j =
dH(xi, xj), but do not observe X: our goal is to use the
observed di,j’s to recover X (or some other set of points
with the same pairwise distances di,j).

The MDS algorithm in the Euclidean setting makes an im-
portant centering2 assumption: the points have mean 0. If
an exact embedding for the distances exists, it can be recov-
ered from a matrix factorization. In other words, Euclidean
MDS always recovers a centered embedding.

In hyperbolic space, the same algorithm does not work, but
we show that it is possible to find an embedding centered
at a different mean. More precisely, we introduce a new
mean which we call the pseudo-Euclidean mean, that be-
haves like the Euclidean mean in that it enables recovery
through matrix factorization. Once the points are recovered
in hyperbolic space, they can be recentered around a more
canonical mean by translating it to the origin.

Algorithm 2 is our complete algorithm, and for the remain-
der of this section we will describe how and why it works.
We first describe the hyperboloid model, an alternate but
equivalent model of hyperbolic geometry in which h-MDS
is simpler. Of course, we can easily convert between the
hyperboloid model and the Poincaré ball model. Next, we
show how to reduce the problem to a standard PCA prob-
lem, which recovers an embedding centered at the points’
pseudo-Euclidean mean. Finally, we discuss the meaning
and implications of centering and prove that the algorithm
preserves submanifolds as well—that is, if there is an exact
embedding in k < r dimensions centered at their canonical
mean, then our algorithm will recover it.

The hyperboloid model Define Q to be the diagonal ma-
trix in Rr+1 where Q00 = 1 and Qii = −1 for i > 0. For a
vector x ∈ Rr+1, xTQx is called the Minkowski quadratic
form. The hyperboloid model is defined as

Mr =
{
x ∈ Rr+1

∣∣xTQx = 1 ∧ x0 > 0
}
,

which is endowed with a distance measure dH(x, y) =
acosh(xTQy). For convenience, for x ∈Mr let x0 denote
0th coordinate eT0 x, and ~x ∈ Rr denote the rest of the
coordinates3. With this notation, the Minkowski bilinear
form can be written xTQy = x0y0 − ~xT~y.

2We say that points are centered at a particular mean if this
mean is at 0. The act of centering refers to applying an isometry
that makes the mean of the points 0.

3Since x0 =
√

1 + ‖~x‖2 is just a function of ~x, we can equiv-
alently consider just ~x as being a member of a model of hyperbolic
space: This representation is sometimes known as the Gans model.
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A new mean Given points x1, x2, . . . , xn ∈Mr in hyper-
bolic space, define a variance term

Ψ(z;x1, x2, . . . , xn) =

n∑
i=1

sinh2(dH(xi, z)).

We define a pseudo-Euclidean mean to be any local mini-
mum of this expression. Notice that this is independent of
any particular model of hyperbolic space, since it is defined
only through the hyperbolic distance function dH .

Lemma 4.1. Define X ∈ Rn×r such that XT ei = ~xi and
u ∈ Rn such that ui = x0,i. Then

∇~zΨ(z;x1, x2, . . . , xn)|~z=0 = −2

n∑
i=1

x0,i~xi = −2XTu.

This means that 0 is a pseudo-Euclidean mean if and only if
0 = XTu. Call some hyperbolic points x1, . . . , xn pseudo-
Euclidean centered if their average is 0 in this sense: i.e. if
XTu = 0. We can always center a set of points without
affecting their pairwise distances by simply finding their
average, and then sending it to 0 through an isometry.

Recovery via matrix factorization Suppose we ob-
serve the pairwise distances dH(xi, xj) of points
x1, x2, . . . , xn ∈Mr. This gives the matrix Y such that

Yi,j = cosh (dH(xi, xj)) = x0,ix0,j − ~xi
T ~xj . (1)

DefiningX and u as in Lemma 4.1, then in matrix form Y =
uuT−XXT . Without loss of generality, suppose that the xi
are centered at their pseudo-Euclidean mean, so thatXTu =
0 by Lemma 4.1. This implies that u is an eigenvector of
Y with positive eigenvalue, and the rest of Y ’s eigenvalues
are negative. Therefore an eigendecomposition of Y will
find u, X̂ such that Y = uuT − X̂X̂T , i.e. it will directly
recover X up to rotation.

In fact, running PCA on −Y = XTX − uuT to find the n
most significant non-negative eigenvectors will recover X
up to rotation, and then u can be found by leveraging the
fact that x0 =

√
1 + ‖~x‖2. This leads to Algorithm 2, with

optional post-processing steps for converting the embedding
to the Poincaré ball model and for re-centering the points.

A word on centering The MDS algorithm in Euclidean
geometry returns points centered at their Karcher mean
z, which is a point minimizing

∑
d2(z, xi) (where d is

the distance metric). The Karcher center is important for
interpreting dimensionality reduction; we use the analogous
hyperbolic Karcher mean for PGA in Section 4.2.

Although Algorithm 2 returns points centered at their
pseudo-Euclidean mean instead of their Karcher mean, they
can be easily recentered by finding their Karcher mean and

Algorithm 2
1: Input: Distance matrix di,j and rank r
2: Compute scaled distance matrix Yi,j = cosh(di,j)
3: X → PCA(−Y, r)
4: Project X from hyperboloid model to Poincaré model:
x→ x

1+
√

1+‖x‖2

5: If desired, centerX at a different mean (e.g. the Karcher
mean)

6: return X

reflecting it onto the origin. Furthermore, Algorithm 2 pre-
serves the dimension of the embedding:

Lemma 4.2. If a set of points lie in a dimension-k geodesic
submanifold, then both their Karcher mean and their
pseudo-Euclidean mean lie in the same submanifold.

This implies that centering with the pseudo-Euclidean mean
preserves geodesic submanifolds: If it is possible to embed
distances in a dimension-k geodesic submanifold centered
and rooted at a Karcher mean, then it is also possible to
embed the distances in a dimension-k submanifold centered
and rooted at a pseudo-Euclidean mean, and vice versa.

4.2. Reducing Dimensionality with PGA

Given a high-rank embedding (resulting from h-MDS, for
example), we may wish to find a lower-rank version. In
Euclidean space, one can get the optimal lower rank embed-
ding by simply discarding components. However, this may
not be the case in hyperbolic space. Motivated by this, we
study dimensionality reduction in hyperbolic space.

As hyperbolic space does not have a linear subspace struc-
ture like Euclidean space, we need to define what we mean
by lower-dimensional. We follow Principal Geodesic Anal-
ysis (Fletcher et al., 2004), (Huckemann et al., 2010). Con-
sider an initial embedding with points x1, . . . , xn ∈ H2

and let dH : H2 × H2 → R+ be the hyperbolic dis-
tance. Suppose we want to map this embedding onto a
one-dimensional subspace. (Note that we are considering a
two-dimensional embedding and one-dimensional subspace
here for simplicity, and these results immediately extend
to higher dimensions.) In this case, the goal of PGA is to
find a geodesic γ : [0, 1] → H2 that passes through the
mean of the points and that minimizes the squared error (or
variance): f(γ) =

∑n
i=1 mint∈[0,1] dH(γ(t), xi)

2.

This expression can be simplified significantly and re-
duced to a minimization in Euclidean space. First, we
find the mean of the points, the point x̄ which minimizes∑n
i=1 dH(x̄, xi)

2.4 Next, we reflect all the points xi so
that their mean is 0 in the Poincaré disk model; we can

4The derivative of the hyperbolic distance has a singularity,
that is, limy→x ∂x|dH(x, y)| → ∞ for any x ∈ H. This issue can
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Figure 3. The PGA objective of an example task where the input
dataset in the Poincaré disk is x1 = (0.8, 0), x2 = (−0.8, 0),
x3 = (0, 0.7) and x4 = (0,−0.7). Note the presence of non-
optimal local minima, unlike PCA.

do this using a circle inversion that maps x̄ onto 0 Since
reflections are isometric, if γ is a line through 0 and
Rγ is the reflection across γ, we have that dH(γ, x) =
mint∈[0,1] dH(γ(t), x) = 1

2dH(Rlx, x).

