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A. Doubling Trick for an Unknown Time Horizon
Suppose that we have an algorithm that depends on the time horizon T ′ and achieves E[RT ′ ] ≤ C

√
T ′ log T ′ for some

C > 0. We show that we can also achieve E[RT ] = O
(√
T log T

)
when T is unknown.

To see this, fix an arbitrary integer T0 ∈
[
1, T2

]
, and repeatedly run the algorithm with fixed time horizons T0, 2T0, 4T0,

etc., until T points have been sampled. The number of stages is no more than `max = dlog2
T
T0
e. Moreover, we have

E[RT ] ≤
`max∑
`=1

C
√

2`−1T0 log T = C
√
T0 log T

dlog2
T
T0
e−1∑

`=0

√
2` ≤ C

√
log T · 4

√
T (37)

where the first inequality uses log(2`−1T0) ≤ log T , and the last inequality uses
∑N
`=0 2`/2 ≤ 4 · 2N/2. This establishes the

desired claim.

B. Proof of Theorem 1 (Upper Bound)
We continue from the auxiliary results given in Section 3, proceeding in several steps. Algorithm 2 gives a full description
of the algorithm; the reader is encouraged to refer to this throughout the proof, rather than trying to understand all the steps
therein immediately. Note that the constants c0, c1, c2, and ρ0 used in the algorithm come from Assumptions 2 and 3.

Reduction to a finite domain. Our algorithm only samples f within a finite set L ⊆ D of pre-defined points. We choose
these points to be regularly spaced, and close enough to ensure that the highest function value is within 1

T of the maximum
f(x∗). Under condition (8) in Assumption 2 (which implies that f is c1-Lipschitz continuous), it suffices to choose

L =

(
1

c1 · T
Z ∩ [0, 1]

)
∪ {1}, (38)

where Z denotes the integers. Here we add x = 1 to L because it will be notationally convenient to ensure that the endpoints
{0, 1} are both included in the set. Note that L satisfies |L| ≤ c1T + 1, which we crudely upper bound by |L| ≤ 2c1T .

Since maxx∈L f(x) ≥ maxx∈D f(x)− 1
T , the cumulative regret R(L)

T with respect to the best point in L is such that

RT ≤ R(L)
T + 1. (39)

Hence, it suffices to bound R(L)
T instead of RT . For convenience, we henceforth let x∗L denote an arbitrary input that

achieves maxx∈L f(x), and we define the instant regret as

r(x) = f(x∗)− f(x), rt = r(xt) = f(x∗)− f(xt), r
(L)
t = f(x∗L)− f(xt). (40)

Conditioning on high-probability events. By assumption, the events in Assumptions 2 and 3 simultaneously hold with
probability at least 1− δ1 − δ2. Moreover, by setting δ = 1

T in Lemma 1 and letting L be as in (38) with |L| ≤ 2c1T , we
deduce that (14) holds with probability at least 1− 1

T when

βT = 2 log
(
2c1T

3
)
. (41)

Denoting the intersection of all events in Assumptions 2 and 3 by A, and the event in Lemma 1 by B, we can write the
average regret given A as follows:

E[RT |A] = E[RT |A,B] · P[B|A] + E[RT |A,Bc] · P[Bc|A] (42)

≤ E[RT |A,B] + E[RT |A,Bc]
1

T (1− δ1 − δ2)
(43)

≤ E[RT |A,B] +
2c0

1− δ1 − δ2
, (44)
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Algorithm 2 Full description of our algorithm, based on reducing uncertainty in epochs via repeated sampling.

Require: Domain D, GP prior (µ0, k0), time horizon T , constants c0, c1, c2, ρ0.
1: Set discrete sub-domain L =

(
1

c1·T Z∩ [0, 1]
)
∪{1}, confidence parameter βT = 2 log(2c1T

3), initial target confidence
η(0) = c0, and initial potential maximizers M(0) = L.

2: Initialize time index t = 1 and epoch number i = 1.
3: while less than T samples have been taken do
4: Set η(i) = 1

2η(i−1).
5: Define the interval

I(i) =
[

min{x ∈M(i−1)},max{x ∈M(i−1)}
]
∩ L,

and its width
w(i) = max{x ∈M(i−1)} −min{x ∈M(i−1)}.

