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A. Summary of prediction and control videos

Table A.1. Representative trajectory prediction videos. Each shows several rollouts from different initial states for a single model trained
on random control inputs. The labels encode the videos’ contents: [Prediction/Control].[Fixed/Parameterized/System ID].[(System
abbreviation)]

Fixed Parametrized System ID

Pendulum link-P.F.Pe link-P.P.Pe link-P.I.Pe
Cartpole link-P.F.Ca link-P.P.Ca link-P.I.Ca
Acrobot link-P.F.Ac - -
Swimmer6 link-P.F.S6 - -

(eval. DDPG) link-P.F.S6(D) - -
SwimmerN link-P.F.SN link-P.P.S6 link-P.I.S6

(zero-shot) link-P.F.SN(Z) - -
Cheetah link-P.F.Ch link-P.P.Ch link-P.I.Ch
Walker2d link-P.F.Wa - -
JACO link-P.F.JA link-P.P.JA link-P.I.JA
Multiple systems link-P.F.MS link-P.P.MS -

(with cheetah) link-P.F.MC - -
Real JACO link-P.F.JR - -

Table A.2. Representative control trajectory videos. Each shows several MPC trajectories from different initial states for a single trained
model. The labels encode the videos’ contents: [Prediction/Control].[Fixed/Parameterized/System ID].[(System abbreviation)]

Fixed Parametrized System ID

Pendulum (balance) link-C.F.Pe link-C.P.Pe link-C.I.Pe
Cartpole (balance) link-C.F.Ca link-C.P.Ca link-C.I.Ca
Acrobot (swing up) link-C.F.Ac - -
Swimmer6 (reach) link-C.F.S6 - -
SwimmerN (reach) link-C.F.SN link-C.P.SN link-C.I.SN

” baseline link-C.F.SN(b) - -
Cheetah (move) link-C.F.Ch(m) link-C.P.Ch link-C.I.Ch
Cheetah (k rewards) link-C.F.Ch(k) - -
Walker2d (k rewards) link-C.F.Wa(k) - -
JACO (imitate pose) link-C.F.JA(o) link-C.P.JA(o) link-C.I.JA(o)
JACO (imitate palm) link-C.F.JA(a) link-C.P.JA(a) link-C.I.JA(a)
Multiple systems link-C.F.MS link-C.P.MS -
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B. Description of the simulated environments

Name
(Timestep)

Number
of bodies
(inc.
world)

Generalized
coordinates

Actions Random parametrizationa

(relative range of variation,
uniformly sampled)

Pendulum
(20 ms)

2 Total: 1
1: angle of pendulum

1: rotation torque at axis Length (0.2-1)
Mass (0.5-3)

Cartpole
(10 ms)

3 Total: 2
1: horizontal position of cart
1: angle of pole

1: horizontal force to cart Mass of cart (0.2-2)
Length of pole (0.3-1)
Thickness (0.4-2.2) of pole

Acrobot
(10 ms)

3 Total: 2
2: angle of each of the links
angle of pole

1: rotation force between
the links

N/A

SwimmerN
(20 ms)

N+1 Total: N+2
2: 2-d position of head
1: angle of head
N-1: angle of rest of links

N-1: rotation force be-
tween the links

Number of links (3 to 9 links)
Individual lengths of links (0.3-2)
Thickness (0.5-5)

Cheetah
(10 ms)

8 Total: 9
2: 2-d position of torso
1: angle of torso
6: thighs, shins and feet an-
gles

6: rotation force at thighs,
shins and feet

Base angles (-0.1 to 0.1 rad)
Individual lengths of bodies (0.5-2
approx.)
Thickness (0.5-2)

Walker2d
(2.5 ms)

8 Total: 9
2: 2-d position of torso
1: angle of torso
6: thighs, leg and feet angles

6: rotation at hips, knees
and ankles

N/A

Jaco
(100 ms)

10 Total: 9
3: angles of coarse joints
3: angles of fine joints
3: angles of fingers

9: velocity target at each
joint

Individual body masses (0.5-1.5)
Individual motor gears (0.5-1.5).

aDensity of bodies is kept constant for any changes in size.