Combining this with the Euclidean reflection formula and
the hyperbolic metric produces

f(γ) =
1

4

n∑
i=1

acosh2

(
1 +

8dE(γ, xi)
2

(1− ‖xi‖2)2

)
,

in which dE is the Euclidean distance from a point
to a line. If we define wi =

√
8xi/(1 − ‖xi‖2)

this reduces to the simplified expression f(γ) =
1
4

∑n
i=1 acosh2

(
1 + dE(γ,wi)

2
)
.

Notice that the loss function is not convex. We observe that
there can be multiple local minima that are attractive and
stable, in contrast to PCA. Figure 3 illustrates this noncon-
vexity on a simple dataset in H2 with only four examples.
This makes globally optimizing the objective difficult.

Nevertheless, there will always be a region Ω containing a
global optimum γ∗ that is convex and admits an efficient
projection, and where f is convex when restricted to Ω.
Thus it is possible to build a gradient descent-based algo-
rithm to recover lower-dimensional subspaces: for example,
we built a simple optimizer in PyTorch. We also give a
sufficient condition on the data for f above to be convex.

Lemma 4.3. For hyperbolic PGA if for all i,

acosh2
(
1 + dE(γ,wi)

2
)
< min

(
1,

1

3
‖wi‖2

)
then f is locally convex at γ.

be mitigated by minimizing d2H , which does have a continuous
derivative throughout H. The use of dH(x, y) is a minor instability
in Nickel & Kiela (2017); Chamberlain et al. (2017)’s formulation,
necessitating guarding against NANs. We discuss this further in
the appendix.

Table 1. Dataset statistics.

Dataset Nodes Edges Comment
Bal. Tree 40 39 Tree
Phy. Tree 344 343 Tree
CS PhDs 1025 1043 Tree-like
WordNet 74374 75834 Tree-like
Diseases 516 1188 Dense
Gr-QC 4158 13428 Dense

Table 2. MAP measure for WordNet embedding compared to val-
ues in Nickel & Kiela (2017). Closer to 1 is better.

Dataset C-H2 FB H5 FB H200

WordNet 0.989 0.823* 0.87*

As a result, if we initialize in and optimize over a region that
contains γ∗ and where the condition of Lemma 4.3 holds,
then gradient descent will be guaranteed to converge to γ∗.
We can turn this result around and read it as a recovery result:
if the noise is bounded in this regime, then we are able to
provably recover the correct low-dimensional embedding.

5. Experiments
We evaluate the proposed approaches and compare against
existing methods. We hypothesize that for tree-like data,
the combinatorial construction offers the best performance.
For general data, we expect h-MDS to produce the lowest
distortion, while it may have low MAP due to precision
limitations. We anticipate that dimension is a critical factor
(outside of the combinatorial construction). In the appendix,
we report on additional datasets, combinatorial construction
parameters, and the effect of hyperparameters.

Figure 4. Learning from incomplete information. The distance
matrix is sampled, completed, and embedded.

Datasets We consider trees, tree-like hierarchies, and
graphs that are not tree-like. Trees include fully-balanced
and phylogenetic trees expressing genetic heritage (Hof-
bauer et al., 2016), available at Sanderson et al. (1994).
Nearly tree-like hierarchies include the WordNet hypernym
graph (the largest connected component from Nickel &
Kiela (2017)) and a graph of Ph.D. advisor-advisee rela-
tionships (De Nooy et al., 2011). Also included are datasets
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Table 3. Combinatorial and h-MDS techniques, compared against PCA and results from Nickel & Kiela (2017) (asterisks). Left
(Distortion): Closer to 0 is better. Right (MAP): Closer to 1 is better.

Dataset C-H2 FB H2 h-MDS PT PWS PCA FB C-H2 FB H2 h-MDS PT PWS PCA FB
Bal. Tree 0.013 0.425 0.077 0.034 0.020 0.496 0.236 1.0 0.846 1.0 1.0 1.0 1.0 0.859
Phy. Tree 0.006 0.832 0.039 0.237 0.092 0.746 0.583 1.0 0.718 0.675 0.951 0.998 1.0 0.811
CS PhDs 0.286 0.542 0.149 0.298 0.187 0.708 0.336 0.991 0.567 0.463 0.799 0.945 0.541 0.78
Diseases 0.147 0.410 0.111 0.080 0.108 0.595 0.764 0.822 0.788 0.949 0.995 0.897 0.999 0.934
Gr-QC 0.354 - 0.530 0.125 0.134 0.546 - 0.696 - 0.710 0.733 0.504 0.738 0.999∗

Table 4. Precision and recall for WordNet entity-relationship-entity
triple hyperbolic embeddings using combinatorial construction.

Relationship Precision Recall
‘has instance’ 99.97 99.98
‘part of’ 100.00 99.64
‘domain region’ 99.66 99.93

that vary in their tree nearness, such as disease relationships
(Goh et al., 2007) and protein interactions (Jeong et al.,
2001), both available from Rossi & Ahmed (2015). We also
include the general relativity and quantum cosmology (Gr-
QC) arXiv collaboration network (Leskovec et al., 2007).

Approaches Combinatorial embeddings into H2 use the
ε = 0.1 precision setting; others are considered in the Ap-
pendix. We performed h-MDS in floating point precision.
We include results for our PyTorch implementation (PT) of
an SGD-based algorithm (described later), and a warm start
version (PWS) initialized with the high-dimensional combi-
natorial construction. We compare against classical MDS
(i.e., PCA), and the optimization-based approach Nickel
& Kiela (2017), which we call FB. The experiments for
h-MDS, PyTorch SGD, PCA, and FB used dimensions of
2,5,10,50,100,200; we recorded the best resulting MAP and
distortion. Due to the large scale, we did not replicate the
best FB numbers on large graphs (i.e., Gr-QC and Word-
Net); we report their best published MAP numbers (their
work does not report distortion). These entries are marked
with an asterisk. For the WordNet graph, FB uses the tran-
sitive closure; a weighted version of the graph captures the
ancestor relationships. The full details are in appendix.

Quality In Table 3 (left), we report the distortion. As
expected, for tree or tree-like graphs, the combinatorial con-
struction has exceedingly low distortion. Because h-MDS
is meant to recover points exactly, we hypothesized that
h-MDS would offer very low distortion on these datasets.
Table 3 confirms this: among h-MDS, PCA, and FB, h-
MDS consistently offers the lowest distortion, producing,
for example, a distortion of 0.039 on the phylogenetic tree.
We observe that floating point h-MDS struggles with MAP.
We separately confirmed that this is due to precision (by

using a high-precision solver). The optimization-based ap-
proach is bolstered by appropriate initialization from the
combinatorial construction.

Table 3 (right) reports the MAP measure (we additionally in-
clude WordNet results in Table 2), which is a local measure.
We confirm that the combinatorial construction performs
well for tree-like hierarchies, where MAP is close to 1. The
construction improves on approaches such as FB that rely on
optimization. On larger graphs like WordNet, our approach
yields a MAP of 0.989—while their WordNet MAP result is
0.870 at 200 dimensions. This is exciting, as our approach
is deterministic and linear-time.

A refined understanding of hyperbolic embeddings may be
used to improve the quality and runtime of extant algorithms.
Indeed, we embedded WordNet entity-relationship-entity
triples (Socher et al., 2013) using the combinatorial construc-
tion in 10 dimensions, accurately preserving relationship
knowledge (Table 4). This suggests that hyperbolic em-
beddings are effective at compressing knowledge and may
useful for knowledge base completion and Q/A tasks.

SGD-Based Algorithm We built an SGD-based algo-
rithm implemented in PyTorch. The loss function is equiva-
lent to the PGA loss, and so is continuously differentiable.

To evaluate our algorithm’s ability to deal with incomplete
information, we sample the distance matrix at a ratio of non-
edges to edges at 10 : 1 following Nickel & Kiela (2017).
In Figure 4, we recover a good solution for the phylogenetic
tree with a small fraction of the entries; for example, we
sampled approximately 4% of the graph for a MAP of 0.74
and distortion of 0.6. We also considered learning the scale
of the embedding (details in the appendix). Finally, all of
our techniques scale to graphs with millions of nodes.

