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Abstract
Machine learning methods are widely used for a
variety of prediction problems. Prediction as a
service is a paradigm in which service providers
with technological expertise and computational
resources may perform predictions for clients.
However, data privacy severely restricts the ap-
plicability of such services, unless measures to
keep client data private (even from the service
provider) are designed. Equally important is to
minimize the amount of computation and com-
munication required between client and server.
Fully homomorphic encryption offers a possible
way out, whereby clients may encrypt their data,
and on which the server may perform arithmetic
computations. The main drawback of using fully
homomorphic encryption is the amount of time
required to evaluate large machine learning mod-
els on encrypted data. We combine ideas from the
machine learning literature, particularly work on
binarization and sparsification of neural networks,
together with algorithmic tools to speed-up and
parallelize computation using encrypted data.

1. Introduction
Applications using machine learning techniques have ex-
ploded during the recent years, with “deep learning” tech-
niques being applied on a wide variety of tasks that had
hitherto proved challenging. Training highly accurate ma-
chine learning models requires large quantities of (high qual-
ity) data, technical expertise and computational resources.
An important recent paradigm is prediction as a service,
whereby a service provider with expertise and resources
can make predictions for clients. However, this approach
requires trust between service provider and client; there
are several instances where clients may be unwilling or
unable to provide data to service providers due to privacy
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concerns. Examples include assisting in medical diagnoses
(Kononenko, 2001; Blecker et al., 2017), detecting fraud
from personal finance data (Ghosh & Reilly, 1994), and de-
tecting online communities from user data (Fortunato, 2010).
The ability of a service provider to predict on encrypted data
can alleviate concerns of data leakage.

The framework of fully homomorphic encryption (FHE)
is ideal for this paradigm. Fully homomorphic encryption
schemes support arbitrary computations to be performed di-
rectly on encrypted data without prior decryption. The first
fully homomorphic encryption system was developed just
10 years ago by Gentry (2009), after being an open question
for 30 years (Rivest et al., 1978). Since then several other
schemes have been proposed (Gentry et al., 2012; 2013;
Brakerski & Vaikuntanathan, 2014; Ducas & Micciancio,
2015; Chillotti et al., 2016). However, without significant
changes to machine learning models and improved algo-
rithmic tools, homomorphic encryption does not scale to
real-world machine learning applications.

Indeed, already there have been several recent works trying
to accelerate predictions of machine learning models on
fully homomorphic encrypted data. In general, the approach
has been to approximate all or parts of a machine learning
model to accommodate the restrictions of an FHE frame-
work. Often, certain kind of FHE schemes are preferred
because they allow for “batched” parallel encrypted com-
putations, called SIMD operations (Smart & Vercauteren,
2014). This technique is exemplified by the CryptoNets
model (Gilad-Bachrach et al., 2016). While these models
allow for high-throughput (via SIMD), they are not partic-
ularly suited for the prediction as a service framework for
individual users, as single predictions are slow. Further,
because they employ a leveled homomorphic encryption
scheme, they are unable to perform many nested multi-
plications, a requirement for state-of-the-art deep learning
models (He et al., 2016; Huang et al., 2017).

Our solution demonstrates that existing work on Binary
Neural Networks (BNNs) (Kim & Smaragdis, 2015; Cour-
bariaux et al., 2016) can be adapted to produce efficient and
highly accurate predictions on encrypted data. We show
that a recent FHE encryption scheme (Chillotti et al., 2016)
which only supports operations on binary data can be lever-
aged to compute all of the operations of BNNs. To do so,
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we develop specialized circuits for fully-connected, convo-
lutional, and batch normalization layers (Ioffe & Szegedy,
2015). Additionally we design tricks to sparsify encrypted
computation that reduce computation time even further.