C. System data
C.1. Random control

Unless otherwise indicated, we applied random control inputs to the system to generate the training data. The control
sequences were randomly selected time steps from spline interpolations of randomly generated values (see SM Figure C.1).
A video of the resulting random system trajectories is here: Video.
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Figure C.1. Sample random sequences obtained from the same distribution than that used to generate random system data to train the
models. Sample trajectory video: Video.

https://drive.google.com/file/d/14eYTWoH15T53a7qejvCkDLItOOE9Ve7S/view?usp=sharing
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C.2. Datasets

For each of the individual fixed systems, we generated 10000 100-step sequences corresponding to about 106 supervised
training examples. Additionally, we generated 1000 sequences for validation, and 1000 sequences for testing purposes.

In the case of the parametrized environments, we generated 20000 100-step sequences corresponding to about 2 · 106

supervised training examples. Additionally, we generated 5000 sequences for validation, and 5000 sequences for testing
purposes.

Models trained on multiple environments made use of the corresponding datasets mixed within each batch in equal
proportion.

C.3. Real JACO

The real JACO data was obtained under human control during a stacking task. It consisted of 2000 (train:1800, valid:100,
test:100) 100-step (timestep 40 ms) trajectories. The instantaneous state of the system was represented in this case by
proprioceptive information consisting of joint angles (cosine and sine) and joint velocities for each connected body in the
JACO arm, replacing the 13 variables in the dynamic graph.

As the Real JACO observations correspond to the generalized coordinates of the simulated JACO Mujoco model, we use the
simulated JACO to render the Real JACO trajectories throughout the paper.

D. Implementation of the models
D.1. Framework

Algorithms were implemented using TensorFlow and Sonnet. We used custom implementations of the graph networks
(GNs) as described in the main text.

D.2. Graph network architectures

Standard sizes and output sizes for the GNs used are:

• Edge MLP: 2 or 3 hidden layers. 256 to 512 hidden cells per layer.

• Node and Global MLP: 2 hidden layers. 128 to 256 hidden cells per layer.

• Updated edge, node and global size: 128

• (Recurrent models) Node, global and edge size for state graph: 20

• (Parameter inference) Node, global and edge size for abstract static graph: 10

All internal MLPs used layer-wise ReLU activation functions, except for output layers.

D.3. Data normalization

The two-layer GN core is wrapped by input and output normalization blocks. The input normalization performs linear
transformations to produce a zero-mean, unit-variance distributions for each of the global, node and edge features. It is
worth noting that for node/edge features, the same transformation is applied to all nodes/edges in the graph, without having
specific normalizer parameters for different bodies/edges in the graph. This allows to reuse the same normalizer parameters
regardless of the number and type of nodes/edges in the graph. This input normalization is also applied to the observed
dynamic graph in the parameter inference network.

Similarly, inverse normalization is applied to the output nodes of the forward model, to guarantee that the network only
needs to output nodes with zero-mean and unit-variance.

No normalization is applied to the inferred static graph (from the system identification model), in the output of the parameter
inference network, nor the input forward prediction network, as in this case the static graph is already represented in a latent
feature space.
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Algorithm D.1 Forward prediction algorithm.
Input: trained GNs GN1, GN2 and normalizers Normin, Normout.
Input: dynamic state xt0 and actions applied xt0 to a system at the current timestep.
Input: system parameters p
Build static graph Gs using p
Build input dynamic nodes N t0

d using xt0
Build input dynamic edges Et0d using at0
Build input dynamic graph Gd using N t0

d and Et0d
Build input graph Gi = concat(Gs, Gd)
Obtain normalized input graph Gni = Normin(Gi)

Obtain graph after the first GN: G
′

= GN1(Gni )

Obtain normalized predicted delta dynamic graph: G∗ = GN2(concat(Gni , G
′
))

Obtain normalized predicted delta dynamic nodes: ∆Nn
d = G∗.nodes

Obtain predicted delta dynamic nodes: ∆Nd = Norm−1out(∆N
n
d )