6. Conclusion and Future Work
Hyperbolic embeddings embed hierarchical information
with high fidelity and few dimensions. We explored the
limits of this approach by describing scalable, high quality
algorithms. We hope the techniques here encourage more
follow-on work on the exciting techniques of Nickel & Kiela
(2017); Chamberlain et al. (2017).
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A. Glossary of Symbols

Symbol Used for

x, y, z vectors in the Poincaré ball model of hyperbolic space
dH metric distance between two points in hyperbolic space
dE metric distance between two points in Euclidean space
dU metric distance between two points in metric space U
d a particular distance value
di,j the distance between the ith and jth points in an embedding
Hr the Poincaré ball model of r-dimensional Hyperbolic space
r the dimension of a Hyperbolic space
H Hyperbolic space of an unspecified or arbitrary dimension
Mr the Minkowski (hyperboloid) model of r-dimensional Hyperbolic space
f an embedding
Na neighborhood around node a in a graph
Ra,b the smallest set of closest points to node a in an embedding f that contains node b
MAP(f) the mean average precision fidelity measure of the embedding f
D(f) the distortion fidelity measure of the embedding f
Dwc(f) the worst-case distortion fidelity measure of the embedding f
G a graph, typically with node set V and edge set E
T a tree
a, b, c nodes in a graph or tree
deg(a) the degree of node a
degmax maximum degree of a node in a graph
` the longest path length in a graph
τ the scaling factor of an embedding
reflectx→y a reflection of x onto y in hyperbolic space
arg(z) the angle that the point z in the plane makes with the x-axis
X matrix of points in hyperbolic space
Y matrix of transformed distances
γ geodesic used in PGA
wi transformed points used in PGA

Table 5. Glossary of variables and symbols used in this paper.

B. Related Work
Our study of representation tradeoffs for hyperbolic embeddings was motivated by exciting recent approaches towards such
embeddings in Nickel & Kiela (2017) and Chamberlain et al. (2017). Earlier efforts proposed using hyperbolic spaces for
routing, starting with Kleinberg’s work on geographic routing (Kleinberg, 2007). Cvetkovski & Crovella (2009) performed
hyperbolic embeddings and routing for dynamic networks. Recognizing that the use of hyperbolic space for routing required
a large number of bits to store the vertex coordinates, Eppstein & Goodrich (2008) introduced a scheme for succinct
embedding and routing in the hyperbolic plane.

Another very recent effort also proposes using hyperbolic cones (similar to the cones that are the fundamental building block
used in Sarkar (2011) and our work) as a heuristic for embedding entailment relations, i.e. directed acyclic graphs (Ganea
et al., 2018b). The authors also propose to optimize on the hyperbolic manifold using its exponential map, as opposed to our
approach of finding a closed form for the embedding should it exist (Section 4). An interesting avenue for future work is to
compare both optimization methods empirically and theoretically, i.e., to understand the types of recovery guarantees under
noise that such methods have.

A pair of recent approaches seek to add hyperbolic operations to neural networks. Gulcehre et al. (2018) introduces a
hyperbolic version of the attention mechanism using the hyperboloid model of hyperbolic space. In Ganea et al. (2018a),
building blocks from certain networks are generalized to operate with Riemannian manifolds.
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There have been previous efforts to perform multidimensional scaling in hyperbolic space (the h-MDS problem), often in
the context of visualization (Lamping & Rao, 1994). Most propose descent methods in hyperbolic space (e.g. (Cvetkovski &
Crovella, 2016), (Walter, 2004)) and fundamentally differ from ours. Arguably the most relevant is Wilson et al. (2014),
which mentions exact recovery as an intermediate result, but ultimately suggests a heuristic optimization. Our h-MDS
analysis characterizes the recovered embedding and manifold and obtains the correctly centered one—a key issue in MDS.
For example, this allows us to properly find the components of maximal variation. Furthermore, we discuss robustness to
noise and produce optimization guarantees when a perfect embedding doesn’t exist.

Several papers have studied the notion of hyperbolicity of networks, starting with the seminal work on hyperbolic graphs
Gromov (1987). More recently, Chen et al. (2012) considered the hyperbolicity of small world graphs and tree-like random
graphs. Abu-Ata & Dragan (2015) performed a survey that examines how well real-world networks can be approximated by
trees using a variety of tree measures and tree embedding algorithms. To motivate their study of tree metrics, Abraham et al.
(2007) computed a measure of tree likeness on a Internet infrastructure network.

We use matrix completion (closure) to perform embeddings with incomplete data. Matrix completion is a celebrated problem.
Candes & Tao (2010) derive bounds on the minimum number of entries needed for completion for a fixed rank matrix; they
also introduce a convex program for matrix completion operating at near the optimal rate.

Principal geodesic analysis (PGA) generalizes principal components analysis (PCA) for the manifold setting. It was
introduced and applied to shape analysis in Fletcher et al. (2004) and extended to a probabilistic setting in Zhang & Fletcher
(2013). There are other variants; the geodesic principal components analysis (GPCA) of Huckemann et al. (2010) uses our
loss function. A further generalization of PCA to Riemannian manifolds is the Barycentric Subspace Analysis of Pennec
(2017), where it is shown that there is no direct and perfect analogue of PCA in negatively curved spaces.

C. Low-Level Formulation Details
Implementations of our algorithms are available at https://github.com/HazyResearch/hyperbolics. A few
comments are helpful to understand the reformulation. In particular, we simply minimize the squared hyperbolic distance
with a learned scale parameter, τ , e.g., :

min
x1,...,xn,τ

∑
1≤i<j≤n

(τdH(xi, xj)− di,j)2

We typically require that τ ≥ 0.1.

• On continuity of the derivative of the loss: Note that

∂xacosh(1 + x) =
1√

(1 + x)2 − 1
=

1√
x(x+ 2)

hence lim
x→0

∂xacosh(1 + x) =∞.

Thus, limy→x ∂xdH(x, y) = ∞. In particular, if two points happen to get near to one another during execution,
gradient-based optimization becomes unstable. Note that exp{acosh(1 + x)} suffers from a similar issue, and is used
in both (Nickel & Kiela, 2017; Chamberlain et al., 2017). This change may increase numerical instability, and the
public code for these approaches does indeed take steps like masking out updates to mitigate NANs. In contrast, the
following may be more stable:

∂xacosh(1 + x)2 = 2
acosh(1 + x)√

x(x+ 2)
and in particular lim

x→0
∂xacosh(1 + x)2 = 2

The limits follows by simply applying L’Hopital’s rule. In turn, this implies the square formulation is continuously
differentiable. Note that it is not convex.

• One challenge is to make sure the gradient computed by PyTorch has the appropriate curvature correction (the
Riemannian metric), as is well explained by Nickel & Kiela (2017). The modification is straightforward: we create a
subclass of NN.PARAMETER called HYPERBOLIC PARAMETER. This wrapper class allows us to walk the tree to apply
the appropriate correction to the metric (which amounts to multiplying ∇wf(w) by 1

4 (1− ‖w‖2)2. After calling the
BACKWARD function, we call a routine to walk the autodiff tree to find such parameters and correct them. This allows
HYPERBOLIC PARAMETER and traditional parameters to be freely mixed.

https://github.com/HazyResearch/hyperbolics
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Figure 5. Explicit graphs Gm used to derive precision lower bound. Left: m = 1 case (star graph). Right: m > 1.

• We project back on the hypercube following Nickel & Kiela (2017) and use gradient clipping with bounds of [−105, 105].
This allows larger batch sizes to more fully utilize the GPU.

D. Combinatorial Construction Proofs
Precision vs. model We first provide a simple justification of the fact (used in Section 3.2) that representing distances
d requires about d bits in hyperbolic space—independent of the model of the space. Formally, we show that the number
of bits needed to represent a space depends only on the maximal and minimal desired distances and the geometry of the
space. Thus although the bulk of our results are presented in the Poincaré sphere, our discussion on precision tradeoffs is
fundamental to hyperbolic space.

A representation using b bits can distinguish 2b distinct points in a space S. Suppose we wish to capture distances up to
d with error tolerance ε. Concretely, say every point in the ball B(0, d) must be within distance ε of a represented point.
By a sphere covering argument, this requires at least VS(d)VS(ε)

points to be represented, where VS(r) is the volume of a ball

of radius r in the geometry. Thus at least b = log VS(d)
VS(ε)

bits are needed for the representation. Notice that VE(d) ∼ dn in
Euclidean Rn space, so this gives the correct bit complexity of n log(d/ε). In hyperbolic space, VH is exponential instead of
polynomial in d, so O(d) bits are needed in the representation (for any constant tolerance). In particular, this is independent
of the model of the space.