Most similar to our work is Bourse et al. (2017) who use
neural networks with signed integer weights and binary ac-
tivations to perform encrypted prediction. However, this
model is only evaluated on MNIST, with modest accuracy
results, and the encryption scheme parameters depend on
the structure of the model, potentially requiring clients to
re-encrypt their data if the service provider updates their
model. Our framework allows the service provider to update
their model at anytime, and allows one to use binary neural
networks of Courbariaux et al. (2016) which, in particu-
lar, achieve high accuracy on MNIST (99.04%). Another
closely related work is Meehan et al. (2018) who design
encrypted adder and multiplier circuits so that they can im-
plement machine learning models on integers. This can be
seen as complementary to our work on binary networks:
while they achieve improved accuracy because of greater
precision, they are less efficient than our methods (how-
ever on MNIST we achieve the same accuracy with a 29×
speedup, via our sparsification and parallelization tricks).

Private training. In this work, we do not address the
question of training machine learning models with encrypted
data. There has been some recent work in this area (Hardy
et al., 2017; Aono et al., 2017). However, as of now it
appears possible only to train very small models using fully
homomorphic encryption. We leave this for future work.

1.1. Our contributions

In this work, our focus is on achieving speed-ups when
using complex models on fully homomorphic encrypted
data. In order to achieve these speed-ups, we propose sev-
eral methods to modify the training and design of neural
networks, as well as algorithmic tricks to parallelize and
accelerate computation on encrypted data:

• We propose two types of circuits for performing in-
ner products between unencrypted and encrypted data:
reduce tree circuits and sorting networks. We give a
runtime comparison of each method.

• We introduce an easy trick, which we call the +1 trick
to sparsify encrypted computations.

• We demonstrate that our techniques are easily paral-
lelizable and we report timing for a variety of compu-
tation settings on real world datasets, alongside classi-
fication accuracies.
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Figure 1. Encrypted prediction as a service.

2. Encrypted Prediction as a Service
In this section we describe our Encrypted Prediction as
a Service (EPAAS) paradigm. We then detail our privacy
and computational guarantees. Finally, we discuss how
different related work is suited to this paradigm and propose
a solution.

In the EPAAS setting we have any number of clients, say
C1, . . . , Cn that have data x1, . . . ,xn. The clients would
like to use a highly-accurate model f provided by a server
S to predict some outcome. In cases where data x is not
sensitive there are already many solutions for this such as
BigML, Wise.io, Google Cloud AI, Amazon Machine Learn-
ing, among others. However, if the data is sensitive so that
the clients would be uncomfortable giving the raw data
to the server, none of these systems can offer the client a
prediction.

2.1. Privacy and computational guarantees

If data x is sensitive (e.g., x may be the health record of
client C, and f(x) may be the likelihood of heart disease),
then we would like to have the following privacy guarantees:

P1. Neither the server S, or any other party, learn anything
about client data x, other than its size (privacy of the
data).

P2. Neither the client C, or any other party, learn anything
about model f , other than the prediction f(x) given
client data x (and whatever can be deduced from it)
(privacy of the model).
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Table 1. Privacy and computational guarantees of existing methods for sensitive data classification.
Privacy Computation

Prior Work P1 P2 C1 C2 C3(i) C3(ii)
CryptoNets (Gilad-Bachrach et al., 2016) - -

(Chabanne et al., 2017) - -
(Bourse et al., 2017) -

MPC (Mohassel & Zhang, 2017; Liu et al., 2017; Rouhani et al., 2017)
(Riazi et al., 2017; Chase et al.; Juvekar et al., 2018) - - - -

(Meehan et al., 2018), Ours

Further, the main attraction of EPAAS is that the client is
involved as little as possible. More concretely, we wish to
have the following computational guarantees:

C1. No external party is involved in the computation.

C2. The rounds of communication between client and
server should be limited to 2 (send data & receive
prediction).

C3. Communication and computation at the client side
should be independent of model f . In particular, (i) the
server should be able to update f without communicat-
ing with any client, and (ii) clients should not need to
be online during the computation of f(x).

Note that these requirements rule out protocols with pre-
processing stages or that involve third parties. Generally
speaking, a satisfactory solution based on FHE would pro-
ceed as follows: (1) a client generates encryption parameters,
encrypts their data x using the private key, and sends the
resulting encryption x̃, as well as the public key to the server.
(2) The server evaluates f on x̃ leveraging the homomorphic
properties of the encryption, to obtain an encryption f̃(x)
without learning anything whatsoever about x, and sends
f̃(x) to the client. (3) Finally, the client decrypts and recov-
ers the prediction f(x) in the clear. A high level depiction
of these steps is shown in Figure 1.

