
Learning with Abandonment Appendix

Sven Schmit 1 Ramesh Johari 2

A. Proofs
A.1. Threshold models

Proof of Theorem 1. The proof follows from defining an
appropriate dynamic program and finding the optimal pol-
icy using value iteration. We denote the state by x, denoting
the best lower bound on c. In practice, if the process sur-
vives up to time t (T > t) the state is x = maxs≤t xs. Fur-
thermore, it is convenient to use the demand, or survival,
function D(x) = 1− F (x).

It is easy to see that the optimal policy is non-decreasing,
so we can restrict our focus to non-decreasing policies.

The Bellman equation for the value function at state x is
given by

V (x) = max
y≥x

D(y)

D(x)
(r(y) + γV (y)). (1)

For convenience we define the following transformation
J(x) = D(x)V (x) and note that we can equivalently use
J to find the optimal policy. We now explicitly com-
pute the limit of value iteration to find J(x). Recall that
p(x) = r(x)(1−F (x)) = r(x)D(x). Start with J0(x) = 0
for all x and note that the iteration takes the form

Jk+1 = max
y≥x

D(y)r(y) + γJk(y) = max
y≥x

p(y) + γJk(y).

(2)
We prove the following two properties by induction for all
k > 0:

1. Jk(x) = p(x∗)
∑k−1
i=0 γ

i for all x ≤ x∗.

2. Jk(x) < Jk(x∗) for all x > x∗.

The above is true for k = 1. Now assume it is true for
an arbitrary k, then based on the induction assumption, it
follows immediately that

Jk+1(x) = p(x∗) + γJk(x∗) for all x ≤ x∗ (3)

1Institute for Computational and Mathematical Engineering,
Stanford University, Stanford, CA, USA 2Management Science
& Engineering, Stanford University, Stanford, CA, USA.. Corre-
spondence to: Sven Schmit <schmit@stanford.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

and therefore

Jk+1(x) = p(x∗) + γp(x∗)

k−1∑
i=0

γi = p(x∗)

k∑
i=0

γi (4)

as required. Furthermore,

Jk+1(x) < p(x∗)+γJk(x∗) = Jk+1(x∗) for all x > x∗.
(5)

The result follows from taking the limit as k → ∞ and
noting that for any state x ≤ x∗, it is optimal to jump to
state x∗ (and remain there). We also immediately see that
the value of the optimal policy thus is p(x)/γ, as required.

Proof of Proposition 2. It is immediate that the optimal
policy must be constant; if the process survives xt = x,
then at time t+1 we face the same problem as at time t. So
whatever action is optimal at time t, is also optimal at time
t + 1. Let V (x) denote the value of playing xt = x for all
t. Then the following relation holds

V (x) = (1− F (x))(r(x) + γV (x)) (6)

which leads to

V (x) =
r(x)(1− F (x))

1− γ(1− F (x))
. (7)

The result now follows immediately.

A.2. Robustness

Proof of Proposition 3. First we consider the constant pol-
icy xt = x∗ − y for all t in the noiseless case. We note
that

r(x∗−y)D(x∗−y) ≥ (r(x∗)−yL)D(x∗) ≥ V (x∗)−yL
(8)

where V (x∗) is the value of the optimal constant policy for
the noise-free model.

Now let us consider the best possible noise model, then
εt = y for all t. But this is equivalent to the noise-free
model with the threshold shifted by y. Hence, we know
that a constant policy is optimal. We can bound the value



Learning with Abandonment

of this model by

max
x

r(x)D(x− y) = max
x

r(x+ y)D(x) (9)

≤ max
x

(r(x) + yL)D(x) (10)

= max
x

r(x)D(x) + yLD(x) (11)

≤ max
x

r(x)D(x) + yL (12)

= V (x∗) + yL (13)

Hence, this implies that the constant policy xt = x∗ − y
is at most 2yL

1−γ worse than the optimal policy for the most
optimistic noise model.

Proof of Proposition 4. Let θ̄ be the midpoint of the η
cover, c = l+u

2 . Now we bound the expected value of an
oracle policy, i.e. a policy that knows the true threshold θ∗

as follows

E(v(θ∗, θ∗)) ≤ 2ηB

1− γ
+

∫ u

l

v(θ∗, θ∗)dFθ

≤ 2ηB

1− γ
+

∫ u

l

v(θ∗, θ∗) + L|θ̄ − θ∗|dFθ

≤ 2ηB

1− γ
+

∫ u

l

v(θ̄, θ∗) + L
u− l

2
dFθ

≤ E(v(θ̄, θ∗)) +
2ηB

1− γ
+ (1− η)

Lw

2

which completes the proof.