Graph embedding lower bound Now, we derive a lower bound on the bits of precision required for embedding a graph
into H2. Afterwards we prove a result bounding the precision for our extension of Sarkar’s construction for the r-dimensional
Poincaré ball Hr. Finally, we give some details on the algorithm for this extension.

We derive the lower bound by exhibiting an explicit graph and lower bounding the precision needed to represent its nodes
(for any embedding of the graph into H2). The explicit graph Gm we consider consists of a root node with degmax chains
attached to it. Each of these chains has m nodes for a total of 1 +m(degmax) nodes, as shown in Figure 5.

Lemma D.1. The bits of precision needed to embed a graph with longest path ` is Ω
(
`
ε log(degmax)

)
.

Proof. We first consider the case where m = 1. Then G1 is a star with 1 + degmax children a1, a2, . . . , adegmax
. Without

loss of generality, we can place the root a0 at the origin 0.

Let xi = f(ai) be the embedding into H2 for vertex ai for 0 ≤ i ≤ degmax. We begin by showing that the distortion does
not increase if we equalize the distances between the origin and each child xi. Let us write `max = maxi dH(0, xi) and
`min = mini dH(0, xi).

What is the worst-case distortion? We must consider the maximal expansion and the maximal contraction of graph
distances. Our graph distances are either 1 or 2, corresponding to edges (a0 to ai) and paths of length 2 (ai to a0
to aj). By triangle inequality, dH(xi,xj)

2 ≤ dH(0,xi)
2 +

dH(0,xj)
2 ≤ `max. This implies that the maximal expansion

maxi 6=j dH(f(ai), f(aj))/dG(ai, aj) is `max

1 = `max occurring at a parent-child edge. Similarly, the maximal contraction
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is at least 1
`min

. With this,

Dwc(f) ≥ `max

`min
.

Equalizing the origin-to-child distances (that is, taking `max = `min) reduces the distortion. Moreover, these distances are a
function of the norms ‖xi‖, so we set ‖xi‖ = v for each child.

Next, observe that since there are degmax children to place, there exists a pair of children x, y so that the angle formed by
x, 0, y is no larger than θ = 2π

degmax
. In order to get a worst-case distortion of 1 + ε, we need the product of the maximum

expansion and maximum contraction to be no more than 1 + ε. The maximum expansion is simply dH(0, x) while the
maximum contraction is 2

dH(x,y) , so we wan

2dH(0, x) ≤ (1 + ε)dH(x, y).

We use the log-based expressions for hyperbolic distance:

dH(0, x) = log

(
1 + v

1− v

)
,

and

dH(x, y) = 2 log

(
‖x− y‖+

√
‖x‖2‖y‖2 − 2〈x, y〉+ 1√

(1− ‖x‖2)(1− ‖y‖2)

)

= 2 log

(√
2v2(1− cos θ) +

√
v4 − 2v2 cos θ + 1

1− v2

)
.

This leaves us with

log

(√
2v2(1− cos θ) +

√
v4 − 2v2 cos θ + 1

1− v2

)
(1 + ε) ≥ log

(
1 + v

1− v

)
.

Now, since 1 > v2, we have that
√

2(1− cos θ) ≥
√

2v2(1− cos θ). Some algebra shows that
√

3(1− cos θ) ≥√
v4 − 2v2 cos θ + 1, so that we can upper bound the left-hand side to write

log

 (1 +
√

3
2 )
√

2(1− cos θ)

1− v2

 (1 + ε) ≥ log

(
1 + v

1− v

)
.

Next we use the small angle approximation cos(θ) = 1− θ2/2 to get
√

2(1− cos θ) = θ. Now we have

log

 (1 +
√

3
2 )θ

1− v2

 (1 + ε) ≥ log

(
1 + v

1− v

)
.

Since v < 1, 1
1−v >

1
1−v2 and 1+v

1−v ≥
1

1−v , so we can upper bound the left-hand side and lower bound the right-hand side:

log

 (1 +
√

3
2 )θ

1− v

 (1 + ε) ≥ log

(
1

1− v

)
.

Rearranging,

− log(1− v) ≥ − log

((
1 +

√
3

2

)
θ

)
1 + ε

ε
.
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Recall that θ = 2π
degmax

. Then we have that

− log(1− v) ≥
(

1 + ε

ε

)(
log(degmax)− log((2 +

√
6)π)

)
,

so that

− log(1− v) = Ω

(
1

ε
log(degmax)

)
.

Since v = ‖x‖ = ‖y‖, − log(1− v) is precisely the required number of bits of precision, so we have our lower bound for
the m = 1 case.

Next we analyze the m > 1 case. Consider the embedded vertices x1, x2, . . . , xm corresponding to one chain and
y1, y2, . . . , ym corresponding to another. There exists a pair of chains such that the angle formed by xm, 0, y1 is at
most θ = 2π

degmax
. Let u = ‖xm‖ and v = ‖y1‖. From the m = 1 case, we have a lower bound on − log(1 − v);

we will now lower bound − log(1 − u). The worst-case distortion we consider uses the contraction given by the path
xm → xm−1 → · · · → x1 → 0→ y1; this path has length m+ 1. The expansion is just the edge between 0 and y1. Then,
to satisfy the worst-case distortion 1 + ε, we need

(m+ 1)dH(0, y1) ≤ (1 + ε)dH(xm, y1).

Using the hyperbolic distance formulas, we can rewrite this as

2 log

(
‖xm − y1‖+

√
‖xm‖2‖y1‖2 − 2〈xm, y1〉+ 1√

(1− ‖xm‖2)(1− ‖y1‖2)

)
(1 + ε) ≥ (m+ 1) log

(
1 + v

1− v

)
,

or,

2 log

(√
u2 + v2 − 2uv cos θ +

√
u2v2 − 2uv cos θ + 1√

(1− u2)(1− v2)

)
(1 + ε) ≥ (m+ 1) log

(
1 + v

1− v

)
.

Next,

2 log

(√
u2 + v2 − 2uv cos θ +

√
u2v2 − 2uv cos θ + 1√

(1− u2)(1− v2)

)

≤ 2 log

 (1 +
√

3
2 )θ√

(1− u2)(1− v2)

 = log

 (1 +
√

3
2 )2θ2

(1− u2)(1− v2)


≤ log

 (1 +
√

3
2 )2θ2

(1− u)(1− v)

 .

In the first step, we used the same arguments as earlier. Applying this result and using 1+v
1−v ≥

1
1−v , we have

log

 (1 +
√

3
2 )2θ2

(1− u)(1− v)

 (1 + ε) ≥ (m+ 1) log

(
1

1− v

)
,

or,

log

 (1 +
√

3
2 )2θ2

1− u

 (1 + ε) ≥ (m− ε) log

(
1

1− v

)
.
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Next we can apply the bound on − log(1− v).

log

(
1

1− u

)
≥ − log

(
(1 +

√
3

2
)2θ2

)
+

(
m− ε
1 + ε

)
log

(
1

1− v

)

≥ − log

(
(1 +

√
3

2
)2θ2

)
+

(
m− ε
1 + ε

)(
1 + ε

ε

)(
log(degmax)− log((2 +

√
6)π)

)
)

=

(
m− ε
ε

)
log(degmax)−

(
m− ε
ε

)
log((2 +

√
6)π)− 1

2

(
log(degmax)− log((2 +

√
6)π)

)
.

Here, we applied the relationship between θ and degmax we derived earlier. To conclude, note that the longest path in our
graph is ` = 2m. Then, we have that

− log(1− u) = Ω

(
`

ε
log(degmax)

)
,

as desired.

Combinatorial construction upper bounds Next, we prove our extension of Sarkar’s construction for Hr, restated
below.

Proposition 3.1. The generalized Hr combinatorial construction has distortion at most 1 + ε and requires at most
O( 1

ε
`
r log degmax) bits to represent a node component for r ≤ (log degmax) + 1, and O( 1

ε `) bits for r > (log degmax) + 1.