2.2. Existing approaches

Table 1 describes whether prior work satisfy the above pri-
vacy and computational guarantees. First, note that Cryp-
tonets (Gilad-Bachrach et al., 2016) violates C3(i) and P2.
This is because the clients would have to generate parame-
ters for the encryption according to the structure of f , so we
are able to make inferences about the model (violating P2)
and the client is not allowed to change the model f without
telling the client (violating C3(i)). The same holds for the
work of Chabanne et al. (2017). The approach of Bourse
et al. (2017) requires the server to calibrate the parameters
of the encryption scheme according to the magnitude of
intermediate values, thus C3(i) is not necessarily satisfied.
Closely related to our work is that of Meehan et al. (2018)

which satisfies our privacy and computational requirements.
We will show that our method is significantly faster than
this method, with very little sacrifice in accuracy.

Multi-Party Computation (MPC). It is important to dis-
tinguish between approaches purely based on homomorphic
encryption (described above), and those involving Multi-
Party Computation (MPC) techniques, such as (Mohassel &
Zhang, 2017; Liu et al., 2017; Rouhani et al., 2017; Riazi
et al., 2017; Chase et al.; Juvekar et al., 2018). While gen-
erally MPC approaches are faster, they crucially rely on all
parties being involved in the whole computation, which is
in conflict with requirement C3(ii). Additionally, in MPC
the structure of the computation is public to both parties,
which means that the server would have to communicate
basic information such as the number of layers of f . This is
conflict with requirements P1, C2, and C3(i).

In this work, we propose to use a very tailored homomorphic
encryption technique to guarantee all privacy and computa-
tional requirements. In the next section we give background
on homomorphic encryption. Further, we motivate the en-
cryption protocol and the machine learning model class we
use to satisfy all guarantees.

3. Background
All cryptosystems define two functions: 1. an encryption
function E(·) that maps data (often called plaintexts) to en-
crypted data (ciphertexts); 2. a decryption function D(·)
that maps ciphertexts back to plaintexts. In public-key cryp-
tosystems, to evaluate the encryption function E , one needs
to hold a public key kPUB, so the encryption of data x is
E(x, kPUB). Similarly, to compute the decryption function
D(·) one needs to hold a secret key kSEC which allows us to
recover: D(E(x, kPUB), kSEC) = x.

A cryptosystem is homomorphic in some operation � if it is
possible to perform another (possibly different) operation �
such that: E(x, kPUB) � E(x, kPUB) = E(x � y, kPUB). Fi-
nally, in this work we assume all data to be binary ∈ {0, 1}.
For more detailed background on FHE beyond what is de-
scribed below, see the excellent tutorial of Halevi (2017).
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3.1. Fully Homomorphic Encryption

In 1978, cryptographers posed the question: Does an en-
cryption scheme exist that allows one to perform arbitrary
computations on encrypted data? The implications of this,
called a Fully homomorphic encryption (FHE) scheme,
would enable clients to send computations to the cloud
while retaining control over the secrecy of their data. This
was still an open problem however 30 years later. Then, in
2009, a cryptosystem (Gentry, 2009) was devised that could,
in principle, perform such computations on encrypted data.
Similar to previous approaches, in each computation, noise
is introduced into the encrypted data. And after a certain
number of computations, the noise grows too large so that
the encryptions can no longer be decrypted. The key innova-
tion was a technique called bootstrapping, which allows one
to reduce the noise to its original level without decrypting.
That result constituted a massive breakthrough, as it estab-
lished, for the first time, a fully homomorphic encryption
scheme (Gentry, 2009). Unfortunately, the original boot-
strapping procedure was highly impractical. Consequently,
much of the research since the first FHE scheme has been
devoted to reducing the growth of noise so that the scheme
never has to perform bootstrapping. Indeed, even in recent
FHE schemes bootstrapping is slow (roughly six minutes
in a highly-optimized implementation of a recent popular
scheme (Halevi & Shoup, 2015)) and bootstrapping many
times increases the memory requirements of encrypted data.