6: Set the Lipschitz constant

L(i) =


c1 w(i) > ρ0

c1 w(i) ≤ ρ0 and either 0 ∈ I(i) or 1 ∈ I(i)
c2w(i) w(i) ≤ ρ0 and I(i) ⊆ (0, 1).

7: Construct a subset L(i) ⊆ I(i) as follows:

• Initialize L(i) ← ∅.

• Construct L̃(i) (not necessarily a subset of I(i) or L) containing regularly-spaced points within the interval[
min{x ∈ I(i)},max{x ∈ I(i)}

]
, with spacing η(i)

2L(i)
.

• For each x ∈ L̃(i), add its two nearest points in I(i) to L(i).

8: Sample each point in L(i) repeatedly K(i) times, where

K(i) =
⌈4σ2βT
η2(i)

⌉
.

For each sample taken, increment t← t+ 1, and terminate if t > T .
9: Update the posterior distribution (µt−1, σt−1) according to (5)–(6), with xt−1 = [x1, . . . , xt−1]T and yt−1 =

[y1, . . . , yt−1]T respectively containing all the selected points and noisy samples so far.
10: For each x ∈ I(i), set

UCBt(x) = µt−1(x′) + η(i), LCBt(x) = µt−1(x′)− η(i),

where x′ = arg minx′∈L(i)
|x− x′|.

11: Update the set of potential maximizers:

M(i) =
{
x ∈M(i−1) : UCBt(x) ≥ max

x′∈M(i−1)

LCBt(x
′)
}
.

12: Increment i.
13: end while
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where (43) follows since P[B|A] ≤ 1 and P[Bc|A] ≤ P[Bc]
P[A] ≤ 1

T (1−δ1−δ2) , and (44) follows since condition (8) in
Assumption 2 ensures that RT ≤ T · 2c0. By (44), in order to prove Theorem 1, it suffices to show that RT = O(

√
T log T )

whenever the conditions of Assumptions 2–3 and Lemma 1 hold true. We henceforth condition on this being the case.

Sampling mechanism. Recall that η(i) represents the target confidence to attain by the end of the i-th epoch, and each such
value is half of the previous value. For this interpretation to be valid, η(0) should be sufficient large so that the entire function
is a priori known up to confidence η(0); by (8) in Assumption 2, the choice η(0) = c0 certainly suffices for this purpose.

In the i-th epoch, we repeatedly sample a sufficiently fine subset of L sufficiently many times to attain an overall confidence
of η(i) within M(i−1) (with M(0) = L). Specifically:

• We sample each point K(i) times and average the resulting observations, yielding an effective noise variance of σ2

K(i)
,

and we choose K(i) large enough so that σ2

K(i)
≤ η2(i)

4βT
. Hence, K(i) = d 4σ2βT

η2
(i)

e is sufficient.

• To design L(i) ⊆ L, we consider the interval

I(i) =
[

min{x ∈M(i−1)},max{x ∈M(i−1)}
]
∩ L, (45)

which is the smallest interval (intersected with L) containing M(i−1). We select a Lipschitz constant L(i) (to be
specified later) such that f is L(i)-Lipschitz within I(i), and then we choose L(i) ⊆ I(i) to ensure the following:

Each x ∈ I(i) is within a distance
η(i)

2L(i)
of the nearest x′ ∈ L(i). (46)

If we were sampling at arbitrary locations, it would suffice to choose
⌈ 2w(i)L(i)

η(i)

⌉
equally-spaced points, where

w(i) = max{x ∈M(i−1)} −min{x ∈M(i−1)} (47)

is the width of the interval. With the restriction of sampling within the fine discretization L, we can simply “round” to
the two nearest points,1 yielding a suitable set L(i) ⊆ I(i) of cardinality at most 2

⌈ 2w(i)L(i)

η(i)

⌉
Combining these, the total number of samples T(i) is given by

T(i) = K(i) · |L(i)| (48)

≤ 2 ·
⌈4σ2βT
η2(i)

⌉
·
⌈2w(i)L(i)

η(i)

⌉
. (49)