Proof. The combinatorial construction achieves worst-case distortion bounded by 1 + ε in two steps (Sarkar, 2011). First, it
is necessary to scale the embedded edges by a factor of τ sufficiently large to enable each child of a parent node to be placed
in a disjoint cone. Note that there will be a cone with angle α less than π

degmax
. The connection between this angle and

the scaling factor τ is governed by τ = − log(tanα/2). As expected, as degmax increases, α decreases, and the necessary
scale τ increases.

This initial step provides a Delaunay embedding (and thus a MAP of 1.0), but perhaps not sufficient distortion. The second
step is to further scale the points by a factor of 1+ε

ε ; this ensures the distortion upper bound.

Our generalization to the Poincaré ball of dimension r will modify the first step by showing that we can pack more children
around a parent while maintaining the same angle. In other words, for a fixed number of children we can increase the angle
between them, correspondingly decreasing the scale. We use the following generalization of cones for Hr, defined by the
maximum angle α ∈ [0, π/2] between the axis and any point in the cone. Let cone C(X,Y, α) be the cone at point X
with axis ~XY and cone angle α: C(X,Y, α) = {Z ∈ Hr : 〈Z −X,Y −X〉 ≥ ‖Z −X‖‖Y −X‖ cosα} . We seek the
maximum angle α for which degmax disjoint cones can be fit around a sphere.

Supposing r − 1 ≤ log degmax, we use the following lower bound (Jenssen et al., 2018) on the number of unit vectors
A(r, θ) that can be placed on the unit sphere of dimension r with pairwise angle at least θ:

A(r, θ) ≥ (1 + o(1))
√

2πr
cos θ

(sin θ)r−1
.

Consider taking angle

θ = asin(degmax
− 1
r−1 ).

Note that

degmax
− 1
r−1 = exp log degmax

− 1
r−1 = exp

(
− log d

r − 1

)
≤ 1/e,

which implies that θ is bounded from above and cos θ is bounded from below. Therefore

degmax =
1

(sin θ)r−1
≤ O(1)

cos θ

(sin θ)r−1
≤ A(r, θ).
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So it is possible to place degmax children around the sphere with pairwise angle θ, or equivalently place degmax disjoint
cones with cone angle α = θ/2. Note the key difference compared to the two-dimensional case where α = π

degmax
; here we

reduce the angle’s dependence on the degree by an exponent of 1
r−1 .

It remains to compute the explicit scaling factor τ that this angle yields; recall that τ = − log(tanα/2) suffices (Sarkar,
2011). We then have

τ = − log(tan(θ/4)) = − log

(
sin(θ/2)

1 + cos(θ/2)

)
= log

(
1 + cos(θ/2)

sin(θ/2)

)
≤ log

(
2

sin(θ/2)

)
= log

(
4 cos(θ/2)

sin θ

)
≤ log

(
4

degmax
− 1
r−1

)
= O

(
1

r
log degmax

)
.

This quantity tells us the scaling factor without considering distortion (the first step). To yield the 1 + ε distortion, we just
increase the scaling by a factor of 1+ε

ε . The longest distance in the graph is the longest path ` multiplied by this quantity.

Putting it all together, for a tree with longest path `, maximum degree degmax and distortion at most 1 + ε, the components
of the embedding require (using the fact that distances ‖d‖ require d bits),

O

(
1

ε

`

r
log dmax

)
bits per component. This big-O is with respect to degmax and any r ≤ log degmax +1.

When r > log degmax +1, O
(
1
ε `
)

is a trivial upper bound. Note that this cannot be improved asymptotically: As degmax

grows, the minimum pairwise angle approaches π/2,5 so that τ = Ω(1) irrespective of the dimension r.

Next, we provide more details on the coding-theoretic child placement construction for r-dimensional embeddings. Recall
that children are placed at the vertices of a hypercube inscribed into the unit hypersphere, with components in ±1√

r
. These

points are indexed by sequences a ∈ {0, 1}r so that

xa =

(
(−1)a1√

r
,

(−1)a2√
r

, . . . ,
(−1)ar√

r

)
.

The Euclidean distance between xa and xb is a function of the Hamming distance dHamming(a, b) between a and b. The

Euclidean distance is exactly 2

√
dHamming(a,b)

r . Therefore, we can control the distances between the children by selecting a
set of binary sequences with a prescribed minimum Hamming distance—a binary error-correcting code—and placing the
children at the resulting hypercube vertices.

We introduce a small amount of terminology from coding theory. A binary code C is a set of sequences a ∈ {0, 1}r. A
[r, k, h]2 code C is a binary linear code with length r (i.e., the sequences are of length r), size 2k (there are 2k sequences),
and minimum Hamming distance h (the minimum Hamming distance between two distinct members of the code is h).

The Hadamard code C has parameters [2k, k, 2k−1]. If r = 2k is the dimension of the space, the Hamming distance between
two members of C is at least 2k−1 = r/2. Then, the distance between two distinct vertices of the hypercube xa and xb is

2
√

r/2
r = 2

√
1/2 =

√
2. Moreover, we can place up to 2k = r points at least at this distance.

To build intuition, consider placing children on the unit circle (r = 2) compared to the r = 128-dimensional unit sphere.
For r = 2, we can place up to 4 points with pairwise distance at least

√
2. However, for r = 128, we can place up to 128

children while maintaining this distance.

5Given points x1, . . . , xn on the unit sphere, 0 ≤ ‖
∑

xi‖22 = n+
∑

i6=j〈xi, xj〉 implies there is a pair such that xi · xj ≥ − 1
n−1

,
i.e. an angle bounded by cos−1(−1/(n− 1)).
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We briefly describe a few more practical details. Note that the Hadamard code is parametrized by k. To place c+ 1 children,
take k = dlog2(c+ 1)e. However, the desired dimension r′ of the embedding might be larger than the resulting code length
r = 2k. We can deal with this by repeating the codeword. If there are r′ dimensions and r|r′, then the distance between
the resulting vertices is still at least

√
2. Also, recall that when placing children, the parent node has already been placed.

Therefore, we perform the placement using the hypercube, and rotate the hypersphere so that one of the c+ 1 placed nodes
is located at this parent.

Embedding the ancestor transitive closure Prior work embeds the transitive closure of the WordNet noun hypernym
graph (Nickel & Kiela, 2017). Here, edges are placed between each word and its hypernym ancestors; MAP is computed
over edges of the form (word, hypernym), or, equivalently, edges (a, b) where b ∈ A(a) is an ancestor of a.

In this section, we show how to achieve arbitrarily good MAP on these types of transitive closures of a tree by embedding a
weighted version of the tree (which we can do using the combinatorial construction with arbitrarily low distortion for any
number dimensions). The weights are simply selected to ensure that nodes are always nearer to their ancestors than to any
other node.

Let T = (V,E) be our original graph. We recursively produce a weighted version of the graph called T ′ that satisfies the
desired property. Let s be the depth of node a ∈ V . We weight each of the edges (a, c), where c is a child of a with weight
2s. Now we show the following property:

Proposition D.2. Let b ∈ A(a) be an ancestor of a and e 6∈ A(a) be some node not an ancestor of a. Then,

dG(a, b) < dG(a, e).

Proof. Let a be at depth s. First, the farthest ancestor from a is the root, at distance 2s−1 + 2s−2 + . . .+ 2 + 1 = 2s − 1.
Thus dG(a, b) ≤ 2s − 1.

If e is a descendant of a, then dG(a, e) is at least 2s Next, if e is neither a descendant nor an ancestor of a, let f be their
nearest common ancestor, and let the depths of a, e, f be s, s2, s3, respectively, where s3 < min{s1, s2}. We have that

dG(a, e) = (2s−1 + . . .+ 2s3) + (2s2−1 + . . .+ 2s3)

= 2s − 2s3 + 2s2 − 2s3

= 2s + 2s2 − 2s3+1

≥ 2s

> dG(a, b).

The fourth line follows from s2 > s3. This concludes the argument.

Therefore, embedding the weighted tree T ′ with the combinatorial construction enables us to keep all of a word’s ancestors
nearer to it than any other word. This enables us to embed a transitive closure hierarchy (like WordNet’s) while still
embedding a nearly tree-like graph. 6 Furthermore, the desirable properties of the construction still carry through (perfect
MAP on trees, linear-time, etc).