Obtain next dynamic nodes N t0+1
d by updating N t0

d with ∆Nd
Extract next dynamic state xt0+1 from N t0+1

d

Output: next system state xt0+1

Algorithm D.2 Forward prediction with System ID.
Input: trained parameter inference recurrent GN GNp.
Input: trained GNs and normalizers from Algorithm D.1.
Input: dynamic state xt0 and actions applied xt0 to a parametrized system at the current timestep.
Input: a 20-step sequence of observed dynamic states xseq and actions xseq for same instance of the system.
Build dynamic graph sequence Gseq

d using xseq
i and aseq

i

Obtain empty graph hidden state Gh.
for each graph Gtd in Gseq

d do
Go,Gh = GNp(Normin(Gtd),Gh),

end for
Assign GID = Go
Use GID instead of Gs in Algorithm D.1 to obtain xt0+1 from xt0 and xt0
Output: next system state xt0+1

D.4. System invariance

When training individual models for systems with translation invariance (Swimmer, Cheetah and Walker2d), we always
re-centered the system around 0 before the prediction, and moved it back to its initial location after the prediction. This
procedure was not applied when multiple systems were trained together.

D.5. Prediction of dynamic state change

Instead of using the one-step model to predict the absolute dynamic state, we used it to predict the change in dynamic state,
which was then used to update the input dynamic state. For the position, linear velocity, and angular velocity, we updated
the input by simply adding their corresponding predicted changes. For orientation, where the output represents the rotation
quaternion between the input orientation and the next orientation (forced to have unit norm), we computed the update using
the Hamilton product.

D.6. Forward prediction algorithms

D.6.1. ONE-STEP PREDICTION

Our forward model takes the system parameters, the system state and a set of actions, to produce the next system state as
explained in SM Algorithm D.1.

D.6.2. ONE-STEP PREDICTION WITH SYSTEM ID
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Algorithm D.3 One step of the training algorithm
Before training: initialize weights of GNs GN1, GN2 and accumulators of normalizers Normin, Normout.
Input: batch of dynamic states of the system {xt0} and actions applied {at0} at the current timestep
Input: batch of dynamic states of the system at the next timestep {xt0+1}
Input: batch of system parameters {pi}
for each example in batch do

Build static graph Gs using pi
Build input dynamic nodes N t0

d using xt0
Build input dynamic edges Et0d using at0
Build output dynamic nodes N t0+1

d using xt0+1

Add noise to input dynamic nodes N t0
d

Build input dynamic graph Gd using N t0
d and Et0d

Build input graph Gi = concat(Gs, Gd)
Obtain target delta dynamic nodes ∆N ′d from N t0+1

d and N t0
d

Update Normin using Gi
Update Normout using ∆Nd
Obtain normalized input graph Gni = Normin(Gi)

Obtain normalized target nodes: ∆Nn′

d = Normout(∆N
′
d)

Obtain normalized predicted delta dynamic nodes: ∆Nn
d = GN2(concat(Gni ,GN1(Gni ))).nodes

Calculate dynamics prediction loss between ∆Nn
d and ∆Nn′

d .
end for
Update weights of GN1, GN2 using Adam optimizer on the total loss with gradient clipping.

For the System ID foward predictions the model takes a system state and a set of actions for a specific instance of a
parametrized system, together with a sequence of observed system states and actions for a for the same system instance. The
observed sequence is used to identify the system and then produce the next system state as described in Algorithm D.2.

In the case of rollout predictions, the System ID is only performed once, on the provided observed sequence, using the same
graph for all of the one-step predictions required to generate the trajectory.

D.7. Training algorithms

D.7.1. ONE-STEP

We trained the one-step forward model in a supervised manner using algorithm D.3. Part of the training required finding
mean and variance parameters for the input and output normalization, which we did online by accumulating information
(count, sum and squared sum) about the distributions of the input edge/node/global features, and the distributions of the
change in the dynamic states of the nodes, and using that information to estimate the mean and standard deviation of each of
the features.

Due to the fact that our representation of the instantaneous state of the bodies is compatible with configurations where the
joint constraints are not satisfied, we need to train our model to always produced outputs within the manifold of configurations
allowed by the joints. This was achieved by adding random normal noise (magnitude set as a hyper-parameter) to the nodes
of the input dynamic graph during training. As a result, the model not only learns to make dynamic predictions, but to put
back together systems that are slightly dislocated, which is key to achieve small rollout errors.