A.3. Learning

Proof of Theorem 6. Due to the discretization, the proof
consists of two parts. First, we show that the policy that
plays the best arm i∗ suffers small regret with respect to
the optimal policy. Then we use the UCB regret bound to
show that the learning strategy has low regret with respect
to the playing arm i∗. Thus we can decompose regret into

regret(UCB) = regretD + regretU (14)

where the first term corresponds to the discretization error
and the second from the learning policy. Due to the time
horizon and discounting, we write

Let x∗ be the optimal strategy, i.e. it maximizes r(x)D(x).
Then the discretization error from playing i∗/K, by As-
sumption 1 is

regretD ≤
c2n

2K2
=
c2
√
n log n

2
. (15)

Thus, the error due to the discretization is small.

Now let us bound the UCB regret with respect to action
i∗/K. As Kleinberg and Leighton (2003) note, the assump-
tion that the pulls of different arms are independent is not

used in the proof. Thus we can apply Lemma 5. First, we
show that the arms are sub-Gaussian. Since the rewards are
bounded by 1 and independent across time, straightforward
calculation shows that

Var

(
(1− γ)

∞∑
t=0

γtRt(x)

)
=

(1− γ)2

4(1− γ2)
≤ 1

4
. (16)

Then using the law of total variance, conditioning on the
event x < θu, the variance of the total obtained reward for
user u, Ru, can be bounded by

Var (Ru) = E(Var (Ru | θu)) + Var (E(Ru | θu)) (17)

=
(1− F (xu))M2

4
+ (r(xu))

2
F (xu)(1− F (xu))

(18)

≤M2/2 (19)

Thus we find that the reward for users is sub-Gaussian with
parameter σ = M2

2 .

Recall the UCB regret bound

regret(UCB) ≤
∑

i:∆i>0

8ασ2

∆i
log n+

α

α− 2
. (20)

We now focus on the
∑K
i=1:∆i>0

1
∆i

term. Let ∆(1) ≤
∆(2) ≤ . . . ≤ ∆(K−1) denote the ordered gaps with re-
spect to the optimal arm. Note that for j ≥ 2, we know
∆(j) > c1( j

2K )2 due to Assumption 1. However, for the
smallest gap, we only know 0 ≤ ∆(1) ≤ c2

K2 , depending
how close i∗/K is to x∗. We thus obtain

K∑
i=1

1

∆i
=

K−1∑
i=1

1

∆(i)
(21)

=
1

∆(1)
+
∑
i≥2

1

∆(j)
(22)

≤ 1

∆(1)
+

4K2

c1

∑
j−1 (23)

≤ 1

∆(1)
+

2π2

3c1
K2 (24)

Thus regret is bounded by

regretU ≤
8ασ2 log n

∆(1)
+

16ασ2π2

3c1
(K−2)2 log n+K

α

α− 2
(25)

However, the regret from due to playing the second best
action is trivially bounded by n∆(1). Thus, we can bound
the worst case when ∆(1) = 4

√
log n/n. This leads to a

bound of

regretU ≤ 2ασ2
√
n log n+

16ασ2π2

3c1
(K−2)2 log n+K

α

α− 2
(26)



Learning with Abandonment

since there are K = (n/ log n)1/4 arms, we get

regretu ≤ 2ασ2
√
n log n+

16ασ2π2

3c1

√
n log n+o(

√
n log n)

(27)
Combining this with the bound on regretD completes the
proof.

The regret bound for the KL-UCB algorithm is based on
the following result by (Garivier & Cappé, 2011).

Lemma 1 (Theorem 2 in (Garivier & Cappé, 2011)). Let
ε > 0, and I∗ denote the arm with maximal expected re-
ward µI∗ , and let I be any arm such that µI < µI∗ . For
any n, the number of times the KL-UCB algorithm chooses
arm I is upper-bounded by

E[Nn(I)] ≤ log n

KL(µI || µI∗)
(1 + ε) + c3 log log n+

c4(ε)

nβ(ε)
,

(28)
where c3 > 0, and c4 and β denote positive functions of ε.

Proof Proposition 8. The proof follows along the same
lines as the proof for the UCB algorithm. For simplicity,
we assume M = 1. For general M regret is increased by a
factor M . As before, the discretization error is bounded by

regretD ≤
c2n

2K2
=
c2
√
n log n

2
. (29)

We use Lemma 1 to bound the regret of the KL-UCB algo-
rithm with respect to action i∗/K by noting

regretU ≤
K−1∑
i=1

∆(i)E[Nn((i))] (30)

By Pinsker’s inequality KL(µI || µI∗) ≥ 2(µI − µI∗)2.
Then we find that for j ≥ 2,

∆(j)E[Nn((j))] ≤
log n

2∆(j)
(1 + ε) + ∆(j)

(
c3 log log n+

c4(ε)

nβ(ε)

)
(31)

Since ∆(j) > c1( j
2K )2 due to Assumption 1, we obtain

log n

2∆(j)
(1 + ε) + ∆(j) ≤

2(1 + ε)
√
n log n

c1j2
(32)

and

∆(j)

(
c3 log log n+

c4(ε)

nβ(ε)

)
≤

c1j
2
√

log n

4
√
n

(
c3 log log n+

c4(ε)

nβ(ε)