E. Proof of h-MDS Results
We first prove the condition that XTu = 0 is equivalent to pseudo-Euclidean centering.

6Note that further separation can be achieved by picking weights with a base larger than 2.
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Proof of Lemma 4.1. In the hyperboloid model, the variance term Ψ can be written as

Ψ(z;x1, x2, . . . , xn) =

k∑
i=1

sinh2(dH(xi, z))

=

k∑
i=1

(
cosh2(dH(xi, z))− 1

)
=

k∑
i=1

(
(xTi Qz)

2 − 1
)

=

k∑
i=1

(
(x0,iz0 − ~xTi ~z)2 − 1

)
=

k∑
i=1

((
x0,i
√

1 + ‖~z‖2 − ~xTi ~z
)2
− 1

)
.

The derivative of this with respect to ~z is

∇~zΨ(z;x1, x2, . . . , xn) = 2

k∑
i=1

(
x0,i
√

1 + ‖~z‖2 − ~xTi ~z
)(

x0,i
~z√

1 + ‖~z‖2
− ~xi

)
.

At ~z = 0 (or equivalently z = e0), this becomes

∇~zΨ(z;x1, x2, . . . , xn)|~z=0 = 2

k∑
i=1

(
x0,i
√

1 + 0− 0
)(

x0,i
0√

1 + 0
− ~xi

)

= −2

k∑
i=1

x0,i~xi.

If we define the matrix X ∈ Rn×k such that XT ei = ~xi and the vector u ∈ Rk such that ui = x0,i, then

∇~zΨ(z;x1, x2, . . . , xn)|~z=0 = −2

k∑
i=1

XT eie
T
i u

= −2XTu.

Centering and Geodesic Submanifolds A well-known property of the hyperboloid model is that the geodesic sub-
manifolds on Mr are exactly the linear subspaces of Rr+1 intersected with the hyperboloid model (Corollary A.5.5.
from (Benedetti & Petronio, 1992)). This is analogous to how the affine subspaces of Rr are the linear subspaces of Rr+1

intersected with the homogeneous-coordinates model of Rr. Notice that this directly implies that any geodesic submanifold
can be written as a geodesic submanifold centered on any of the points in that manifold. To be explicit with the definitions:

Definition E.1. A geodesic submanifold is a subset S of a manifold such that for any two points x, y ∈ S, the geodesic
from x to y is fully contained within S.

Definition E.2. A geodesic submanifold rooted at a point x, given some local subspace of its tangent bundle T , is the subset
S of the manifold that is the union of all the geodesics through x that are tangent at x in a direction contained in T .

Now we prove that centering with the pseudo-Euclidean mean preserves geodesic submanifolds.

First, we need the following technical lemma showing that projection to a manifold decreases distances.

Lemma E.3. Consider a dimension-r geodesic submanifold S and point x̄ outside of it. Let z be the projection of x̄ onto S.
Then for any point x ∈ S, dH(x, x̄) > dH(x, z).
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Proof. As a consequence of the projection, the points x, z, x̄ form a right angle. From the hyperbolic Pythagorean theorem,
we know that

cosh(dH(x, x̄)) = cosh(dH(x, z)) cosh(dH(z, x̄)).

Since cosh is increasing and at least 1 (with equality only at cosh(0) = 1), this implies that

dH(x, x̄) > dH(x, z).

Lemma E.4. If some points x1, . . . , xk lie in a dimension-r geodesic submanifold S, then both a Karcher mean and a
pseudo-Euclidean mean lie in this submanifold. Equivalently, if the points lie in a submanifold, then this submanifold can be
written as centered at the Karcher mean or the pseudo-Euclidean mean.

Proof. Suppose by way of contradiction that there is a Karcher mean x̄ that lies outside this submanifold S. Then, consider
the projection z of x̄ onto S. From Lemma E.3, projecting onto S has strictly decreased the distance to all the points on S.

As a result, the Frechet variance
k∑
i=1

d2H(xi, x̄),

and decreases when x̄ is projected onto S. From this, it follows that there is a minimum value of the Frechet variance (a
Karcher mean) that lies on S. An identical argument works for the pseudo-Euclidean distance, since the pseudo-Euclidean
distance uses a variance that is just the sum of monotonically increasing functions of the hyperbolic distance.

Lemma E.5. Given some pairwise distances di,j , if it is possible to embed the distances in a dimension-r geodesic
submanifold rooted and centered at a pseudo-Euclidean mean, then it is possible to embed the distances in a dimension-r
geodesic submanifold rooted and centered at a Karcher mean, and vice versa.

Proof. Suppose that it is possible to embed the distances as some points x1, . . . , xk in a dimension-r geodesic submanifold
S. Then, by Lemma E.4, S contains both a Karcher mean x̄ and a pseudo-Euclidean mean x̄P of these points. If we reflect
all the points such that x̄ is reflected to the origin, then the new reflected points will also be an embedding of the distances
(since reflection is isometric) and they will also be centered at the origin. Furthermore, we know that they will still lie in a
dimension-r submanifold (now containing the origin) since reflection also preserves the dimension of geodesic submanifolds.
So the reflected points that we have constructed are an embedding of di,j into a dimension-r geodesic submanifold rooted
and centered at a Karcher mean. The same argument will show that (by reflecting x̄P to the origin instead of x̄) we can
construct an embedding of di,j into a dimension-r geodesic submanifold rooted and centered at the pseudo-Euclidean mean.
This proves the lemma.

F. Perturbation Analysis
F.1. Handling Perturbations

Now that we have shown that h-MDS recovers an embedding exactly, we consider the impact of perturbations on the data.
Given the necessity of high precision for some embeddings, we expect that in some regimes the algorithm should be very
sensitive. Our results identify the scaling of those perturbations.

First, we consider how to measure the effect of a perturbation on the resulting embedding. We measure the gap between two
configurations of points, written as matrices in Rn×r, by the sum of squared differences D(X,Y ) = trace((X − Y )T (X −
Y )). Of course, this is not immediately useful, since X and Y can be rotated or reflected without affecting the distance
matrix used for MDS—as these are isometries, while scalings and Euclidean translations are not. Instead, we measure the
gap by

DE(X,Y ) = inf{D(X,PY ) : PTP = I}.

In other words, we look for the configuration of Y with the smallest gap relative to X . For Euclidean MDS, Sibson (1978)
provides an explicit formula for DE(X,Y ) and uses this formulation to build a perturbation analysis for the case where Y
is a configuration recovered by performing MDS on the perturbed matrix XXT + ∆(E), with ∆(E) symmetric.



Representation Tradeoffs for Hyperbolic Embeddings

Problem setup In our case, the perturbations affect the hyperbolic distances. Let H ∈ Rn×n be the distance matrix for
a set of points in hyperbolic space. Let ∆(H) ∈ Rn×n be the perturbation, with Hi,i = 0 and ∆(H) symmetric (so that
Ĥ = H + ∆H remains symmetric). The goal of our analysis is to estimate the gap DE(X,Y ) between X recovered from
H with h-MDS and X̂ recovered from the perturbed distances H + ∆(H).

Lemma F.1. Under the above conditions, if λmin denotes the smallest nonzero eigenvalue of XXT then up to second order
in ∆(H),

DE(X, X̂) ≤ 2n2

λmin
sinh2 (‖H‖∞) ‖∆(H)‖2∞.

The key takeaway is that this upper bound matches our intuition for the scaling: if all points are close to one another, then
‖H‖∞ is small and the space is approximately flat (since sinh2(z) is dominated by 2z2 close to the origin). On the other
hand, points at great distance are sensitive to perturbations in an absolute sense.

Proof of Lemma F.1. Similarly to our development of h-MDS, we proceed by accessing the underlying Euclidean distance
matrix, and then apply the perturbation analysis from Sibson (1979). There are three steps: first, we get rid of the acosh in
the distances to leave us with scaled Euclidean distances. Next, we remove the scaling factors, and apply Sibson’s result.
Finally, we bound the gap when projecting to the Poincaré sphere.

Hyperbolic to scaled Euclidean distortion Let Y denote the scaled-Euclidean distance matrix, as in (1), so that Yi,j =

cosh(Hi,j). Let Ŷi,j = cosh(Hi,j+∆(H)i,j). We write ∆(Y ) = Ŷ −Y for the scaled Euclidean version of the perturbation.
We can use the hyperbolic-cosine difference formula on each term to write

∆(Y )i,j = cosh(Ĥi,j)− cosh(Hi,j)

= (cosh(Hi,j + ∆(H)i,j)− cosh(Hi,j))

= 2 sinh

(
2Hi,j + ∆(H)i,j

2

)
sinh

(
∆(H)i,j

2

)
.