At the points that were sampled, we performed enough repetitions to attain a variance of at most
η2(i)
4βT

based on those samples
alone. The information from any earlier samples only reduces the variance further, so the overall posterior variance2 σ2

t−1(x)

also yields β1/2
T σt−1(x) ≤ η(i)

2 . Hence, Lemma 1 ensures that at these sampled points, we can set

ŨCBt(x) = µt−1(x) +
η(i)

2
, L̃CBt(x) = µt−1(x)− η(i)

2
. (50)

For the points in M(i−1) that we didn’t sample, we note that the following confidence bounds are valid as long as f is
L(i)-Lipschitz continuous within I(i):

ŨCBt(x) = µt−1(x′) +
η(i)

2
+ L(i)|x− x′|, (51)

L̃CBt(x) = µt−1(x′)− η(i)

2
− L(i)|x− x′|, (52)

1To give a concrete example, suppose that L = {0, 0.01, . . . , 0.99, 1}, and that we seek a set of points such that each x ∈ L is within
a distance 1

3
of the nearest one. Without constraints, the points

{
1
3
, 2
3

}
would suffice, but after rounding these to {0.33, 0.66}, the point

x = 1 is at a distance 0.34 > 1
3

. However, doubling up and constructing the set {0.33, 0.34, 0.66, 0.67} clearly suffices.
2We consider (µt−1, σt−1) instead of (µt, σt) because when the time index is t, we have only selected t− 1 points.



Tight Regret Bounds for Bayesian Optimization in One Dimension

where x′ = arg minx′∈L(i)
|x− x′| is the closest sampled point to x. If x is itself in L(i), these expressions reduce to (50).

Now, since we have ensured the condition (46), we find that we can weaken (51)–(52) to

UCBt(x) = µt−1(x′) + η(i), LCBt(x) = µt−1(x′)− η(i). (53)

That is, as long as the Lipschitz constant L(i) is valid, we have η(i)-confidence at the end of the i-th epoch. As a result, by
Lemma 2, the updated set of potential maximizers

M(i) =

{
x ∈M(i−1) : UCBt(x) ≥ max

x′∈L
LCBt(x)

}
, (54)

with t being the ending time of the epoch, must only contain points within L whose function value is within 4η(i) of f(x∗L).
Below, we will choose L(i) differently in different epochs, while still ensuring the required Lipschitz condition is valid.

Analysis of early epochs. Recall the following:

• By Assumption 1, the constant ε lower bounds the separation between f(x∗) and the function value at the second
highest local maximum (if any).

• By Assumption 3, we either have x∗ at an endpoint and the locally linear behavior (9), or we have x∗ ∈ (ρ0, 1− ρ0)
and the locally quadratic behavior (10).

In the epochs for which w(i) > ρ0, we choose L(i) = c1 (cf., (8)), which is clearly a valid Lipschitz constant. We claim that
after a finite number of epochs, all points x ∈M(i) satisfy f(x) > f(x∗)− ε and |x− x∗| ≤ ρ0

2 , and therefore, w(i) ceases
to be greater than ρ0. We henceforth distinguish between the two cases using the terminology early epochs and late epochs.

To see that the preceding claim is true, we consider the two cases of Assumption 3:

• In the first case, all points satisfying |x− x∗| > ρ0 are at least min{c1ρ0, ε}-suboptimal by the locally linear behavior
(9) and the ε gap (7);

• In the second case, all points satisfying |x− x∗| > ρ0 are at least min{c2ρ20, ε}-suboptimal by the locally quadratic
behavior (9) and the ε gap (7).

Hence, in either case, all points satisfying |x− x∗| > ρ0 are at least ε′-suboptimal, where ε′ = min{c1ρ0, c2ρ20, ε}. As a
result, to establish the desired claim, we only need to show that M(i) contains no points with instant regret r(x) ≥ ε′.
Since f(x∗L) ≥ f(x∗)− 1

T (as stated following (38)), we find that as long as T > 2
ε′ ,

3 it suffices that M(i) only contains
points such that r(L)t (x) ≤ ε′

2 . By Lemma 2, this happens as soon as η(i) < ε′

8 . Since ε′ is constant and we halve η(i) at the
end of each epoch, it must be that only a finite number of epochs imax,1 pass before this occurs, with imax,1 depending only
on η(0) and ε′.