D.7.2. ABSTRACT PARAMETER INFERENCE

The training of the parameter inference recurrent GN is performed as described in Algorithm D.4. The recurrent GN and
the dynamics GN are trained together end-to-end by sampling a random 20-step sequence for the former, and a random
supervised example for the latter from 100-step graph sequences, with a single loss based on the prediction error for the
supervised example. This separation between the sequence at the supervised sample, encourages the recurrent GN to truly
extract abstract static properties that are independent from the specific 20-step trajectory, but useful for making dynamics
predictions under any condition.
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Algorithm D.4 End-to-end training algorithm for System ID.
Before training: initialize weights of parameter inference recurrent GN GNp, as well as weights from Algorithm D.3.
Input: a batch of 100-step sequences with dynamic states {xseq

i } and actions {xseq
i }

for each sequence in batch do
Pick a random 20-step subsequence xsubseq

i and asubseq
i .

Build dynamic graph sequence Gsubseq
d using xsubseq

i and asubseq
i

Obtain empty graph hidden state Gh.
for each graph Gtd in Gsubseq

d do
Go,Gh = GNp(Normin(Gtd),Gh),

end for
Assign GID = Go
Pick a different random timestep t0 from {xseqi }, {x

seq
i }

Apply Algorithm D.3 to timestep t0 using final GID instead Gs to obtain the dynamics prediction loss.
end for
Update weights of GNp, GN1, GN2 using Adam optimizer on the total loss with gradient clipping.

D.7.3. RECURRENT ONE-STEP PREDICTIONS

The one-step prediction recurrent model, used for the Real JACO predictions, is trained from 21-step sequences using the
teacher forcing method. The first 20 graphs in the sequence are used as input graphs, while the last 20 graphs in the sequence
are used as target graphs. During training, the recurrent model is used to sequentially process the input graphs, producing at
each step a predicted dynamic graph, which is stored, and a graph state, which is fed together with the next input graph in
the next iteration. After processing the entire sequence, the sequence of predicted dynamic graphs and the target graphs are
used together to calculate the loss.

D.7.4. LOSS

We use a standard L2-norm between the normalized expected and predicted delta nodes, for the position, linear velocity, and
angular velocity features. We do this for the normalized features to guarantee a balanced relative weighting between the
different features. In the case of the orientation, we cannot directly calculate the L2-norm between the predicted rotation
quaternion qp to the expected rotation quaternion qe, as a quaternion q and −q represent the same orientation. Instead, we
minimize the angle distance between qp and qe by minimizing the loss 1− cos2 (qe·qp) after.

D.8. Training details

Models were trained with a batch size of 200 graphs/graph sequences, using an Adam optimizer on a single GPU. Starting
learning rates were tuned at 1−4. We used two different exponential decay with factor of 0.975 updated every 50000 (fast
training) or 200000 (slow training) steps.

We trained our models using early stopping or asymptotic convergence based the rollout error on 20-step sequences from the
validation set. Simple environments (such as individual fixed environments) would typically train using the fast training
configuration for a period between less than a day to a few days, depending on the size of the environment and the size of the
network. Using slow training in these cases only yields a marginal improvement. On the other hand, more complex models
such as those learning multiple environments and multiple parametrized environments benefited from the slow training to
achieve optimal behavior for periods of between 1-3 weeks.

E. MLP baseline architectures
For the MLP baselines, we used 5 different models (ReLU activation) spanning a large capacity range:

• 3 hidden layers, 128 hidden cells per layer

• 3 hidden layers, 512 hidden cells per layer

• 9 hidden layers, 128 hidden cells per layer
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Algorithm F.1 MPC algorithm
Input: initial system state x0,
Input: randomly initialized sequence of actions {at}.
Input: pretrained dynamics model M such
xt0+1 = M(xt0 , at0)
Input: Trajectory cost function L such
c = C({xt}, {at})
for a number of iterations do

x0r = x0
for t in range(0, horizon) do

xt+1
r = M(xtr, at)

end for
Calculate trajectory cost c = C({xtr}, {at})
Calculate gradients {gta} = ∂c

∂{at}
Apply gradient based update to {at}

end for
Output: optimized action sequence {at}

• 9 hidden layers, 512 hidden cells per layer

• 5 hidden layers, 256 hidden cells per layer

The corresponding MLP replaces the 2-layer GN core, with additional layers to flatten the input graphs into feature batches,
and to reconstruct the graphs at the output. Both normalization and graph update layers are still applied at graph level, in the
same way that for the GN-based model.