In terms of the infinity norm, as long as ‖H‖∞ ≥ ‖∆(H)‖∞ (it is fine to assume this because we are only deriving a bound
up to second order, so we can suppose that ∆(H) is small), we can simplify this to

‖∆(Y )‖∞ ≤ 2 sinh (‖H‖∞) sinh (‖∆(H)‖∞/2) .

Scaled Euclidean to Euclidean inner product. Recall that if X is the embedding in the hyperboloid model, then
Y = uuT − XXT and furthermore XTu = 0 so that X can be recovered through PCA. Now we are in the Euclidean
setting, and can thus measure the result of the perturbation on the recovered X . The proof of Theorem 4.1 in Sibson (1979)
transfers to this setting. This result states that if X̂ is the configuration recovered from the perturbed inner products, then the
lowest-order term of the expansion of the error DE(X, X̂) in the perturbation ∆(Y ) is

DE(X, X̂) =
1

2

∑
j,k

(vTj ∆(Y )vk)2

λj + λk
.

Here, the λi and vi are the eigenvalues and corresponding orthonormal eigenvectors of XXT and the sum is taken over
pairs of λj , λk that are not both 0. Let λmin be the smallest nonzero eigenvalue of XXT . Then,

DE(X, X̂) ≤ 1

2λmin

∑
j,k

(vTj ∆(Y )vk)2 ≤ 1

2λmin
‖∆(Y )‖2F

≤ n2

2λmin
‖∆(Y )‖2∞.

Combining this with the previous bounds and restricting to second-order terms in ‖∆(H)‖2∞ proves Lemma F.1 for the
embedding X in the hyperboloid model.
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Projecting to the Poincaré disk Algorithm 2 initially finds an embedding in Mr, but optionally converts it to the Poincaré
disk. To convert a point x in the hyperboloid model to z in the Poincaré disk, take z = x

1+
√

1+‖x‖22
. Let Z ∈ Rn×r be the

projected embedding. Now we show that the same perturbation bound holds after projection.

Lemma F.2. For any x and y,
∥∥∥∥ x

1+
√

1+‖x‖22
− x

1+
√

1+‖x‖22

∥∥∥∥ ≤ ‖x− y‖
Proof. Let ux =

√
1 + ‖x‖2 and define uy analogously. Note that ux ≥ 2, ux ≥ ‖x‖, and

uy − ux =
u2y − u2x
uy + ux

= (‖y‖ − ‖x‖)‖y‖+ ‖x‖
uy + ux

≤ ‖y‖ − ‖x‖.

Combining these facts leads to the bound∥∥∥∥∥ x

1 +
√

1 + ‖x‖22
− y

1 +
√

1 + ‖y‖22

∥∥∥∥∥ =

∥∥∥∥x− y + xuy − yuy + yuy − yux
(1 + ux)(1 + uy)

∥∥∥∥
=

∥∥∥∥ (x− y)(1 + uy) + y(uy − ux)

(1 + ux)(1 + uy)

∥∥∥∥
=

∥∥∥∥ x− y1 + ux
+

y

1 + uy

uy − ux
1 + ux

∥∥∥∥
≤ ‖x− y‖

1 + ux
+
‖uy − ux‖

1 + ux
≤ ‖x− y‖ .

Lemma F.2 is equivalent to the statement that D(z, ẑ) ≤ D(x, x̂) where z, ẑ are the projections of x, x̂. Since orthogonal
matrices P preserve the `2 norm, P ẑ is the projection of Px̂ so D(z, P ẑ) ≤ D(x, P x̂) for any P . Finally, D(Z,P Ẑ) is
just a sum over all columns and therefore D(Z,P Ẑ) ≤ D(X,PX̂). This implies that DE(Z, Ẑ) ≤ DE(X, X̂) as desired.

The hyperbolic gap The gap D(X, X̂) can be written as a sum
∑
dE(xi, x̂i)

2 over the vectors (columns) of X, X̂ . We
can instead ask about the hyperbolic gap

DH(X, X̂) = inf
{∑

dH(xi, P x̂i)
2 : PTP = I

}
,

which is a better interpretation of the perturbation error when recovering hyperbolic distances.

Note that for any points x, y in the Gans model, we have

dH(x, y) = acosh
(√

1 + ‖x‖2
√

1 + ‖y‖2 − 〈x, y〉
)
≤ acosh

(
2 + ‖x‖2 + ‖y‖2

2
− 〈x, y〉

)
= acosh

(
1 +

1

2
‖x− y‖2

)
.

Furthermore, the function acosh(1 + t2/2) − t is always negative except in a tiny region around t = 0 (and attains a
maximum here on the order of 10−10), so effectively acosh

(
1 + 1

2‖x− y‖
2
)
≤ ‖x− y‖ = dE(x, y), and the same bound

in Lemma F.1 carries over to the hyperbolic gap.

G. Proof of Lemma 4.3
In this section, we prove Lemma 4.3, which gives a setting under which we can guarantee that the hyperbolic PGA objective
is locally convex.

Proof of Lemma 4.3. We begin by considering the component function

fi(γ) = acosh2(1 + d2E(γ, vi)).
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Here, the γ is a geodesic through the origin. We can identify this geodesic on the Poincaré disk with a unit vector u such
that γ(t) = (2t− 1)u. In this case, simple Euclidean projection gives us

d2E(γ, vi) = ‖(I − uuT )vi‖2.

Optimizing over γ is equivalent to optimizing over u, and so

fi(u) = acosh2
(
1 + ‖(I − uuT )vi‖2

)
.

If we define the functions
h(γ) = acosh2(1 + γ)

and
R(u) = ‖(I − uuT )vi‖2 = ‖vi‖2 − (uT vi)

2

then we can rewrite fi as
fi(u) = h(R(u)).

Now, optimizing over u is an geodesic optimization problem on the hypersphere. Every goedesic on the hypersphere can be
isometrically parameterized in terms of an angle θ as

u(θ) = x cos(θ) + y sin(θ)

for orthogonal unit vectors x and y. Without loss of generality, suppose that yT vi = 0 (we can always choose such a y
because there will always be some point on the geodesic that is orthogonal to vi). Then, we can write

R(θ) = ‖vi‖2 − (xT vi)
2 cos2(θ) = ‖vi‖2 − (xT vi)

2 + (xT vi)
2 sin2(θ).

Differentiating the objective with respect to θ,

d

dθ
h(R(θ)) = h′(R(θ))R′(θ)

= 2h′(R(θ)) · (vTi x)2 · sin(θ) cos(θ).

Differentiating again,

d2

dθ2
h(R(θ)) = 4h′′(R(θ)) · (vTi x)4 · sin2(θ) cos2(θ) + 2h′(R(θ)) · (vTi x)2 ·

(
cos2(θ)− sin2(θ)

)
.

Now, suppose that we are interested in the Hessian at a point z = x cos(θ) + y sin(θ) for some fixed angle θ. Here,
R(θ) = R(z), and as always vTi z = vTi x cos(θ), so

d2

dθ2
h(R(θ))

∣∣
u(θ)=z

= 4h′′(R(θ)) · (vTi x)4 · sin2(θ) cos2(θ) + 2h′(R(θ)) · (vTi x)2 ·
(
cos2(θ)− sin2(θ)

)
= 4h′′(R(z)) · (vTi z)

4

cos4(θ)
· sin2(θ) cos2(θ) + 2h′(R(z)) · (vTi x)2

cos2(θ)
·
(
cos2(θ)− sin2(θ)

)
= 4h′′(R(z)) · (vTi z)4 · tan2(θ) + 2h′(R(z)) · (vTi z)2 ·

(
1− tan2(θ)

)
= 2h′(R(z)) · (vTi z)2 +

(
4h′′(R(z)) · (vTi z)4 − 2h′(R(z)) · (vTi z)2

)
tan2(θ).