For these early epochs, we simply upper bound w(i) in (49) by one, meaning their overall cumulative time Tearly satisfies

Tearly ≤
imax,1∑
i=1

T(i) ≤ 2imax,1

⌈256σ2βT
(ε′)2

⌉
·
⌈16c1
ε′

⌉
, (55)

where we have used the fact that η(i) ≥ ε′

8 and L(i) = c1 in these epochs.

Analysis of late epochs. Recall that we consider ourselves in a late epoch as soon as w(i) ≤ ρ0. This condition implies that
all points in M(i−1) are within a distance ρ0 of x∗,4 yielding the locally linear behavior (9) if x∗ is an endpoint, and the
locally quadratic behavior (10) otherwise. Moreover, Assumption 3 assumes x∗ ∈ (ρ0, 1− ρ0) in the latter case, and as a
result, the algorithm can identify which case has occurred: If I(i) contains an endpoint, then we are in the first case, whereas
if I(i) ⊆ (0, 1), then we are in the second case.

3It is safe to assume that T is sufficiently large, since the smaller values of T can be handled by increasing C in the theorem statement.
4Since we condition on the confidence bounds in Lemma 1 being valid, only points that are truly suboptimal are ever ruled out.
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Accordingly, the algorithm can choose the Lipschitz constant L(i) differently in the two cases. In the first case, we simply
continue to use the global choice L(i) = c1 from (8). In the second case, we observe that f ′(x∗) = 0, and recall from (8)
that f ′ is c2-Lipschitz continuous. Since the width of the interval of interest I(i) is w(i), we conclude that |f ′(x)| ≤ c2w(i)

within I(i), and accordingly, we can set
L(i) = c2w(i). (56)

We initially focus on this second case (which is the more interesting of the two), and later return to the first case.

Recall that within the i-th epoch, all points with f(x) < f(x∗L)− 4η(i−1) have already been removed from the potential
maximizers (cf., Lemma 2). This implies that the points sampled incur instant regret at most

r
(L)
t ≤ 4η(i−1), (57)

and hence, since we have established that f(x∗L) ≥ f(x∗)− 1
T ,

rt ≤ 4η(i−1) +
1

T
. (58)

From this fact and the locally quadratic behavior (10), we deduce that the width w(i) defined in (47) satisfies w(i) ≤√
4η(i−1)+

1
T

c2
=

√
8η(i)+

1
T

c2
(since η(i−1) = 2η(i)), from which (49) and (56) yield

T(i) ≤ 2
⌈4σ2βT
η2(i)

⌉
·
⌈2c2
c2
·
(

8 +
1

Tη(i)

)⌉
. (59)

Grouping all the constants together and writing dze ≤ 1 + z, we can simplify this to

T(i) ≤ c′
(

1 +
1

Tη(i)
+
σ2βT
η2(i)

+
σ2βT
Tη3(i)

)
(60)

for suitably-chosen c′ > 0.

Bounding the cumulative regret. In the early epochs, we crudely upper bound the regret at each time instant by 2c0 (cf.,
(8)). Hence, since the total cumulative time of these epochs satisfies (55) for bounded imax,1, and βT = O(log T ) as per
(41), the corresponding total cumulative regret R(L)

early is upper bounded by

R
(L)
early ≤ c′′(1 + σ2 log T ) (61)

for some c′′ > 0.

For the late epochs, we make use of the instant regret bound in (57), depending on the epoch index i. Since this upper bound
is decreasing in i, and the epoch lengths satisfy (60), we can upper bound R(L)

T by considering the hypothetical case that the
epoch lengths are exactly the right-hand side of (60), and the instant regret incurred at time t is exactly r(L)t = 4η(i−1).