3.1.1. ENCRYPTED PREDICTION WITH LEVELED HE

Thus, one common technique to implement encrypted pre-
diction was to take an existing ML algorithm and approxi-
mate it with as few operations as possible, in order to never
have to bootstrap. This involved careful parameter tuning to
ensure that the security of the encryption scheme was suffi-
cient, that it didn’t require too much memory, and that it ran
in a reasonable amount of time. One prominent example of
this is Cryptonets (Gilad-Bachrach et al., 2016).

3.1.2. ENCRYPTED PREDICTION WITH FHE

Recent developments in cryptography call for rethinking this
approach. Ducas & Micciancio (2015) devised a scheme
that that could bootstrap a single Boolean gate in under
one second with reduced memory. Recently, Chillotti et al.
(2016) introduced optimizations implemented in the TFHE
library, which further reduced bootstrapping of to under 0.1
seconds. In this paper, we demonstrate that this change
has a huge impact on designing encrypted machine learn-
ing algorithms. Specifically, encrypted computation is now
modular: the cost of adding a few layers to an encrypted
neural network is simply the added cost of each layer in
isolation. This is particularly important as recent devel-
opments in deep learning such as Residual Networks (He

et al., 2016) and Dense Networks (Huang et al., 2017) have
shown that networks with many layers are crucial to achieve
state-of-the-art accuracy.

3.2. Binary Neural Networks

The cryptosystem that we will use in this paper, TFHE,
is however restricted to computing binary operations. We
note that, concurrent to the work that led to TFHE, was the
development of neural network models that perform binary
operations between binary weights and binary activations.
These models, called Binary Neural Networks (BNNs), were
first devised by Kim & Smaragdis (2015); Courbariaux et al.
(2016), and were motivated by the prospect of training and
testing deep models on limited memory and limited compute
devices, such as mobile phones.

Technical details. We now describe the technical details
of binary networks that we will aim to replicate on encrypted
data. In a Binary Neural Network (BNN) every layer maps a
binary input x ∈ {−1, 1}d to a binary output z ∈ {−1, 1}p
using a set of binary weights W ∈ {−1, 1}(p,d) and a
binary activation function sign(·) that is 1 if x ≥ 0 and
−1 otherwise. Although binary nets don’t typically use a
bias term, applying batch-normalization (Ioffe & Szegedy,
2015) when evaluating the model it means that a bias term
b ∈ Zp may need to be added before applying the activation
function (cf. Sec. 4.1.2). Thus, when evaluating the model,
a fully connected layer in a BNN implements the following
transformation z := sign(Wx + b). From now on we
will call all data represented as {−1, 1} non-standard binary
and data represented as {0, 1} as binary. Kim & Smaragdis
(2015); Courbariaux et al. (2016) were the first to note that
the above inner product nonlinearity in BNNs could be
implemented using the following steps:

1. Transform data and weights from non-standard binary
to binary: w,x→ w,x by replacing −1 with 0. n

2. Element-wise multiply by applying the logical operator
XNOR(w,x) for each element of w and x.

3. Sum result of previous step by using popcount oper-
ation (which counts the number of 1s), call this S.

4. If the bias term is b, check if 2S ≥ d − b, if so the
activation is positive and return 1, otherwise return −1.

Thus we have that,

zi = sign(2 · popcount(XNOR(wi,x))− d + b)

Related binary models. Since the initial work on BNNs
there has been a wealth of work on binarizing, ternarizing,
and quantizing neural networks Chen et al. (2015); Cour-
bariaux et al. (2015); Han et al. (2016); Hubara et al. (2016);
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Figure 2. Binary circuits used for inner product: reduce tree (Left) and sorting network (Right). RC is short for ripple-carry.

Zhu et al. (2016); Chabanne et al. (2017); Chen et al. (2017).
Our approach is currently tailored to methods that have bi-
nary activations and we leave the implementation of these
methods on encrypted data for future work.