Each of the models was trained four times using initial learning rates of 1−3 and 1−4 and learning rate decays every 50000
and 200000 steps. The model performing best on validation rollouts for each environment, out of the 20 hyperparameter
combinations was chosen as the MLP baseline.

F. Control
F.1. Model-based planning algorithms

F.1.1. MPC PLANNER WITH LEARNED MODELS

We implemented MPC using our learned models as explained in SM Algorithm F.1. We applied the algorithm in a receding
horizon manner by iteratively planning for a fixed horizon (see SM Table F.2), applying the first action of the sequence, and
increasing the horizon by one step, reusing the shifted optimal trajectory computed in the previous iteration. We typically
performed between 3 and 51 optimization iterations N from each initial state, with additional N · horizon iterations at the
very first initial state, to warm-up the fully-random initial action sequence.

F.1.2. BASELINE MUJOCO-BASED PLANNER

As a baseline planning approach we used the iterative Linear-Quadratic-Gaussian (iLQG) trajectory optimization approach
proposed in (Tassa et al., 2014). This method alternates between forward passes (rollouts) which integrate the dynamics
forward for a current control sequence and backwards passes which consists of perturbations to the control sequence to
improve upon the recursively computed objective function. Note that in the backwards pass, each local perturbation can be
formulated as an optimization problem, and linear inequality constraints ensure that the resulting control trajectory does not
require controls outside of the range that can be feasibly generated by the corresponding degrees of freedom in the MuJoCo
model. The overall objective optimized corresponds to the total cost over J a finite horizon:

J(x0, U) =

T−1∑
t=0

`(xt, ut) + `(xT ) (1)
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where x0 is the initial state, ut is the control signal (i.e. action) taken at timestep t, U is the trajectory of controls, `(·) is the
cost function. We assume the dynamics are deterministic transitions xt+1 = f(xt, ut).

While this iLQG planner does not work optimally when the dynamics involve complex contacts, for relatively smooth
dynamics as found in the swimmer, differential dynamic programming (DDP) style approaches works well (Tassa et al.,
2008). Relevant cost functions are presented in SM Section F.2.

F.2. Planning configuration

Name Task Planning
horizon

Reward to maximize (summed for all timesteps)

Pendulum Balance 50, 100 Negative angle between the quaternion of the pendulum and the target
quaternion corresponding to the balanced position. (0 when balanced at
the top, < 0 otherwise).

Cartpole Balance 50, 100 Same as Pendulum-Balance calculated for the pole.

Acrobot Swing up 100 Same as Pendulum-Balance summed for both acrobot links.

Swimmer Mover towards target 100 Projection of the displacement vector of the Swimmer head from the
previous timestep on the target direction, The target direction is calcu-
lated as the vector joining the head of the swimmer at the first planning
timestep with the target location. The reward is shaped (0.01 contribu-
tion) with the negative squared projection on the perpendicular target
direction.

Cheetah Move forward 20 Horizontal component of the absolute velocity of the torso.

Vertical position 20 Vertical component of the absolute position of the torso.

Squared vertical speed 20 Squared vertical component of the absolute velocity of the torso.

Squared angular speed 20 Squared angular velocity of the torso.

Walker2d Move forward 20 Horizontal component of the absolute velocity of the torso.

Vertical position 20 Vertical component of the absolute position of the torso.

Inverse verticality 20 Same as Pendulum-Balance summed for torso, thighs and legs.

Feet to head height 20 Summed squared vertical distance between the position of each of the
feet and the height of Walker2d.

Jaco Imitate Palm Pose 20 Negative dynamic-state loss (as described in Section D.7.4) between the
position-and-orientation of the body representing the JACO palm and
the target position-and-orientation .

Imitate Full Pose 20 Same as Jaco-Imitate Palm Pose but summed across all the bodies form-
ing JACO (see SM Section D.7.4).