In this situation, we can easily upper bound the total number of epochs: The last epoch must certainly be no larger than
imax,2, defined to be the smallest i such that the term c′ σ

2βT
η2
(i)

on the right-hand side of (60) is T or higher. Substituting

η(i) =
η(0)
2i and re-arranging, we conclude that

imax,2 ≤ log4

Tη2(0)

c′σ2βT
= log2

√
Tη2(0)

c′σ2βT
. (62)

For technical reasons, here and subsequently we can assume without loss of generality that σ ≤ κ
√

T
log T for arbitrarily

small κ > 0 and sufficiently large T ; otherwise, Theorem 1 states the trivial bound E[RT ] ≤ CT . Since βT = Θ(log T ),
this technical condition means the right-hand side of (62) exceeds one.
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Continuing, the total cumulative regret R(L)
late from the late epochs is upper bounded as follows:

R
(L)
late ≤

imax,2∑
i=1

4η(i−1)T
(i) (63)

≤ 4c′
imax,2∑
i=1

η(i−1) + 8c′
( imax,2∑

i=1

1

)
+ 8c′σ2βT

imax,2∑
i=1

1

η(i)
+

8c′σ2βT
T

imax,2∑
i=1

1

η2(i)
(64)

≤ 4c′imax,2(η(0) + 2) + 8c′σ2βT

imax,2∑
i=1

1

η(i)
+

8c′σ2βT
T

imax,2∑
i=1

1

η2(i)
(65)

≤ 4c′imax,2(η(0) + 2) +
8c′σ2βT
η(0)

imax,2∑
i=1

2i +
8c′σ2βT
Tη2(0)

imax,2∑
i=1

4i (66)

≤ 4c′imax,2(η(0) + 2) +
16c′σ2βT
η(0)

2imax,2 +
16c′σ2βT
Tη2(0)

4imax,2 (67)

≤ 4c′(η(0) + 2) log4

Tη2(0)

c′σ2βT
+ 16

√
c′σ2βTT + 16, (68)

where (64) follows from (60) and the fact that η(i−1) = 2η(i), (65) follows since η(i−1) ≤ η(0), (66) follows since
η(i) =

η(0)
2i , (67) follows since

∑N
i=1 2i ≤ 2 · 2N and

∑N
i=1 4i ≤ 2 · 4N , and (68) follows by substituting the upper bound

on imax,2 from (62). Using the fact that βT = O(log T ), and recalling that η(0) = c0 is constant, we simplify (68) to

R
(L)
late ≤ c†

(
1 + σ

√
T log T

)
(69)

for some c† > 0. Note that we can safely drop the O
(

log T
σ2βT

)
= O

(
log T

σ2 log T

)
term in (68) due to the assumption

σ2 ≥ cσ
T 1−ζ in Theorem 1.

Handling the first case in Assumption 3. From (56) onwards, we focused only on the second case of Assumption 3. In
the first case, we have a worse Lipschitz constant L(i) = c1, but the width also shrinks faster: By the locally linear behavior
(9), achieving η(i)-confidence not only brings the interval width w(i) down to at most O(

√
η(i)), but also further down to

O(η(i)). Hence, we lose a factor of√η(i) in the Lipschitz constant, but we gain a factor of√η(i) in the upper bound on w(i).
Since the number of points sampled in (49) contains the product of the two, the final result remains unchanged, i.e., we still
have (69), possibly with a different constant c†.

Completion of the proof. Combining (39), (44), (61) and (69), we obtain

E[RT ] ≤ C†
(
1 + σ2 log T + σ

√
T log T

)
(70)

for some constant C†. As stated following (62), we can assume without loss of generality that σ ≤ O
(√

T
log T

)
, which

means that the third term of (70) dominates the second, and the proof is compete.

C. Proof of Lemma 3
For the first part, we consider ∆ sufficiently small so that c2∆2 < ε, for ε given in Assumption 2 and c2 in Assumption 4.
Since all local maxima are at least ε-suboptimal, achieving r+(x) < c2∆2 requires that x lies within a small interval around
x∗+. Moreover, the locally quadratic behavior (12) in Assumption 4 yields r+(x) ≥ c2(x− x∗+)2 within this interval when
∆ is sufficiently small. Combining this with r+(x) < c2∆2 gives |x− x∗+| < ∆, and since |x∗+ − x∗−| = 2∆, the triangle
inequality yields |x− x∗−| > ∆. Again using (12), we conclude that r−(x) > c2∆2, as required.