)
≤

c1
4

(
c3 log log n+

c4(ε)

nβ(ε)

)
(33)

where the last inequality follows from j ≤ K =√
n/ log n. Thus we find

regretU ≤ ∆(1)E[Nn((1))] +
π2(1 + ε)

√
n log n

3c1
+

c3
4

√
n/ log n

(
c3 log log n+

c4(ε)

nβ(ε)

)
(34)

For arm (1) we note that the regret is trivially bounded by
n∆(1), and this leads to worst case ∆(1) =

√
log n/n. Set-

ting ε = 1, we find

regretU ≤
√
n log n

(
1 +

2π2

3c1

)
+(

1 +
c3
4

√
n/ log n

)(
c3 log log n+

c4(1)

nβ(1)

)
(35)

which completes the proof.

A.4. Feedback

Proof of Lemma 9. The Bellman equation of the dynamic
program for the feedback model can be written as:

V (l, u) = max
l≤y≤u

F (u)− F (y)

F (u)− F (l)
(r(y) + γV (y, u))

+
F (y)− F (l)

F (u)− F (l)
γqV (l, y) (36)

where l and u are the lower bounds and upper bounds on c
based on the history.

Note that V is finite and therefore value iteration converges
pointwise to V . We use induction on the value iterates to
find the Lipschitz constant for V . Let V0, V1, . . . indicate
the value iterates. Since V0(l, u) = 0 for all states (l, u),
the Lipschitz constant for V0, denoted by L0 = 0. We
further claim that Ln+1 = Lp

B
1−γ + qγLn. Suppose this is

true for n = 1, . . . , i − 1, then for n = i + 1 we consider
state (l + ε, u) and write x∗ for the optimal action in that
state, and y∗ = x∗ − l. Then

Vi+1(l, u) ≥ p(y∗ | l, u)(r(x∗) + γV (x∗, u))

+ (1− p(y∗ | l, u))qγV (l, x∗) (37)

Also, V (l, x∗) ≤ V (l, u). Then we find

Vi+1(l+ε, u)−Vi+1(l, u) ≤ [p(y∗ | l + ε, u)− p(y∗ | l, u)]

(r(x∗) + γVi(x
∗, u))

+ (1− p(y∗ | l + ε, u))qγVi(l + ε, x∗)

− (1− p(y∗ | l, u)qγVi(l, x
∗) (38)

Using the Lipschitz continuity of p we can bound

p(y∗ | l + ε, u)− p(y∗ | l, u) ≤ εLp. (39)



Learning with Abandonment

Then note that

r(x∗) + γV (x∗, u) ≤ B

1− γ
(40)

and for the final two terms we note

(1− p(y∗ | l + ε, u))qγVi(l + ε, x∗)

− (1− p(y∗ | l, u)qγVi(l, x
∗)

≤ qγ(Vi(l + ε, x∗)− Vi(l, x∗)) ≤ qγεLi (41)

where we use the inductive assumption. Because l, u and ε
are arbitrary, we see that

Ln ≤
L′B

(1− qγ)(1− γ)
. (42)

which implies V is Lipschitz.

Proof of Proposition 10. First we note that by Lemma 8,
V is Lipschitz, and we write Lv for its Lipschitz constant.
Fix u, and consider a state (u − ν, u) for some ν > 0. For
notational convenience, for action x we write y = x− (u−
ν) for the difference from the lower bound. We also use the
shorthand l = u− ν and p(y) = p(y | l, u). We can upper
bound the value function by

V (l, u) = max
y

p(y)[r(x) + γV (x, u)] + (1− p(y))qγV (l, x)

(43)

≤ p(y)[r(l) + Lry + γV (l, u) (44)
+ γLvy] + (1− p(y))qγV (l, u) (45)
≤ (1− λ(ν)y)[r(l) + γV (l, u) + Ly] (46)

+ λ(ν)yqγV (l, u) (47)

where we write L = Lr+γLv and use the non-degeneracy
of p. The derivative for the above expression with respect
to y is

(1− 2λ(ν))Ly + L− λ(ν)r(l)− γλ(ν)(1− q)V (l, u)

≤ (1− 2λ(ν))Ly + L− λ(ν)r(l). (48)

Since r(l) > 0 for all l ∈ IntX, for ν sufficiently small
this derivative is negative for all y ≥ 0. To complete the
proof, we need this upper bound to be tight at y = 0, which
follows immediately

(1− λ(ν)y)[r(l) + γV (l, u) + Ly] + λ(ν)yqγV (l, u)|y=0 =

r(l) + γV (l, u) ≥ r(l)

1− γ
. (49)

Since r is increasing, it follows immediately that ε(u) is
non-decreasing in u.

References
Garivier, A. and Cappé, O. The kl-ucb algorithm for

bounded stochastic bandits and beyond. In Proceedings
of the 24th annual Conference On Learning Theory, pp.
359–376, 2011.