4. Methods
In this work, we make the observation that BNNs can be
run on encrypted data by designing circuits in TFHE for
computing their operations. In this section we consider
Boolean circuits that operate on encrypted data and unen-
crypted weights and biases. We show how these circuits
allow us to efficiently implement the three main layers of
binary neural networks: fully connected, convolutional, and
batch-normalization. We then show how a simple trick al-
lows us to sparsify our computations. Our techniques can be
easily parallelized. During the evaluation of a circuit, gates
at the same level in the tree representation of the circuit
can be evaluated in parallel. Hence, when implementing a
function, “shallow” circuits are preferred in terms of par-
allelization. While parallel computation was often used
to justify employing second generation FHE techniques—
where parallelization comes from ciphertext packing—we
show in the following section that our techniques create
dramatic speedups for a state-of-the-art FHE technique. We
emphasize that a key challenge is that we need to use data
oblivious algorithms (circuits) when dealing with encrypted
data as the algorithm never discovers the actual value of any
query made on the data.

4.1. Binary OPs

The three primary circuits we need are for the following
tasks: 1. computing the inner product; 2. computing the
binary activation function (described in the previous section)
and; 3. dealing with the bias.

4.1.1. ENCRYPTED INNER PRODUCT

As described in the previous section, BNNs can speed up an
inner product by computing XNORs (for element-wise mul-
tiplication) followed by a POPCOUNT (for summing). In our
case, we compute an inner product of size d by computing
XNORs element-wise between d bits of encrypted data and
d bits of unencrypted data, which results in an encrypted
d bit output. To sum this output, the POPCOUNT operation
is useful when weights and data are unencrypted because
POPCOUNT is implemented in the instruction set of Intel
and AMD processors, but when dealing with encrypted data
we simply resort to using shallow circuits. We consider two
circuits for summation, both with sublinear depth: a reduce
tree adder and a sorting network.

Reduce tree adder. We implement the sum using a bi-
nary tree of half and ripple-carry (RC) adders organized
into a reduction tree, as shown in Figure 2 (Left). All these
structures can be implemented to run on encrypted data
because TFHE allows us to compute XNOR, AND, and
OR on encrypted data. The final number returned by the
reduction tree S̃ is the binary representation of the number
of 1s resulting from the XNOR, just like POPCOUNT. Thus,
to compute the BNN activation function sign(·) we need
to check whether 2S̃ ≥ d− b, where d is the number of bits
in S̃ and b is the bias. Note that if the bias is zero we simply
need to check if S̃ ≥ d/2. To do so we can simply return
the second-to-last bit of S̃. If it is 1 then S̃ is at least d/2.
If the bias b is non-zero (because of batch-normalization,
described in Section 4.1.2), we can implement a circuit
to perform the check 2S̃ ≥ d − b. The bias b (which is
available in the clear) may be an integer as large as S̃. Let
B[(d − b)/2], B[S̃] be the binary representations of b and
S̃. Algorithm 1 describes a comparator circuit that returns
an encrypted value of 1 if the above condition holds and
(encrypted) 0 otherwise (where MUX(s, a, b) returns a if
s = 1 and b otherwise). As encrypted operations dominate
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the running time of our computation, in practice this com-
putation essentially corresponds to evaluating d MUX gates.
This gate has a dedicated implementation in TFHE, which
results in a very efficient comparator in our setting.

Algorithm 1 Comparator

Inputs: Encrypted B[S̃], unencrypted B[(d− b)/2], size d
of B[(d− b)/2],B[S̃]
Output: Result of 2S̃ ≥ d− b

1: o = 0
2: for i = 1, . . . , d do
3: if B[(d− b)/2]i = 0 then
4: o = MUX(B[S̃]i, 1̃, o)
5: else
6: o = MUX(B[S̃]i, o, 0̃)
7: end if
8: end for
9: Return: o