For the second part, we recall from (24)–(25) that r+(x) = r0(x + ∆) and r−(x) = r0(x − ∆), where r0(x) =
f0(x∗0) − f0(x). Again assuming ∆ is sufficiently small (i.e., less than ρ0), we can apply the general Taylor expansion
according to (11) to obtain

|r+(x)− r0(x)| ≤ ∆|r′0(x)|+ c2,max∆2, (71)

|r−(x)− r0(x)| ≤ ∆|r′0(x)|+ c2,max∆2, (72)
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where c2,max = max{|c′2|, |c′2|}. Since r′0(x) is c2-Lipschitz continuous (see (8)) and equals zero at x∗0, we must have
|r′0(x)| ≤ c2|x− x∗0|. Hence, and using the triangle inequality along with (71)–(72), we have

|r+(x)− r−(x)| ≤ 2∆c2|x− x∗0|+ 2c2,max∆2, (73)

which proves (29).

For the third part, we note that since x∗+ = x∗0 −∆ and x∗− = x∗0 + ∆, the conditions in (30) can be written as

r+(x) ≥ c′′(x− x∗+)2, r−(x) ≥ c′′(x− x∗−)2. (74)

Using the locally quadratic behavior in (12), we deduce that (30) holds for all x within distance ρ0 of the respective function
optimizer. On the other hand, if the distance from the optimizer is more than ρ0, then a combination of (7) and (12) reveals
that r(x) is bounded away from zero. Since the quadratic terms in (30) are also bounded from above due to the fact that
x ∈ [0, 1], we conclude that (30) holds for sufficiently small c′′.

D. Proof of Theorem 2 (Lower Bound)
We continue from the reduction to binary hypothesis testing and auxiliary results given in Section 4. These results hold for
an arbitrary given (deterministic) BO algorithm, which in general is simply a sequence of mappings that return the next
point xt based on the previous samples y1, . . . , yt−1. Recall also that we implicitly condition on an arbitrary realization of
f0 satisfying the events in Assumptions 2 and 4, meaning that all expectations and probabilities are only with respect to the
random index V ∈ {+,−} and/or the noise. We proceed in two main steps.

Bounding the mutual information. To bound the mutual information term I(V ;x,y) appearing in (31), we first apply the
following tensorization bound for adaptive sampling, which is based on the chain rule for mutual information (e.g., see
(Raginsky & Rakhlin, 2011)):5

I(V ;x,y) ≤
T∑
t=1

I(V ; yt|xt). (75)

It is well known that the conditional mutual information I(V ; yt|xt = x) is upper bounded by the maximum KL divergence
maxv,v′ D(PY |V,X(· | v, x)‖PY |V,X(· | v′, x)) between the resulting conditional output distributions PY |V,X (e.g., see
Eq. (31) of (Raginsky & Rakhlin, 2011)). In our setting, there are only two values of v, and since we are considering
Gaussian noise, their conditional output distributions are N(r+(x), σ2) and N(r−(x), σ2). Using the standard property that
the KL divergence between the N(µ1, σ

2) and N(µ2, σ
2) density functions is (µ2−µ1)

2

2σ2 , we deduce that

I(V ; yt|xt = x) ≤ (r+(x)− r−(x))2

2σ2
. (76)

Substituting property (29) in Lemma 3 gives

I(V ; yt|xt = x) ≤ (c′)2

2σ2

(
∆|x− x∗0|+ ∆2

)2
(77)

≤ 3(c′)2

2σ2

(
∆2|x− x∗0|2 + ∆4

)
, (78)

where (78) follows since (a+b)2 ≤ 3(a2+b2). Averaging over xt, we obtain I(X; yt|xt) ≤ 3(c′)2

2σ2

(
∆2E

[
|xt−x∗0|2

]
+∆4

)
,

and substitution into (75) gives

I(V ;x,y) ≤ 3(c′)2

2σ2

(
∆2E

[ T∑
t=1

|xt − x∗0|2
]

+ T∆4

)
. (79)

5This form of the bound is not stated explicitly in (Raginsky & Rakhlin, 2011). However, Eq. (27) of (Raginsky & Rakhlin, 2011)
states that I(V ;x,y) ≤