F.3. Reinforcement learning agents

Our RL experiments use three base algorithms for continuous control: DDPG (Lillicrap et al., 2016), SVG(0) and
SVG(N) (Heess et al., 2015). All of these algorithms find a policy π that selects an action a in a given state x by maximizing
the expected discounted reward,

Q(x,a) = E
[ ∞∑
t=0

γtr(x,a)
]
, (2)

where r(x, a) is the per-step reward and γ denotes the discount factor. Learning in all algorithms we consider occurs
off-policy. That is, we continuously generate experience via the current best policy π, storing all experience (sequences of
states, actions and rewards) it into a replay buffer B, and minimize a loss defined on samples from B via stochastic gradient
descent.
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F.3.1. DDPG

The DDPG algorithm (Lillicrap et al., 2016) learns a deterministic control policy π = µθ(s) with parameters θ and a
corresponding action-value function Qµφ(s, a), with parameters φ. Both of these mapping are parameterized via neural
networks in our experiments.

Learning proceeds via gradient descent on two objectives. The objective for learning the Q function is to minimize the
one-step Bellman error using samples from a replay buffer, that is we seek to find arg minφ L(φ) by following the gradient,

∇φL(φ) = E(xt,at,xt+1,rt)∈B

[
∇φ
(
Qµφ(xt,at)− y

)2]
,

with y = rt + γQµφ′(xt+1, µθ′(xt+1))
(3)

where φ′ and θ′ denote the parameters of target Q-value and policy networks, that are periodically copied from the current
parameters, this is common practice in RL to stabilize training (we update the target networks every 1000 gradient steps).
The objective for learning the policy is performed by searching for an action that obtains maximum value, as judged by the
learned Q-function. That is we find arg minθ L(θ) by following the deterministic policy gradient (Lillicrap et al., 2016),

∇θLDPG(θ) = Ext∈B

[
−∇θQµθ (xt, µθ(xt))

]
. (4)

F.3.2. SVG

For our experiments with the familiy of Stochastic Value Gradient (SVG) (Heess et al., 2015) algorithms we considered
two-variants a model-free baseline SVG(0) that optimizes a stochastic policy based on a learned Q-function as well as a
model-based version SVG(N) (using our Graph Net model) that unrolls the system dynamics for N-steps.

SVG(0) In the model-free variant learning proceeds similarly to the DDPG algorithm. We learn both, a parametric Q-value
estimator as well as a (now stochastic) policy πθ(a|x) from which actions can be sampled. In our implementation learning
of the Q-function is performed by following the gradient from Equation (3), with µ(x) replaced by samples a ∼ πθ(a|x).

For the policy learning step we can learn via a stochastic analogue of the deterministic policy gradient from Equation (4),
the so called stochastic value gradient, which reads

∇θLSVG(θ) = −∇θE xt∈B
a∼πθ(a|xt)

[
Qπθ (xt, ·)

]
. (5)

For a Gaussian policy (as used in this paper) the gradient of this expectation can be calculated via the reparameterization
trick (Kingma & Welling, 2014; Rezende et al., 2014).

SVG(N) For the model based version we used a variation of SVG(N) that employs an action-value function – instead of
the value function estimator used in the original paper. This allowed us to directly compare the performance of a SVG(0)
agent, which is model free, with SVG(1) which calculates policy gradients using a one-step model based horizon.

In particular, similar to Equation (5), we obtain the model based policy gradient as

∇θLSVG(N)(θ) = −∇θE xt∈B
at∼πθ(a|xt)

at+1∼πθ(a|xt+1)

[
rt(xt,at) + γQπθ (xt+1,at) | xt+1 = g(xt,at)

]
, (6)

where g denotes the dynamics, as predicted by the GN and the gradient can, again, be computed via reparameterization (we
refer to Heess et al. (2015) for a detailed discussion).