Sorting network. We do not technically care about the
sum of the result of the element-wise XNOR between w̄
and x̄. In fact, all we care about is if the result of the
comparison: 2S̃ ≥ d − b. Thus, another idea is to take
the output of the (bitwise) XNOR and sort it. Although
this sorting needs to be performed over encrypted data, the
rest of the computation does not require any homomorphic
operations; after sorting we hold a sequence of encrypted
1s, followed by encrypted 0s. To output the correct value,
we only need to select one the (encrypted) bit in the correct
position and return it. If b = 0 we can simply return the
encryption of the central bit in the sequence; indeed, if the
central bit is 1, then there are more 1s than 0s and thus
2S̃ ≥ d and we return 1. If b 6= 0 we need to offset the
returned index by b in the correct direction depending on
the sign of b. In order to sort the initial array we implement
a sorting network, shown in Figure 2 (Right). The sorting
network is a sequence of swap gates between individuals
bits, where SWAP(a, b) = (OR(a, b), AND(a, b)). Note
that if a ≥ b then SWAP(a, b) = (a, b), and otherwise is
(b, a). More specifically, we implement Batcher’s sorting
network (Batcher, 1968), which consists of O(n log2(n))
swap gates, and has depth O(log2(n)).

4.1.2. BATCH NORMALIZATION

Batch normalization is mainly used during training; however
during evaluating a model this requires us scale and translate
and scale the input (which is the output of the previous
layer). In practice, when our activation function is the sign
function, this only means that we need to update the bias
term (the actual change to the bias term is an elementary
calculation). As our circuits are designed to work with a bias
term, and the scaling and translation factors are available as
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plaintext (as they are part of the model), this operation is
easily implemented during test time.

4.2. Sparsification via “+1”-trick

Since we have access to W ∈ {−1, 1}p×d and the bias
term b ∈ Zp in the clear (only data x and subsequent
activations are encrypted), we can exploit the fact that W
always has values±1 to roughly halve the cost computation.
We consider w ∈ {−1, 1}d which is a single row of W and
observe that:

w>x = (1 + w)>(1 + x)−
∑
i

wi − (1 + x)>1,

where 1 denotes the vector in which every entry is 1. Further
note that (1 + w) ∈ {0, 2}d which means that the product
(1+w)>(1+x) is simply the quantity 4

∑
i:wi=1 x̄i, where

x̄ refers to the standard binary representation of the non-
standard binary x. Assuming at most half of the wis were
originally +1, if w ∈ {−1, 1}d, only d/2 encrypted values
need be added. We also need to compute the encrypted
sum

∑
i xi; however, this latter sum need only be computed

once, no matter how many output units the layer has. Thus,
this small bit of extra overhead roughly halves the amount of
computation required. We note that if w has more −1s than
+1s, w>x can be computed using (1−w) and (1− x) in-
stead. This guarantees that we never need to sum more than
half the inputs for any output unit. The sums of encrypted
binary values can be calculated as described in Sec. 4.1. The
overheads are two additions required to compute (1+x)>1
and (1 − x)>1, and then a subtraction of two log(d)-bit
long encrypted numbers. (The multiplication by 2 or 4 as
may be sometimes required is essentially free, as bit shifts
correspond to dropping bits, and hence do not require ho-
momorphic operations). As our experimental results show
this simple trick roughly halves the computation time of one
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layer; the actual savings appear to be even more than half as
in many instances the number of elements we need to sum
over is significantly smaller than half.

It is worth emphasizing the advantage for binarizing and
then using the above approach to making the sums sparse.
By default, units in a neural network compute an affine func-
tion to which an activation function is subsequently applied.
The affine map involves an inner product which involves d
multiplications. Multiplication under fully homomorphic
encryption schemes is however significantly more expen-
sive than addition. By binarizing and applying the above
calculation, we’ve replaced the inner product operation by
selection (which is done in the clear as W is available in
plaintext) and (encrypted) addition.

4.3. Ternarization (Weight Dropping)

Ternary neural networks use weights in {−1, 0, 1} rather
than {−1, 1}; this can alternatively be viewed as drop-
ping connections from a BNN. Using ternary neural net-
works rather than binary reduces the computation time as
encrypted inputs for which the corresponding wi is 0 can
be safely dropped from the computation, before the method
explained in section 4.2 is applied to the remaining elements.
Our experimental results show that a binary network can be
ternarized to maintain the same level of test accuracy with
roughly a quarter of the weights being 0 (cf. Sec. 5.4).