∑T
t=1 I(V ; yt|xt1, yt−1

1 ), where xt1 = (x1, . . . , xt) and similarly for yt−1
1 . LettingH(·) denote the (differential)

entropy function (Cover & Thomas, 2001), we obtain (75) by writing I(V ; yt|xt1, yt−1
1 ) = H(yt|xt1, yt−1

1 ) − H(yt|xt1, yt−1
1 , V ),

applying H(yt|xt1, yt−1
1 ) ≤ H(yt|xt) since conditioning reduces entropy, and applying H(yt|xt1, yt−1

1 , V ) = H(yt|xt, V ) since in our
setting yt depends on (xt1, y

t−1
1 , V ) only through (xt, V ).
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Bounding the regret. We consider the cases E[RT ] ≥ c′′T∆2 and E[RT ] < c′′T∆2 separately, where c′′ is defined in
Lemma 3. In the former case, we immediately have a lower bound on the average cumulative regret, whereas in the latter
case, the following lemma is useful.

Lemma 5. If E[RT ] < c′′T∆2 with c′′ defined in Lemma 3, then E
[∑T

t=1 |xt − x∗0|2
]
< 4T∆2.

Proof. Since V is equiprobable on {+,−}, we have

E[RT ] =
∑

v∈{+,−}
E
[ T∑
t=1

rv(xt)
∣∣∣V = v

]
(80)

≥ c′′
∑

v∈{+,−}
E
[ T∑
t=1

((xt − x∗0) + v∆)2
∣∣∣V = v

]
(81)

≥ c′′E
[ T∑
t=1

(xt − x∗0)2 − 2

T∑
t=1

|xt − x∗0|∆ + T∆2

]
, (82)

where (81) follows from (30) in Lemma 3, and (82) follows by expanding the square and lower bounding the cross-term by
its negative absolute value.

Substituting the assumption E[RT ] < c′′T∆2 into (82), and canceling the term c′′T∆2 appearing on both sides, we obtain

E
[ T∑
t=1

(xt − x∗0)2
]
< 2∆E

[ T∑
t=1

|xt − x∗0|
]

(83)

≤ 2∆
√
TE

[√√√√ T∑
t=1

(xt − x∗0)2

]
(84)

≤ 2∆
√
T

√√√√E
[ T∑
t=1

(xt − x∗0)2
]
, (85)

where (84) follows from the Cauchy-Schwartz inequality, and (85) follows from Jensen’s inequality. Solving for
E
[∑T

t=1(xt − x∗0)2
]

yields the desired claim.

In the case E[RT ] < c′′T∆2, we claim that under the choice ∆ =
(
σ2

C̃T

)1/4
with a sufficiently large constant C̃, it holds

that E[RT ] ≥ c̃σ
√
T for some constant c̃. Once this is established, combining the two cases with the choice of ∆ gives

E[RT ] ≥ min

{
c′′√
C̃
, c̃

}
σ
√
T , (86)

which yields Theorem 2. We also note that by the assumption σ2 ≤ cσT 1−ζ in Theorem 2, we have for sufficiently large T
that ∆ is indeed arbitrarily small under the above choice, as was assumed throughout the proof.6

It only remains to establish the claim stated above (86) when E[RT ] < c′′σ
√
T . By Lemma 5, we have E

[∑T
t=1 |xt −

x∗0|2
]
< 4T∆2, and substitution into (79) gives

I(V ;x,y) ≤ 15(c′)2

2σ2
T∆4. (87)

Since ∆4 = σ2

C̃T
, we deduce that I(V ;x,y) ≤ log 2

4 (say) when C̃ is sufficiently large. As a result, (31) gives E[RT ] ≥
c2T∆2H−12

(
3 log 2

4

)
(note that H−12 is an increasing function). Since ∆2 = σ

√
1

C̃T
, we deduce that E[RT ] ≥ c̃ · σ

√
T ,

where c̃ = c2

√
1

C̃
H−12

(
3 log 2

4

)
. This establishes the desired result.

6It is safe to assume that T is sufficiently large, since the smaller values of T can be handled by decreasing C′ in the theorem statement.