We experimented with SVG(1) on the swimmer domain with six links (Swimmer 6). Since in this case, the goal for the
GN is to predict environment observations (as opposed to the full state for each body), we constructed a graph from the
observations and actions obtained from the environment. SM Figure H.3 describes the observations and actions and shows
how they were transformed into a graph.
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G. Mujoco variables included in the graph conversion
G.1. Dynamic graph

We retrieved the the absolute position, orientation, linear and angular velocities for each body:

• Global: None

• Nodes: (for each body)
Absolute body position (3 vars): mjData.xpos
Absolute body quaternion orientation position (4 vars): mjData.xquat
Absolute linear and angular velocity (6 vars): mj objectVelocity (mjOBJ XBODY, flg local=False)

• Edges: (for each joint) Magnitude of action at joint: mjData.ctrl (0, if not applicable).

G.2. Static graph

We performed an exhaustive selection of global, body, and joint static properties from mjModel:

• Global: mjModel.opt.{timestep, gravity, wind, magnetic, density, viscosity, impratio, o margin, o solref, o solimp,
collision type (one-hot), enableflags (bit array), disableflags (bit array)}.

• Nodes: (for each body) mjModel.body {mass, pos, quat, inertia, ipos, iquat}.

• Edges: (for each joint)
Direction of edge (1: parent-to-child, -1: child-to-parent).
Motorized flag (1: if motorized, 0 otherwise).
Joint properties: mjModel.jnt {type (one-hot), axis, pos, solimp, solref, stiffness, limited, range, margin}.
Actuator properties: mjModel.opt.actuator {biastype (one-hot), biasprm, cranklength, ctrllimited, ctrlrange, dyntype
(one-hot), dynprm, forcelimited, forcerange, gaintype (one-hot), gainprm, gear, invweight0, length0, lengthrange}.

Most of these properties are constant for all environments use, however, they are kept for completeness. While we do not
include geom properties such as size, density or shape, this information should be partially encoded in the inertia tensor
together with the mass.
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Figure H.1. Model trained on Swimmer6 trajectories under random control evaluated on a trajectory generated by a DDPG agent.
Trajectories are also available in video [link-P.F.S6(D)]. (Left) Key-frames comparing the ground truth and predicted sequence within a
100 step trajectory. (Right) Full state sequence prediction for the third link of the Swimmer, consisting of Cartesian position (3 vars),
quaternion orientation (4 vars), Cartesian linear velocity (3 vars) and Cartesian angular velocity (3 vars). The full prediction contains such
13 variables for each of the links, that is 78 variables.

https://drive.google.com/file/d/1Ge2_lHVKfgTl_xvqJiGXShcB9iKnopW1/view?usp=sharing
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Figure H.2. Ablation study of the architecture using the rollout error over 20 step test sequences in Swimmer6 to evaluate relative
performance. The performance of the architecture used in this work (a sequence of two GNs, blue) is compared to: an Interaction Network
(IN) (Battaglia et al., 2016), which is equivalent in this case to a single GN (grey), and a sequence of GNs where the first GN is not
allowed to update either the global (red), the nodes (purple) or the edges(green) of the output graph. Results are shown both for a purely
sequential connection of the GNs, and for a model with a graph skip connection, where the output graph of the first GN, is concatenated to
the input graph, before feeding it into the second GN. The results show that the performance of the double GN is far superior than that of
the equivalent IN. They also show that the global update performed by the GN is necessary for the model to perform well. We hypothesize
this is due to the long range dependencies within the graph that exist within swimmer, and the ability of the global update to quickly
propagate such dependencies across the entire graph. Similar results may have been obtained without global updates by using a deeper
stack of GNs to allow information to flow across the entire graph. Each model was trained from three different seeds. The figure depicts
the mean, and the standard deviation of the asymptotic performance of the three seeds.
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Figure H.3. Arrangement as a graph of the default 25-feature observation and 5 actions provided in the Swimmer 6 task from the DeepMind
Control Suite (Tassa et al., 2018). The observation consists of: (to target) the distance between the head and the target projected in the
axis of the head (xL0-T, yL0-T), (joints) the angle of each joint JN between adjacent swimmer links LN-1 and LN (θJN) and (body velocities)
the linear and angular velocity of each link LN projected in its own axis (vLN

x , vLN
y , ωLN). The actions consists of the force applied to each

of the joints (f JN) connecting the links. Because our graphs are directed, all of the edges were duplicated, with an additional -1, 1 feature
indicating the direction.