5. Experimental Results
In this section we report encrypted binary neural network
prediction experiments on a number of real-world datasets.
We begin by comparing the efficiency of the two circuits
used for inner product, the reduce tree and the sorting net-
work. We then describe the datasets and the architecture of
the BNNs used for classification. We report the classifica-
tion timings of these BNNs for each dataset, for different
computational settings. Finally, we give accuracies of the
BNNs compared to floating point networks. Our code is
freely available at (tap, 2018).

5.1. Reduce tree vs. sorting network

We show timings of reduce tree and sorting network for dif-
ferent number of input bits, with and without parallelization
in Figure 3 (parallelization is over 16 CPUs). We notice that
the reduce tree is strictly better when comparing parallel or
non-parallel timings of the circuits. As such, from now on
we use the reduce tree circuit for inner product.

It should be mentioned that at the outset this result was not
obvious because while sorting networks have more levels of
computation, they have fewer gates. Specifically, the sorting
network used for encrypted sorting is the bitonic sorting
network which for n bits has O(log2 n) levels of computa-

tion whereas the reduce tree only has O(log n) levels. On
the other hand, the reduce tree requires 2 gates for each
half adder and 5k gates for each k-bit RC adder, whereas a
sorting network only requires 2 gates per SWAP operation.
Another factor that may slow down sorting networks is that
is that our implementation of sorting networks is recursive,
whereas the reduce tree is iterative.

5.2. Datasets

We evaluate on four datasets, three of which have privacy
implications due to health care information (datasets Cancer
and Diabetes) or applications in surveillance (dataset Faces).
We also evaluate on the standard benchmark MNIST dataset.

Cancer. The Cancer dataset1 contains 569 data points
where each point has 30 real-valued features. The task
is to predict whether a tumor is malignant (cancerous) or be-
nign. Similar to Meehan et al. (2018) we divide the dataset
into a training set and a test in a 70 : 30 ratio. For every
real-valued feature, we divide the range of each feature into
three equal-spaced bins and one-hot encode each feature by
its bin-membership. This creates a 90-dimensional binary
vector for each example. We use a single fully connected
layer 90→ 1 followed by a batch normalization layer, as is
common practice for BNNs (Courbariaux et al., 2016).

Diabetes. This dataset2 contains data on 100000 patients
with diabetes. The task is to predict one of three possible
labels regarding hospital readmission after release. We di-
vide patients into a 80/20 train/test split. As this dataset
contains real and categorical features, we bin them as in
the Cancer dataset. We obtain a 1704 dimensional binary
data point for each entry. Our network (selected by cross
validation) consists of a fully connected layer 1704→ 10,
a batch normalization layer, a SIGN activation function, fol-
lowed by another fully connected layer 10→ 3, and a batch
normalization layer.

Faces. The Labeled Faces in the Wild-a dataset contains
13233 gray-scale face images. We use the binary classifi-
cation task of gender identification from the images. We
resize the images to size 50 × 50. Our network architec-
ture (selected by cross-validation) contains 5 convolutional
layers, each of which is followed by a batch normalization
layer and a SIGN activation function (except the last which
has no activation). All convolutional layers have unit stride
and filter dimensions 10 × 10. All layers except the last
layer have 32 output channels (the last has a single output
channel). The output is flattened and passed through a fully
connected layer 25→ 1 and a batch normalization layer.

1https://tinyurl.com/gl3yhzb
2https://tinyurl.com/m6upj7y
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MNIST. The images in MNIST are 28×28 binary images.
The training set and testing sets in this case are already avail-
able in a standard split and that is what we use. The training
split contains 50000 images and the test split contains 10000
images. There are 10 classes, each corresponding to a differ-
ent mathematical digit. We use the model (torch7) described
in (Courbariaux et al., 2016).