But we know that since h is concave and increasing, this last expression in parenthesis must be negative. It follows that a
lower bound on this expression for fixed z will be attained when tan2(θ) is maximized. For any geodesic through z, the
angle θ is the distance along the geodesic to the point that is (angularly) closest to vi. By the Triangle inequality, this will be
no greater than the distance θ along the Geodesic that connects z with the normalization of vi. On this worst-case geodesic,

vTi z = ‖vi‖ cos(θ),

and so

cos2(θ) =
(vTi z)

2

‖vi‖2
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and

tan2(θ) = sec2(θ)− 1 =
‖vi‖2

(vTi z)
2
− 1 =

R(z)

(vTi z)
2
.

Thus, for any geodesic, for the worst-case angle θ,

d2

dθ2
h(R(θ))

∣∣
u(θ)=z

≥ 2h′(R(z)) · (vTi z)2 +
(
4h′′(R(z)) · (vTi z)4 − 2h′(R(z)) · (vTi z)2

)
tan2(θ)

= 2h′(R(z)) · (vTi z)2 +
(
4h′′(R(z)) · (vTi z)2 − 2h′(R(z))

)
R(z).

From here, it is clear that this lower bound on the second derivative (and as a consequence local convexity) is a function
solely of the norm of vi and the residual to z. From simple evaluation, we can compute that

h′(γ) = 2
acosh(1 + γ)√

γ2 + 2γ

and

h′′(x) = 2

√
γ2 + 2γ − (1 + γ) acosh(1 + γ)

(γ2 + 2γ)3/2
.

As a result

4γh′′(γ) + h′(γ) = 8
γ
√
γ2 + 2γ − (γ2 + γ) acosh(1 + γ)

(γ2 + 2γ)3/2
+ 2

(γ2 + 2γ) acosh(1 + γ)

(γ2 + 2γ)3/2

= 2
4γ
√
γ2 + 2γ − 4(γ2 + γ) acosh(1 + γ) + (γ2 + 2γ) acosh(1 + γ)

(γ2 + 2γ)3/2

= 2
4γ
√
γ2 + 2γ − (3γ2 + 2γ) acosh(1 + γ)

(γ2 + 2γ)3/2
.

For any γ that satisfies 0 ≤ γ ≤ 1,
4γ
√
γ2 + 2γ ≥ (3γ2 + 2γ) acosh(1 + γ)

and so
4γh′′(γ) + h′(γ) ≥ 0.

Thus, if 0 ≤ R(z) ≤ 1,

d2

dθ2
h(R(θ))

∣∣
u(θ)=z

≥ 2h′(R(z)) · (vTi z)2 +
(
4h′′(R(z)) · (vTi z)2 − 2h′(R(z))

)
R(z)

= h′(R(z)) · (vTi z)2 + (4h′′(R(z)) ·R(z) + h′(R(z))) · (vTi z)2 − 2h′(R(z)) ·R(z)

≥ h′(R(z)) · (vTi z)2 − 2h′(R(z)) ·R(z)

= h′(R(z)) ·
(
‖vi‖2 −R(z)

)
− 2h′(R(z)) ·R(z)

= h′(R(z)) ·
(
‖vi‖2 − 3R(z)

)
.

Thus, a sufficient condition for convexity is for (as we assumed above) R(z) ≤ 1 and

‖vi‖2 ≥ 3R(z).

Combining these together shows that if

acosh2
(
1 + dE(γ, vi)

2
)

= R(z) ≤ min

(
1,

1

3
‖vi‖2

)
then fi is locally convex at z. The result of the lemma now follows from the fact that f is the sum of many fi and the sum of
convex functions is also convex.
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Dataset Nodes Edges C-H2 MAP
Wikipedia Category Hierarchy 77836 151941 0.604

Table 6. MAP measure for Wikipedia category hierarchy. Closer to 1 is better.

ε = 0.1 ε = 1.0
Dataset Nodes Edges dmax Time Scaling Factor Precision Scaling Factor Precision
Bal. Tree 1 40 39 4 3.78 23.76 102 4.32 18
Phylo. Tree 344 343 16 3.13 55.02 2361 10.00 412
WordNet 74374 75834 404 1346.62 126.11 2877 22.92 495
CS PhDs 1025 1043 46 4.99 78.30 2358 14.2 342
Diseases 516 1188 24 3.92 63.97 919 13.67 247
Protein - Yeast 1458 1948 54 6.23 81.83 1413 15.02 273
Gr-QC 4158 13428 68 75.41 86.90 1249 16.14 269
California 5925 15770 105 114.41 96.46 1386 19.22 245

Table 7. Combinatorial construction parameters and results.

H. Experimental Results
In this section, we provide some additional experimental results and details. We also present results on two additional
less tree-like graphs (a search engine query response graph for the search term ‘California’ (Kleinberg, 1999) and a page
category hierarchy for Wikipedia built using the WikiPrep tool (Gabrilovich & Markovitch, 2007)). For the latter graph, we
used the combinatorial construction with parameter ε = 0.1; the result is shown in Table 6.

Combinatorial Construction: Parameters To improve the intuition behind the combinatorial construction, we report
some additional parameters used by the construction. For each of the graphs, we report the maximum degree, the scaling
factor τ that the construction used (note how these vary with the size of the graph and the maximal degree), the time it took
to perform the embedding in seconds, and the number of bits needed to store a component for ε = 0.1 and ε = 1.0.

WordNet Relationship Embedding Details Table 4 is based off previous work on compressing entity-relationship-entity
triples, and measures how effectively the embedding preserves relationship knowledge. Three relationship graphs were
embedded separately, and a relationship prediction for a pair of entities is given by the embedding in which they are closest.
We test pairs of entities based off Socher et al. (2013)’s train set, where correctness means the top prediction coincides with
the true relationship (the graph where they are 1 edge apart).

Hyperparameter: Effect of Rank We also considered the influence of the dimension on the performance of h-MDS,
PCA, and FB. On the Phylogenetic tree dataset, we measured distortion and MAP metrics for dimensions of 2,5,10,50,100,
and 200. The results are shown in Table 8. We expected all of the techniques to improve with larger rank, and this was the
case as well. Here, the optimization-based approach typically produces the best MAP, optimizing the fine details accurately.
We observe that the gap is closed when considering 2-MAP (that is, MAP where the retrieved neighbors are at distance up

MAP 2-MAP davg
Rank h-MDS PCA FB h-MDS PCA FB h-MDS PCA FB

Rank 2 0.346 0.614 0.718 0.754 0.874 0.802 0.317 0.888 0.575
Rank 5 0.439 0.627 0.761 0.844 0.905 0.950 0.083 0.833 0.583
Rank 10 0.471 0.632 0.777 0.857 0.912 0.953 0.048 0.804 0.586
Rank 50 0.560 0.687 0.784 0.880 0.962 0.974 0.036 0.768 0.584

Rank 100 0.645 0.698 0.795 0.926 0.999 0.981 0.036 0.760 0.583
Rank 200 0.823 1.0 0.811 0.968 1.0 0.986 0.039 0.746 0.583

Table 8. Phylogenetic tree dataset. Variation with rank, measured with MAP, 2-MAP, and davg .
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Rank No Scale Learned Scale Exp. Weighting
50 0.481 0.508 0.775

100 0.688 0.681 0.882
200 0.894 0.907 0.963

Table 9. Ph.D. dataset. Improved MAP performance of PyTorch implementation using a modified PGA-like loss function.

Precision Davg MAP
128 0.357 0.347
256 0.091 0.986
512 0.076 1.0
1024 0.064 1.0

Table 10. h-MDS recovery at different precision levels for a 3-ary tree and rank 10.

to 2 away). In particular we see that the main limitation of h-MDS is at the finest layer, confirming the idea that MAP is
heavily influenced by local changes. In terms of distortion, we found that h-MDS offers good performance even at a very
low dimension (0.083 at 5 dimensions).

Learned Scale In Table 9, we verify the importance of scaling that our analysis suggests; our PyTorch implementation
has a simple learned scale parameter. Moreover, we added an exponential weighting to the distances in order to penalize
long paths, thus improving the local reconstruction. These techniques indeed improve the MAP; in particular, the learned
scale provides a better MAP at lower rank. We hope these techniques can be useful in other embedding techniques.

Precision Experiment (cf Table 10). Finally, we considered the effect of precision on h-MDS for a balanced tree and
fixed dimension 10.