5.3. Timing

We give timing results for classification of an instance in
different computational settings. All of the strategies use
the parallel implementations of the reduce tree circuit com-
puted across 16 CPUs (the solid line orange line in Figure 3).
The Out Seq strategy computes each operation of a BNN
sequentially (using the parallel reduce tree circuit). Notice
that for any layer of a BNN mapping d inputs to p outputs,
the computation over each of the p outputs can be paral-
lelized. The Out 16-P strategy estimates parallelizing the
computation of the p outputs across a cluster of 16 machines
(each with 16 CPUs). The Out Full-P strategy estimates
complete parallelization, in which each layer output can be
computed independently on a separate machine. We note
that for companies that already offer prediction as a service,
both of these parallel strategies are not unreasonable require-
ments. Indeed it is not uncommon for such companies to
run hundreds of CPUs/GPUs over multiple days to tune
hyperparameters for deep learning models3. Additionally
we report how timings change with the introduction of the
+1-trick is described in Section 4.2. These timings are given

Parallelism Cancer Diabetes Faces MNIST
Out Seq 3.5s 283s 763.5h 65.1h
+1-trick 3.5s 250s 564h 37.22 h
Out 16-P.
+1 trick 3.5s 31.5 s 33.1h 2.41 h

Out Full-P 3.5s 29s 1.3h 147s

Table 2. Neural Network timings on various datasets using differ-
ent forms of parallelism.

in Table 2 (computed with Intel Xeon CPUs @ 2.40GHz,
processor number E5-2673V3). We notice that without par-
allelization over BNN outputs, the predictions on datasets
which use fully connected layers: Cancer and Diabetes, fin-
ish within seconds or minutes. While the for the datasets
that use convolutional layers: Faces and MNIST, predic-
tions require multiple days. The +1-trick cuts the time of
MNIST prediction by half and reduces the time of Faces
prediction by 200 hours. With only a bit of parallelism over
outputs (Out 16-Parallel) prediction on the Faces dataset
now requires less than 1.5 days and MNIST can be done

3https://tinyurl.com/yc8d79oe

in 2 hours. With complete parallelism (Out N-Parallel) all
methods reduce to under 2 hours.

5.4. Accuracy

We wanted to ensure that BNNs can still achieve similar
test set accuracies to floating point networks. To do so, for
each dataset we construct similar floating point networks.
For the Cancer dataset we use the same network except
we use the original 30 real-valued features, so the fully
connected layer is 30 → 1, as was used in Meehan et al.
(2018). For Diabetes and Faces, just like for our BNNs
we cross validate to find the best networks (for Faces: 4
convolutional layers, with filter sizes of 5× 5 and 64 output
channels; for Diabetes the best network is the same as used
in the BNN). For MNIST we report the accuracy of the
best performing method (Wan et al., 2013) as reported4.
Additionally, we report the accuracy of the weight-dropping
method described in Section 4. The results are shown in

Cancer Diabetes Faces MNIST
Floating 0.977 0.556 0.942 0.998
BNN 0.971 0.549 0.891 0.986
BNN
drop 10%

0.976 0.549 0.879 0.976

BNN
drop 20%

0.912 0.541 0.878 0.973

Table 3. The accuracy of floating point networks compared with
BNNs, with and without weight dropping. The Cancer dataset
floating point accuracy is given by (Meehan et al., 2018), the
MNIST floating point accuracy is given by (Wan et al., 2013),
and the MNIST BNN accuracy (without dropping) is given by
(Courbariaux et al., 2016).

Table 3. We notice that apart from the Faces dataset, the
accuracies differ between the floating point networks and
BNNs by at most 1.2% (on MNIST). The face dataset uses a
different network in floating point which seems to be able to
exploit the increased precision to increase accuracy by 5.1%.
We also observe that weight dropping by 10% reduces the
accuracy by at most 1.2% (on Faces). Dropping 20% of
the weights seem to have small effect on all datasets except
Cancer, which has only a single layer and so likely relies
more on every individual weight.

6. Conclusion
In this work, we devised a set of techniques that allow for
practical Encrypted Prediction as a Service. In future work,
we aim to develop techniques for encrypting non-binary
quantized neural networks, and well as design methods for
encrypted model training.

4https://tinyurl.com/knn2434
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